材料力学压杆稳定第4节 压杆稳定条件
材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
材料力学_压杆稳定

π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学之压杆稳定

25
解: 图 (a) 中, AD 杆受压
N AD
2EI
2 P1
2
2a
1 2EI
P1 22
a2
图 (b) 中, AB , BD 杆受压
N AB
NBD
P2
2EI a2
2EI
P2 a 2
26
例: 长方形截面细长压杆, b/h=1/2 ; 如果将 b 改为 h 后
仍为细长杆, 临界力 Pcr 是原来的多少倍?
解: (1).
Pcr
2EI ( l)2
2E d4
64
( l)2
1 16
(2).
2E I正
Pcr正 ( l)2 Pcr圆 2 E I 圆
I正 I圆
a4
12
d4
d
4
2
2
12
d4
3
( l)2
64
64
28
例: 三种不同截面形状的细长压杆如图所示。 试: 标出压杆失稳时各截面将绕哪根形心主惯性轴转动。
解:
2E Ib
Pcr b Pcr a
( l)2 2EIa
( l)2
Ib Ia
h4
12 hb 3
h b
3
8
12
27
例: 圆截面的细长压杆, 材料、杆长和杆端约束保持
不变, 若将压杆的直径缩小一半, 则其临界力为 原压杆的_116_; 若将压杆的横截面改变为面积相同 的正方形截面, 则其临界力为原压杆的__3 倍。
工程上要求 Pmax< Pcr
与压杆的材料、截面形式、 长度、及杆端约束有关1。8
§10-2 细长压杆的临界压力欧拉公式
一. 两端铰支细长压杆的临界压力 设: 理想的中心受压细长杆, 在最小抗弯平面内失稳。
材料力学课件——压杆稳定计算

9.1 工程中压杆的稳定问题 9.2 细长压杆的临界力 9.3 欧拉公式的适用范围·临界应力的
经验公式 9.4 压杆的稳定计算 9.5 提高压杆稳定性的措施
材料力学基本任务
构件的承载能力
问题
分析设计过程
失效方式
①强度 外力—内力—应力—强度条件 塑性屈服或脆断
②刚度 外力—变形—刚度条件 变形过大失去工作能力
P (压杆稳定性条件)
A
• 压杆的合理截
面:
L i Imin
i
A
Plj
2 EImin (L)2
Imin Imax
合理
保国寺大殿的拼柱形式
• 压杆的合理截
面:
L i Imin
i
A
Plj
2 EImin (L)2
Imin Imax
合理
1056年建,“双筒体”结 构,塔身平面为八角形。经 历了1305年的八级地震。
压杆的实验观察
总结以上实验观察,可得到如下结论: (1)压杆稳定与外载的大小、方式和杆的约束有关; (2)压杆稳定与杆件几何尺寸有关; (3)当尺寸确定、约束确定、加载方式确定的情况下, 存在一个临界载荷Plj:当P<Plj时,杆件处于稳定平衡状 态;当P>Plj时,处于不稳定平衡状态. 稳定问题的核心是寻找临界载荷。
解 螺旋千斤顶的螺杆一般简化为一端固定,另一端自由的压 杆,其长度系数 μ=2,为求此螺杆的临界力Plj,首先要计算此 螺杆的柔度λ,以确定此螺杆的临界应力Plj应当按哪一个公式 来计算。
l0
i
式中 l0=μl=2×500=1000(mm)
i
I A
d 4 / 64 d2/4
材料力学:压杆稳定

坍塌后的奎拜克桥
材料力学教学课件
韩国汉城
1995年6月29日下午,韩国汉城三 丰百货大楼,由于盲目扩建、加层, 致使大楼四五层立柱不堪重负而产 生失稳破坏,大楼倒塌,死502人, 伤930人,失踪113人。
2020年2月3日星期一
10
第九章 压杆稳定
中国南京 2000年10月25日上午10时,南京电视台演播中 心演播大厅的屋顶的施工中,由于脚手架失稳, 造成屋顶模板倒塌,死6人,伤34人。
材料力学教学课件
