最新人教版八年级下册数学十六章二次根式复习教案
人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案

-设计分层次练习,从基础到提高,逐步突破难点。
-引导学生通过自主探索和合作交流,构建数学模型,提高数学建模能力。
-在教学中注重教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(例如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
-详细讲解二次根式的性质,结合图形和实际例子,使学生直观理解。
-以典型例题形式,展示二次根式的化简和运算过程,指出易错点,强调运算规则。
-设计具有挑战性的问题,让学生在实际情境中应用二次根式,识别难点,培养解决问题的能力。
-通过小组讨论和互动,激发学生的学习兴趣,促进数学表达和交流能力的提升。
4.教学策略:
在新课讲授环节,我采用了案例分析的教学方法,让学生通过解决实际问题来体会二次根式的应用。从实践活动的表现来看,学生们对此表现出较高的兴趣,但在小组讨论中,部分学生仍然显得不够积极主动。针对这一问题,我计划在接下来的课程中,多鼓励学生发表自己的观点,培养他们的团队协作能力和沟通能力。
此外,在学生小组讨论环节,我发现有些学生在解决问题时思路不够清晰,容易陷入思维定势。为了帮助学生打破思维局限,我将在以后的课堂中,适时给予他们提示和引导,培养他们的问题分析能力和创新意识。
。
三、教学难点与重点
1.教学重点:
-二次根式的定义及其性质的理解和掌握。
-二次根式的化简和运算方法的运用。
2.教学难点:
-对二次根式性质的深入理解,特别是乘法法则和除法法则的应用。
人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案

最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学八年级下册 第16章二次根式全章复习教学设计

课题:二次根式全章复习教材:人教版数学八年级下册 第16章 教 学 目 标 知识技能 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;熟练地进行二次根式的加、减、乘、除混合运算.较熟练的用本章所涉及的思考策略解决一些难度较高的问题.数学思考 综合运用二次根式的性质及运算法则计算含二次根式的式子.问题解决 含二次根式的式子的混合运算.体会解决问题能力,发展实践能力与创新意识.情感态度积极参与数学活动,对其产生好奇心和求知欲.形成合作交流、独立思考的学习习惯. 教学重点 二次根式的加减乘除乘方混合运算.教学难点 熟练的用本章所涉及的思考策略解决一些难度较高的含二次根式的问题. 教学方法 限时讲授,合作学习,踊跃展示.1、定义:2、性质:⎪⎩⎪⎨⎧==2.2a3、运算⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧混合运算加减运算乘除运算(先 ,再 ;))0( ).(12≥=a a )0 0( ≥≥=b a ab )0 0( >≥=b a b a二、本章涉及的思考策略1.转化二次根式被开方数中字母的取值范围问题转化为解不等式(组)或方程问题 例1 x 取何值,下列各式在实数范围内有意义⑴ 21-+x x注:学生独立完成,每组代表展示 练习:求使式子aa a ---++61415有意义的a 的取值范围注:小组讨论,合作展示练习:自主归纳:求二次根式中字母的取值范围的基本依据是2.类比⑴在有理数范围内成立的运算律同意适用于二次根式的运算⑵整式的加减法则,乘除法则,乘法公式同样适用于二次根式的运算例3 计算注:学生独立完成,每组代表展示.35)2(x x -+.322的值,求已知x y x x y +-+-=441.222+-+-a a a )化简(例;48813125.032⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-+;3310241733242412143424133222124+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=+--+=解:原式练习:自主归纳:3.分类 ⑴关于2a 中a 的讨论⑵求值问题类型1: 直接代入求值.例4 已知23-=x ,求12++x x 的值.练习: 已知32,32+=--=-z y y x ,求222)()()(x z z y y x -+-+-的值.注:学生独立完成,每组代表展示类型2:智巧求值例5 已知25-=x ,求14423+++x x x 的值 解:将25-=x 变形为52=+x两边平方,得5442=++x x两边同乘x ,得x x x x 54423=++04423=++∴x x x 110=+=∴原式注:小组讨论,教师点拨,合作展示类型3:构造二次根式,再带入求值注:小组讨论,合作展示自主归纳:()().3211113222-+.10.622的值,求,小数部分是的整数部分是已知例b a b a +三、拓展提高:已知2=(2++=+,化简22+2)131222+-3+3222注:学生讨论,教师讲解,自主完成.四、自我小结:五、布置作业《课本》复习题16之3、4、5、6、8六、教师反思。
人教版八年级下册数学《二次根式的加减》二次根式说课复习教学课件

