列方程解应用题复习课程

合集下载

列二元一次方程组解应用题复习

列二元一次方程组解应用题复习

根据表格信息列方程
方程组中的两个 方程必须是独立 的,即不能通过 简单的变形得到 另一个方程。
通过以上方法,我们可 以将实际问题转化为数 学问题,进而利用数学 方法解决问题。在列二 元一次方程组时,需要 仔细分析问题中的已知 条件和未知量,找出能 够表示问题中全部含义 的两个相等关系,从而 列出正确的方程组。
解题步骤
1. 读题,明确已知量和未知量。
2. 根据速度、时间和距离的关系列出方程。
3. 解方程组,求出未知数的值。
例题二:工程问题
首先,根据题意设 定未知数,通常设 工作量、工作时间 或工作效率为未知 数。然后,根据工 作量、工作时间和 工作效率的关系列 出方程。最后,解 方程组求出未知数 的值。
折扣问题
根据商品打折后的售价和折扣率, 求出商品的进价和利润。
利润率问题
根据题目中给出的利润和进价或 售价,求出利润率。
浓度问题
浓度=溶质/溶液
根据题目中给出的溶质和溶液的量, 计算出浓度。
稀释问题
根据溶液稀释前后的浓度和体积,求 出稀释后溶液的浓度或体积。
浓缩问题
根据溶液浓缩前后的浓度和体积,求 出浓缩后溶液的浓度或体积。
复习成果总结
掌握了列二元一次方程组的基本方法和步骤,能够熟练地将实际问题转化为数学问题,并列出相 应的方程组。
加深了对二元一次方程组解法的理解,能够灵活运用代入法、加减法等方法求解方程组。 通过大量的练习,提高了自己的计算能力和思维水平,能够快速准确地完成方程组的求解。
存在问题反思
在列方程组时,有时会出现理解题 意不准确、设立未知数不合理等问
PART 05
应用题类型与解题技巧
点击此处添加正文,文字是您思想的提炼。

列方程组解应用题_期末复习课件

列方程组解应用题_期末复习课件
完成任务.问两人每天各做多少个零件?
工作量=工作效率 ×工作时间
(2008湖南 长沙)“5· 12”汶川大地震后, 灾区急需大量帐篷。某服装厂原有4条成衣生
产线和5条童装生产线,工厂决定转产,计 划用3天时间赶制1000顶帐篷支援灾区。若 启用1条成衣生产线和2条童装生产线,一天 可以生产帐篷105顶;若启用2条成衣生产线 和3条童装生产线,一天可以生产帐篷178顶. (1)每条成衣生产线和童装生产线平均每 天生产帐篷各多少顶?
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为方程问题, 因此,一旦解决了方程问题, 一切问题都将迎刃而解!
------笛卡儿[Descartes, Rene du Perron, 1596-1650 ]
七年级
下 册
列方程解应用题的一般步骤:
1.审:分析题意,找出数量关系和相等关系. 2.设:选择恰当的未知数,注意单位和语言完 整. (1)是否是所列方程的解; 3.列:根据数量和相等关系,正确列出方程组. (2)是否满足实际意义. 4.解:认真仔细. 5.检:有两次检验. 6.答:注意单位和语言完整.
其他类型问题
4.某校科技夏令营的学生在3位老师的带领 下,准备赴北京大学参观,体验大学生 活.现有两家旅行社前来洽谈,报价均为每 人2000元,且各有优惠.希望旅行社表示: 带队老师免费,学生按8折收费;青春旅行 社表示师生一律按7折收费.经核算发现, 参加两家旅行社的实际费用正好相等. (1)该校参加科技夏令营的学生共有多少 人? (2)如果又增加了部分学生,学校应选择 哪家旅行社?为什么?
(2008乌兰察布市) 在一次春游中,小明、 小亮等同学随家人一同到天目山旅游,下面 是购买门票时,小明与他爸爸的对话(如图 所示).

