平面向量在平面几何中的应用
高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。
向量知识在平面解析几何中的应用

向量知识在平面解析几何中的应用近年来,向量知识在平面解析几何中的应用受到越来越多的关注。
解析几何是研究二维空间上的几何图形,其中向量知识通常是帮助理解和解决几何问题的重要工具。
举例来说,本文将重点介绍平面解析几何中向量知识的三个典型应用,包括表示几何对象、分析基本性质和构造几何图形。
首先,表示几何对象是平面解析几何中最基础、最重要的应用。
在几何学中,我们往往会用向量来表示一个几何对象,其中向量可以表示一个点、一条直线或一个平面。
例如,我们可以用向量P = (x, y)表示一个平面上的点P,而用向量A = (a, b, c)表示一条直线A,用向量N = (n1, n2, n3)表示一个平面N。
不仅如此,我们还可以用向量来表示几何对象之间的位置关系,其中向量和运算可以表示平面上点与点、点与直线、直线与直线的距离或垂直关系。
其次,分析基本性质是平面解析几何中常用的应用。
在平面解析几何中,我们可以利用向量知识来分析几何对象的基本性质,比如线段的长度、平行线间的距离或者大圆弧的弧长等等。
计算这些基本性质往往要求我们掌握向量的加减运算以及向量的点积与叉积。
同时,我们可以利用向量知识来确定点与点之间的距离、点在直线上的坐标、直线与直线的位置关系等等,这些知识的应用可以大大提高我们的解决能力。
最后,构造几何图形也是向量知识在平面解析几何中的重要应用。
一般来说,在解析几何中,我们往往要根据给定的构造要求绘制几何图形,这要求我们充分运用向量知识来确定各个图形的位置关系和几何性质。
例如,我们可以根据给定点P、Q和R,通过运用向量知识来构造三角形PQR,或者根据给定的直线ABC点,通过运用向量知识来构造向量AB和向量AC的夹角等等。
综上所述,向量知识在平面解析几何中有着重要的应用。
它不仅可以帮助我们更好地表示几何对象,分析基本性质,还可以用来构造几何图形,有效地指导我们解决几何问题。
因此,学习和掌握向量知识对于掌握平面解析几何是至关重要的。
5.5平面向量应用

= .
A
B
解: = ∙ = ( + ) ∙ ( + ) = ∙ + ∙ + ∙ + ∙ =
同理:
=
− ∙ + ()
(1)+(2)得:
+
= (
涉及长度问题常常考虑向量的数量积,对 与 进行计算.
(1) , 分别对质点所做的功;
(2) , 的合力F对质点所做的功。
17.在风速为( − )/的西风中,飞机以150km/h的航速向西北方向飞行,求没有风时飞机的航速和航向。
作
业
答
案
(3)基底向量的夹角最好是明确的(直角最合适);
(4)尽量使基底向量和所涉及的向量共线或构成三角形或构成平行四边形.
3.用向量的坐标处理问题时,建立平面直角坐标系的基本原则:
选择坐标轴和原点不当会增加解题的运算量,也会带来不必要的麻烦.具有公共原点的两
条互相垂直的数轴构成了平面直角坐标系,因此在已知图形中,只要选择互相垂直的两条直
A
Q
B
P
C
课后作业:
4.在△ABC中,AB=AC,D为BC的中点,用向量方法证明 ⊥ .
5.如下图,在正方形ABCD中,E,F分别为AB,BC的中点。求证: ⊥ (利用向量证明).
D
C
F
A
E
B
6.如下图,在▱ABCD中,AB=3,AD=1,∠ = ,求对角线AC和BD的长.
又因为 = − = − ; 与共线,所以我们设: = = ( − )
平面向量的投影及其应用

平面向量的投影及其应用平面向量的投影是向量在另一向量上的投影长度,通常用于计算两个向量之间的夹角以及解决具体的几何问题。
在数学和物理学中,平面向量的投影有着广泛的应用,能够帮助我们更好地理解和解决实际问题。
一、平面向量的投影的概念及性质在二维平面内,假设有两个非零向量a和b,b不垂直于零向量,那么向量a在向量b上的投影,记作projba,其计算公式为:projba = (a·b)/ |b|² * b其中,“·”表示向量的点乘运算,|b|表示向量b的模长。
根据向量投影的计算公式,我们可以得到以下性质:1. 向量a在向量b上的投影projba是一个与向量b平行的向量;2. 向量a在向量b上的投影长度为|a| * cosθ,其中θ为向量a与向量b之间的夹角;3. 向量a在向量b上的投影长度不超过向量a的模长,即|projba| ≤ |a|。
以上是平面向量的投影的基本概念及性质,通过了解和运用这些性质,我们可以更好地理解向量之间的关系,以及如何利用向量的投影来解决实际问题。
二、平面向量的投影在几何中的应用在几何学中,平面向量的投影被广泛应用于计算线段之间的夹角、判定点到直线的距离等问题。
例如,我们可以通过向量投影来计算两条线段或直线之间的夹角:设有两个非零向量a和b,它们之间的夹角θ满足cosθ = (a·b) / (|a|* |b|)。
通过计算两个向量的点乘和模长,我们可以得到它们之间夹角的余弦值,进而求得夹角的大小。
此外,平面向量的投影还可以用于计算点到直线的距离。
假设有一点P(x0, y0)和一直线l,直线l的方向向量为向量a,直线上一点为A(x1, y1),那么点P到直线l的距离等于点P到直线上最近点的投影长度。
通过向量投影的计算公式,我们可以求得点P到直线l的距离,进而解决相关几何问题。
通过以上例子,我们可以看到平面向量的投影在几何学中的重要应用,能够帮助我们解决复杂的几何问题,并深入理解几何形状之间的关系。
平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。
高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析
高中数学解题中,平面向量方法是一种常用的解题方法。
它主要应用于平面几何、线
性代数和解析几何等领域。
下面将从几个方面分析平面向量方法在高中数学解题中的应
用。
在平面几何中,平面向量方法可以用于解决平面上的点、线、面的位置关系问题。
通
过引入向量的概念和运算法则,可以用向量的加减、数量积等操作来表示和计算线段、向
量的长度、夹角、平行关系等几何性质。
可以用向量来证明平行线之间的距离相等、求解
点在直线上的投影等问题。
在线性代数中,平面向量方法可以用于求解线性方程组。
通过将线性方程组写成矩阵
乘法的形式,并用向量表示未知数,可以将求解线性方程组的问题转化为求解向量的线性
组合的问题。
利用向量的性质和运算法则,可以通过增广矩阵的行变换来求解未知数的值。
可以用向量法解决线性方程组的解的存在唯一性以及解的求法等问题。
平面向量方法还可以用于解决高等数学中的微分和积分问题。
通过将函数表示为向量
函数,可以简化微分和积分的运算过程。
可以用向量函数求导来计算曲线的切线和法线,
用向量函数积分来计算曲线的弧长和面积等问题。
向量在平面几何中的应用