(a 0, b 0)
b
b
问题4
在进行二次根式的乘除运算时,需要注意什么?
需要注意的是:运算结果要化成最简形式.
新课导入
问题5 二次根式的加减运算法则是什么?
a c b c ( a b) c
问题6
二次根式的加减运算法则的依据是什么?
加减法则的依据是:乘法分配律.
知识讲解
在七年级我们就已经学
第 十六章 二次根式
二次根式的加减
(第1课时)
课件
学习目标
1
了解二次根式的加、减运算法则.(重点)
2
会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项
叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并
= (2 2 − 3) × (2 2 + 3)
2018
= ( − 1)2018 =1.
随堂训练
4.计算:(1)
32 1
+
2+ 3
2− 3
解:(1)
32 + 2 ÷ 2
D. 3( 2 + 3) = 6 + 2 3
随堂训练
2. 已知 = 3 + 2, = 3 − 2, 求下列各式的值:
(1) x 2 2 xy y 2 ;
(2) x 2 y 2 .
解:
(1) x 2 2 xy y 2 ( x y ) 2
[( 3 2) ( 3 2)]2
(3) 8 +
4 3 12 −
1
1
人教版八年级下册 第十六章 二次根式 复习教案

③合并同类二次根式
练习:
1.在函数 中,自变量x的取值范围是
2.若 ,则
3.已知x,y满足关系式 ,求5x+3y的值
4.当x取何值时, 的值最小?最小值是多少?
5.已知a+b=-7,ab=12,求 的值
6.计算
7.若a,b为实数,且 ,试求 的值
4.二次根式的乘法
一般地,对二次根式的乘法规定: ,即二次根式相乘,把被开方数相乘,根指数不变。
5.积的算数平方根的性质
,即积的算数平方根等于积中各因式的算数平方根的积。
6.二次根式的除法
一般地,对二次根式的除法规定: ,即两个二次根式相除,把被开方数相除,根指数不变。
7.商的算数平方根
,即商的算数平方根等于被除式的算数平方根除以除式的算数平方根
教学
目的
能够区分对等式 (a≥0)和 (a≥0)的理解
教
学
内
容
1.二次根式的概念
一般地,形如 (a≥0)的式子叫做二次根式,其中“ ”称为二次根号,a称为被开方数。
2.二次根式的基本性质
二次根式具有双重非负性,即 ≥0(a≥0)
(a≥0)
3.代数式
用基本的运算符号(加、减、乘、除、乘方和开方)把数和表达数的字母连接起来的式子叫代数式,其中单独一个数或者字母也是代数式。
1对1个性化教案
学生
学科
数学
年级
教师
肖老师
授课日期
授课时段
课题
二次根式
重点(考点)
难点
利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算
八年级数学下册第十六章二次根式小结与复习教案(新版)新人教版【精品教案】