列方程解应用题复习课2

列方程解应用题复习课2

3、猎豹追捕猎物时的速度大约是一名优秀短 跑运动员百米赛跑速度的3倍,大约比这名运 动员每秒多跑20米。
4、沪宁高速公路全长274.08千米。一辆轿车 和一辆大客车分别从上海和南京同时开出,轿 车平均每小时行118.4千米,大客车平均每小 时行110千米。经过几小时辆车在途中相遇?
5、小王和小李合打一份书稿,小王每小时 打16页,小李每小时打11页。多少小时后 小李比小王少打45页?
整理与复习(二)
根据下面的条件,说一说数量间的相等关系。
⑴ 师傅每小时加工的零件比徒弟的3倍少18个。 ⑵ 一堆黄沙运走了30车后还剩下16吨。 ⑶ 一条围巾的价钱比一副手套价钱的2倍多25 元。
在括号里填上含有字母的式子。
⑴ 学校舞蹈队有ⅹ人,歌咏队的人数是舞蹈队 的3倍,歌咏队有( )人,舞蹈队和歌咏队 一共( )人,歌咏队比舞蹈队多( )人。 ⑵ 踢毽子的和跳绳的每组都是ⅹ人,踢毽子的 有5组,跳绳的有8组。踢毽子的有( )人, 跳绳的有( )人,踢毽子的比跳绳少( ) 人,踢毽子的和跳绳的共有( )人。
求ⅹ的值。
商店运来西瓜和苹果共150千克,西 瓜的重量比苹果的3倍还多30千克, 商店运来西瓜和苹果各多少千克?
1、南京地铁一号线地下部分大约长14.3千米, 比地上部分的2倍少0.7爸买一套衣服一共用去1200元,上衣的 价钱是裤子的3倍。上衣和裤子各多少元?
思考题
盒子里装有同样数量的红球和白球。每 次取出6个红球和4个白球,取了若干次 后,红球正好取完,白球还有10个。一 共取了几次?盒子里原来有红球多少个?

九年一元二次方程应用题综合复习经典教案

九年一元二次方程应用题综合复习经典教案

个性化教学辅导教案(10+x)*(500-20x)=6000 解方程可得x1=10,x2=5要让顾客得到实惠,就是要价格最低,所以每千克应涨价5元;2.设获利y元则y=(10+x)(500-20x)=-20x²+300x+5000=-20(x²-15x)+5000=-20[x²-15x+(15/2)²-225/4]+5000=-20(x-15/2)²+1125+5000=-20(x-15/2)²+6125因-20<0,抛物线开口向下,利用二次函数求最大值可也.(五)面积问题例6: 如图12—1,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?分析:设路宽为x米,那么两条纵路所占的面积为2·x·20=40x(米2),一条横路所占的面积为32x(米2).纵路与横路所占的面积都包括两个小正方形ABCD、EFGH的面积,所以三条路所占耕地面积应当是(40x+32x-2x2)米2,根据题意可列出方程32×20-(40x+32x-2x2)=570.解:设道路宽为x米,根据题意,得32×20-(40x+32x-2x2)=570.整理,得x2-36x+35=0.解这个方程,得x1=1,x2=35.x=35不合题意,所以只能取x1=1.2答:道路宽为1米.说明:本题的分析中,若把所求三条路平移到矩形耕地边上(如图12—2),就更易发现等量关系列出方程.如前所设,知矩形MNPQ的长MN=(32-2x)米,宽NP=(20-x)米,则矩形MNPQ的面积为:(32-2x)(20-x).而由题意可知矩形MNPQ的面积为570平方米.进而列出方程(32-2x)(20-x)=570,思路清晰,简单明了.6、储蓄问题例7:王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本金利息共63元,求第一次存款时的年利率.解:设第一次存款时的年利率为x ,根据题意,得[100(1+x )-50](1+21x )=63. 整理,得50x 2+125x -13=0. 解得x 1=101,x 2=-513. ∵x 2=-513不合题意,∴x =101=10%.答:第一次存款时的年利率为10%. 说明:要理解“本金”“利息”“利率”“本息和”等有关的概念,再找清问题之间的相等关系.7、图表信息问题例8:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加(人均住房面积=该区人口总数该区住房总面积,单位:平方米/人).该开发区1997年至1999年,每年年底人口总数和人均住房面积的统计结果分别如图12—4,请根据两图中所提供的信息解答下面的问题:(1)该区1998年和1999年两年中,哪一年比上一年增加的住房面积多?多增加多少万平方米?答:_______年比上一年增加的住房面积多,多增加__________万平方米.(2)由于经济的发展,预计到2001年底,该区人口总数将比1999年年底增加2万,为使到2001年年底该区人均住房面积达到11平方米/人,试求2000年和2001年两年该区住房总面积的年平均增长率应达到百分之几?14.(1)1999,7.4 (2)10%10(5-x)+x.新的两位数个位上的数字为(5-x),十位上的数字为x,新的两位数就是:10x+(5-x).可列出方程:[10(5-x)+x][10x+(5-x)]=736.解:设原来两位数个位上的数字为x,则十位上的数字为(5-x).根据题意,得[10(5-x)+x][10x+(5-x)]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时,5-x=5-2=3;当x=3时,5-x=5-3=2.答:原来的两位数是32或23.说明:解决这类问题,关键是写出表示这个数的代数式.11、动态几何:例11:如图,在△ABC中,∠B=90o。