2020年2月3日星期一
26
第九章 压杆稳定
1)、细长杆的临界应力
cr
2E 2
p
2E p
引入记号 1
2E p
欧拉公式的适用范围
l
i
1
2E p
2)、中长杆的临界应力(经验公式)
cr a b, 2 1
sin
kl
l
coskl
0
2020年2月3日星期一
19
第九章 压杆稳定
由于杆在微弯状态下保持平衡时,
Fy不可能等于零,故由上式得
1 sin kl l coskl 0 k 亦即 tan kl kl
满足此条件的最小非零解为kl=4.49,亦即 Fcr l 4.49 EI
从而得到此压杆求临界力的欧拉公式:
受均匀压力的球形薄壳或薄圆环,当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式。
材料力学教学课件
2020年2月3日星期一
9
第九章 压杆稳定
由于构件的失稳往往是突然发生的,因而其危害性也较大。 历史上曾多次发生因构件失稳而引起的重大事故。如1907年 加拿大劳伦斯河上,跨长为548米的奎拜克大桥,因压杆失 稳,导致整座大桥倒塌。近代这类事故仍时有发生。
第十章 材料力学压杆稳定

y
即 : 189.325.612.74(1.52a/2) 时合理
a4.32 cm
求临界力:
L 0.76
i Iz 2A1
0.76 396.610 212.74104
8
106.5
2 E 220010 9 p 99.3 6 P 20010
2 EI
(2l ) 2
=1
0.7
=0.5
=2
2l
l
例1钢质细长杆,两端铰支,长l=1.5m,横截面是矩形截面, h=50 mm,b=30 mm,材料是A3钢,弹性模量E=200GPa; 求临界力和临界应力。 解:
(1)由于杆截面是矩形,杆在不同方向发生弯曲的难易程度不同, 如下图
因为 Iy<Iz,所以在各个方向上发生弯曲时约束条件相同的情况下, 压杆最易在xz平面内发生弯曲;
三、其它支承情况下,压杆临界力的欧拉公式
2 EI min Pcr ( L) 2
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)。
1.一端固定一端自由的细长压杆,它相当于两端铰支长为2l的 压杆的挠曲线的一半部分;
2 EI 2 EI
4l
2
Pcr
2l
2
P l l
2.二端固定的细长压杆,其中间部分(0.5l) 相当于两端铰支长为 0.5l的压杆;
②挠曲线近似微分方程: M P y y EI EI P y y y k 2 y0 EI P 2 其中 :k EI
y
P x
M
P
③微分方程的解: ④确定积分常数:
y Asin xBcosx y(0) y( L)0
A0B0 即 : AsinkLBcoskL0
第十章压杆稳定 第4节 临界应力的经验公式
查表得 a = 461 MPa、b = 2.568 MPa 临界应力 临界力
cr a bz 461 2.567 64.7 294.9 MPa
Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比 较接近,故该连杆横截面的设计较为合理。
iy
Iy A
14100 5.05 mm 552
y
y l2
iy
0.5 580 57.4 11.6
因为λz = 64.7 >λy ,故连杆将在 x-y 平面内失稳。
2)计算临界力 由优质碳钢 s = 306 MPa,查表得
p 100
s 60
由于 s < z < p ,连杆属于中长杆,故采用直线公式计算临界力
此时,立柱为中柔度杆,应用直线公式计算临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa 临界应力 临界力
cr a b 304 1.12 75 220 MPa
Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210 GPa,屈服 极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的设计 是否合理。 解: 由于连杆在两
个方向上的约束情
况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面为失稳平面。
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支
z = 1
l1 = 750 mm
A 24 12 2 6 22 552 mm2
10.刘鸿文版材料力学-压杆稳定
经验公式
(直线公式)
cr a b
a s b
cr s
令
a s 2 b
2 (小柔度杆)
cr s
目录
§9.4 欧拉公式的适用范围 经验公式
•压杆柔度
l μ四种取值情况, i i
P — 比例极限
I A
d
l
i
I A
d 4 4 d 4 1cm 2 64 d 4 4
2 37.5 75 i 1 查得45钢的2=60,1=100,2<<1,属于中柔度杆。
目录
l
§9.5
压杆的稳定校核
(2)计算临界力,校核稳定 查表得a=589MPa,b=3.82MPa,得丝杠临界应力为
D d 4 64 D 2 d 2
4 4
FN 26.6kN
n
D2 d 2 16mm 4
Fcr 118 4.42 nst 3 FN 26.6
AB杆满足稳定性要求
目录
§9.5
压杆的稳定校核
例题 千斤顶如图所示,丝杠长度 l=37.5cm,内径d=4cm,材料为 45钢。最大起重量F=80kN,规定 的稳定安全系数nst=4。试校核丝 杠的稳定性。 (1)计算柔度
2、
1 Fcr 2 l
杆长,Fcr小,易失稳
•线弹性,小变形
•两端为铰支座
3、在
Fcr EI
刚度小,Fcr小,易失稳
Fcr作用下,
k
, w A sin l l l x ,w A 2
x
挠曲线为一条半波正弦曲线 即 A 为跨度中点的挠度
第八章:压杆稳定
材料
(强度极限 b/ MPa ) (屈服点 S /MPa )
a
b
(MPa) (MPa)
P
S
Q235 钢( b 372 , S 235 ) 304 1.12 100
62
优质碳钢( b 471 ,S 306 ) 461 2.568 100
60
硅钢 ( b 510 , S 353 ) 578 3.744 100
二、其他支座条件下细长压杆的临界应力 表8-1 压杆的长度系数
Fcr
2EI ( l)2
杆端约束 情况
一端固定 一端自由
两端铰支
一端固定 一端铰支
两端固定
挠 曲 线 形 状
长度系数
2.0
1.0
0.7
0.5
第二节:细长压杆的临界荷载
例8-3 图示细长压杆,已知材料的弹性模量 E 210GPa,压杆
第二节:细长压杆的临界荷载
例8-1 细长压杆为钢制空心圆管,外径和内径分别为 20mm 和 16mm,杆长 0.8m,钢材的弹性模量为 210GPa,
压杆两端铰支,试求压杆的临界载荷 Fcr。
解:压杆横截面的惯性矩为
I (D4 d 4 ) (0.024 0.0164 ) m4
64
64
4.63109 m4
(2)如果 F k l ,即 F k l ,则杆将继续偏斜,不能回复到原来的竖直平衡位
置,表明其原来的竖直平衡状态是不稳定的;
(3)如果 F k l ,即 F k l ,则杆不仅在竖直位置保持平衡,而且在偏斜状
态也能够保持平衡。
第一节:压杆稳定的概念
临界压力或临界力:当压力逐渐增加到某一极限值时,如果再作用 一个微小的侧向干扰力,使其产生微小的侧向变形,在除去干扰力 后,压杆将不再能够恢复其原来的直线平衡状态,这说明压杆原来 直线形状的平衡是不稳定的,上述压力的极限值称为临界压力或临 界力。一般用Fcr表示,它是判断压杆是否失稳的一个指标。
材料力学-压杆的稳定性