第十六章二次根式小结与复习【授课目的】1. 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混杂运算.【授课重难点】重点:含二次根式的式子的混杂运算难点:含二次根式的式子的混杂运算.【导学过程】【知识回顾】本章知识结构看法:当时, a才有意义。
a (),即是一个数。
0 a 0 a二次根式的意义性质a 2 ()a 0a 2 (a)二次根式1、二次根式的乘法:;2、二次根式的除法:二次根式的运算3、二次根式的加减:将二次根式化为后,把的根式(同类二次根式)进行。
4、二次根式的混杂运算及实责问题中根式的计算。
【经典例题】例 1 ( 1)使 4 x 1 有意义的x的取值范围是;(2)函数y 3 x 中,自变量的取值范围是;x 1(3)使 3 - x x 3 有意义的 x 的取值范围是;(4)使x 2 有意义的 x 的取值范围是;3x例 2 ( 1)已知 a 2 | b 1 | 0 ,那么 a b 2012的值为;(2)已知 m、 n 为实数,且满足m n 2 9 9 n2 4,求 6m-3n 的值?n 3例 3 计算:( 1)123;(3 48 2 27) 3;( 2)1(3)8 ( 2 1) ;( 4)3(3 020 15 2011;2)(1)522m 1 m 1例 4 化简,求值:m( m 1 ),其中 m = 3 .m 2 1 m 1【复习小结】1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件 ( 或题中的隐含条件 ) ,即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,必然要注意论述每一个性质中字母的取值范围的条件.4.经过例题的谈论,要学会综合、灵便运用二次根式的意义、基本性质和法规以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.【随堂练习】复习题 16第1、2、3、6题.2。
(完整版)人教版八年级下册数学(新)第十六章《二次根式》复习教案

二次根式复习课教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解:因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.注意:所以在化简过程中,例6:分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2B.a≥2C.a≠2D.a<2A.x+2 B.-x-2C.-x+2D.x-2A.2x B.2a C.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:。
人教版数学八年级下册16.3二次根式的混合运算优秀教学案例

一、案例背景
本节课为人教版数学八年级下册16.3二次根式的混合运算,学生在学习了二次根式的性质和乘除运算法则后,对二次根式的混合运算有了基本的认识和理解。但在实际操作中,学生往往对运算顺序、运算律的应用以及如何合理化简二次根式存在困惑。因此,设计本节课的教学案例,旨在通过实例解析,让学生掌握二次根式的混合运算方法,提高运算技巧,培养学生的逻辑思维能力和解决问题的能力。
(二)问题导向
1.设计有针对性的问题,引导学生思考和探讨二次根式混合运算的顺序和运算律应用。
2.鼓励学生提出问题,培养学生的提问意识和解决问题的能力。
3.引导学生通过讨论、交流等方式解决问题,培养学生的团队合作能力和沟通能力。
(三)小组合作
1.合理分组:根据学生的学习能力和特点,合理分组,确保小组合作的效果。
在教学方法上,我将采用启发式教学,注重师生互动,引导学生主动探索、发现和总结二次根式混合运算的规律。同时,运用多媒体教学手段,展示典型例题的解题过程,使学生更直观地理解二次根式混合运算的方法。
二、教学目标
(一)知识与技能
1.理解二次根式混合运算的顺序,能够正确进行二次根式的混合运算。
2.掌握二次根式混合运算的运算律应用,能够灵活运用运算律简化运算过程。
五、案例亮点
1.生活情境的导入:通过引用生活情境,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。这种情境创设不仅能够引起学生的注意力,还能够使学生明白学习数学的实际意义,从而提高学生的学习积极性。
2.问题导向的教学策略:在教学过程中,教师设计了一系列有针对性的问题,引导学生思考和探讨二次根式混合运算的顺序和运算律应用。这种问题导向的教学策略,有助于培养学生的思考和解决问题的能力,使学生在解决问题的过程中,更深入的理解和掌握二次根式混合运算的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式复习课
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
请同学们带着下列问题,复习一下全章内容吧
1.当X是怎样的实数时,x在实数范围内有意义?
2.什么叫最简二次根式?你能举出一些最简二次根式的例子吗?
3.请你分别举例说明二次根式的加减乘除运算法则。
4.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
5.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有
意义,同时使分母的值不等于零.
解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.
解因为1-a>0,3-a≥0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
解
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
例7
三、
课堂练习 1.选择题:
A.a≤2 B.a≥2
C.a≠2 D.a<2
A.x+2 B.-x-2
C.-x+2 D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:。