向量在平面几何中的应用
平面几何中的向量是一种抽象的概念,它可以用来描述空间中的点、线、面等几何图形的位置、方向和大小。
因此,向量在平面几何中有着广泛的应用。
首先,向量可以用来描述平面上的点。
例如,若给定两个点
A(x1,y1)和B(x2,y2),则它们之间的距离可以用向量表示,即AB=<x2-x1,y2-y1>。
其次,向量可以用来描述平面上的线段。
例如,若给定两个点
A(x1,y1)和B(x2,y2),则它们之间的线段可以用向量表示,即AB=<x2-x1,y2-y1>。
此外,向量还可以用来描述平面上的多边形。
例如,若给定一个多边形ABCD,则它的面积可以用向量表示,即
S=1/2|AB×AC|,其中AB和AC分别表示多边形ABCD的两
条边。
最后,向量还可以用来描述平面上的角度。
例如,若给定两个向量a=<x1,y1>和b=<x2,y2>,则它们之间的夹角可以用向量
表示,即θ=arccos(a·b/|a||b|),其中a·b表示向量a和b的点积,|a|和|b|分别表示向量a和b的模。
综上所述,向量在平面几何中有着广泛的应用,它可以用来描
述空间中的点、线、面等几何图形的位置、方向和大小,从而为平面几何的研究提供了有力的工具。
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用

§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量在平面几何中的应用平面向量是高中数学中常见的概念之一,也是学习平面几何的基础知识。
它在平面几何中有着广泛的应用,本文将探讨平面向量在平面几何中的应用。
一、向量的加减法
向量的加减法是平面向量中最基本的概念之一。
通过向量的加减法可以求出向量之间的关系,包括平移、共线、垂直等。
特别地,通过向量的加减法可以得到两条直线的方向向量,从而判断直线的位置关系。
例如,如果两条直线的方向向量共线,则这两条直线是平行的。
二、向量的数量积
向量的数量积是平面向量中最重要的概念之一。
通过数量积可以求出向量之间的夹角,从而判断向量之间的位置关系。
特别地,如果两个向量的数量积为0,则这两个向量垂直。
在平面几何中,数量积可以应用于求解线段的长度,以及求解两条直线的夹角等。
三、向量的叉积
向量的叉积是平面向量中较为高级的概念之一。
它可以用来求解向量之间的平面面积,从而进一步应用于求解多边形的面积和体积。
特别地,通过向量的叉积可以求解三角形的面积公式,即:$$S=\frac{1}{2}|\vec{AB}\times \vec{AC}|$$
其中,$S$为三角形的面积,$\vec{AB}$和$\vec{AC}$为三角形的两个边向量。
四、向量的投影
向量的投影是平面向量中重要的概念之一。
它可以用来求解向量在另一个向量上的投影长度,从而应用于求解点到直线的距离、向量的正交投影以及向量的正交分解等。
在平面几何中,向量的投影可以进一步应用于求解角度平分线、中垂线等重要的几何概念。
五、向量的叠加
向量的叠加是平面向量中较为高级的概念之一。
它可以用来求解平面图形的重心、质心等重要的几何概念。
特别地,在三角形中,三条中线的交点即为三角形的重心,而三角形的面积的三分之一乘以重心到任意一顶点的距离即为三角形的质心。
六、向量的推导
向量的推导是平面向量中较为复杂的部分之一。
通过向量的推导可以应用于证明平面几何中的许多重要定理,例如向量的夹角公式、平面几何中的海涅定理等。
在向量的推导过程中,需要运用向量的基本运算法则、三角函数、勾股定理等相关的数学知识,因此需要特别注意细节。
总之,平面向量在平面几何中有着广泛的应用,它是研究平面几何的重要基础知识。
通过学习向量的加减法、数量积、叉积、投影、叠
加以及推导等概念,可以深入掌握平面几何中的重要定理和概念,为后续的学习打下坚实的基础。