压杆的平衡条件
压杆在平衡状态下需要满足一定的条件,包括受力平衡和挠度平衡。我们将详细讨论这些条件,并是否能够保持稳定的重要方法。我们将介绍常用的稳 定性分析方法,包括欧拉稳定性理论和能量法。
影响压杆稳定性的因素
压杆的稳定性受到多种因素的影响,包括几何形状、材料性质、外部载荷等。我们将讨论这些因 素,并分析它们对压杆稳定性的影响。
建筑
压杆在建筑结构中起着支撑和 稳定的作用,使得建筑物能够 抵抗外部压力。
机械
压杆在机械设计中用于传递力 量和实现稳定性,使得机械装 置能够正常运行。
航空航天
压杆在航空航天工程中起着支 撑和稳定的作用,使得飞机和 航天器能够在飞行过程中保持 结构的完整性。
材料力学基础知识回顾
在开始讨论压杆的稳定性之前,让我们回顾一些材料力学的基础知识,包括材料的应力和应变,杨氏模 量等。
总结和展望
通过本次演讲,我们深入了解了压杆的定义和应用,回顾了材料力学的基础知识,讨论了压杆的平衡条 件和稳定性分析方法,并分析了影响压杆稳定性的因素。希望这些知识能对大家的学习和实际工程应用 有所帮助。
几何形状
压杆的几何形状对其稳定性有重要影响,包括长度、直径等。
材料性质
材料的强度和刚度对压杆稳定性起着关键作用。
外部载荷
外部载荷会改变压杆的受力状态,从而影响其稳定性。
实际工程中的应用案例
在实际工程中,压杆的稳定性是一个重要的设计考虑因素。我们将介绍一些真实的工程案例,并探讨如 何应用稳定性分析来改进设计。
材料力学-压杆的稳定性
欢迎大家来到本次关于材料力学中压杆的稳定性的演讲。在这个演讲中,我 们将探讨压杆的定义和应用,材料力学基础知识回顾,压杆的平衡条件,稳 定性分析的方法,影响压杆稳定性的因素,实际工程中的应用案例,以及对 这个话题的总结和展望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36mm,如图所示,材料为 Q235 钢,最大顶起重量
F 50 kN,规定稳定安全
因数 [ st ] 4 ,试校核丝
杠的稳定性。
F
解 (1)计算压杆的柔度
先计算惯性半径:
dl
i
I A
d 4 d 2
64 4
d 4
0.036 m 0.009 m 4
为了偏于安全起见,将螺杆看成一端固定,另
稳定许可载荷:保证压杆稳定可靠地工作时所允许 的最大载荷称为稳定许可载荷。
稳定条件:对于实际受压杆件,应使其在稳定方面
有一定的安全储备,让它的轴向工作压力 F 不超过
临界力的 nst 分之一,即稳定条件为
F Fcr [nst ]
或
n
Fcr F
[nst ]
式中:[nst] — 稳定安全系数。例如:金属结构中的压 杆 [nst] = 1.8~3.0;机床的丝杠 [nst] = 2.5~4.0;低速发动 机挺杆 [nst] = 4~6;高速发动机挺杆 [nst] = 2~5;起重螺 旋 [nst] = 4~6;矿山、冶金设备中的压杆 [nst] = 4~6。
214106 3.14 0.0362 4
N
2.18103 N
(3)校核稳定性
n
Fcr F
2.18103 50 103
4.36
ቤተ መጻሕፍቲ ባይዱ
nst
4.0
所以,螺杆的稳定性足够。
结论
• 截面有局部削弱(如油孔、螺孔等)的压杆,除 校核稳定外,还需作强度校核,在强度校核时, 面积为考虑了削弱后的横截面净面积。
• 在稳定计算中,为不考虑削弱的横截面面积。这 是因为,压杆的稳定是对杆的整体而言的,横截 面的局部削弱,对临界力数值的影响很小,可不 考虑。
例7-6 已知千斤顶丝杠长度 l 36 mm,内径 d
一端自由,查表得 = 2。于是柔度为:
l 2 0.36 80
i 0.009
(2)计算临界力 Fcr
因为 61.6 < < 100 ,所以属于中柔度杆,则:
cr a b (304 1.12 80) MPa 214 MPa
Fcr
cr
d 2
4