小学六年级数学教案总复习:列方程解应用题

小学六年级数学教案总复习:列方程解应用题

小学六年级数学教案——总复习:列方程解应用题教学目的1.通过复习,使学生能够运用所学知识,采用列方程的方法解容许用题.2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系。

3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。

教学重点通过复习,使学生能够准确的找出等量关系.教学准备调查表的各项内容,学生需提前一天认真调查,填写。

教学过程:一、创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比方,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?二、沟通整理,复习。

1、理一理,复习列方程解应用题的一般步骤及关键。

(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的,陈老师今年多少岁?〔板书〕〔2〕你能用方程方法解答这一题吗?〔反响〕今天,我们将通过了解陈老师,一起交朋友的方法来复习列方程解应用题。

〔板书课题:总复习:列方程解应用题〕〔3〕过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中。

〔4〕反响:谁来说说?〔师简单板书各步。

〕哪一步是列方程解应用题的关键?〔划出第二步〕〔5〕过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的自我介绍中。

2、了解找等量关系的途径,优选方程方法。

〔1〕找等量关系,并写出来。

自我介绍副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?陈老师节约用钱,去年还存了5000元,存期一年,利率2 ,今年取款时银行应多付我多少元?〔2〕生逐题答复等量关系,师生共同小结:找等量关系可以根据什么去找?〔根据关键句或重点词句找等量关系;按照事理以及根据事情开展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系。

列一元一次方程和二元一次方程组解应用题复习ppt课件(自制)

列一元一次方程和二元一次方程组解应用题复习ppt课件(自制)
3.A、B两地相距36千米,甲从A地步行到B地, 乙从B地步行到A地,两人同时相向出发,4小时 后两人相遇,6小时后,甲剩余的路程是乙剩余 路程的2倍,求二人的速度?
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。 46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。
⑴将140吨食品全部进行粗加工后销售,则可获利润 ______元;
⑵将140吨食品尽可能多的进行精加工,没来得及加 工的在市场上直接销售,则可获利润___元;
⑶你能为公司再设计第三种更好的方案,使公司比原 来获取更多的利润吗?如何设计新的加工方案,并请通 过列一元一次方程的方法,求出可获取更多的利润.
52、若不给自己设限,则人生中就没 有限制 你发挥 的藩篱 。 53、希望是厄运的忠实的姐妹。 54、辛勤的蜜蜂永没有时间悲哀。 55、领导的速度决定团队的效率。
56、成功与不成功之间有时距离很短 只要后 者再向 前几步 。 57、任何的限制,都是从自己的内心 开始的 。

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

题型三--方程应用(复习讲义)【考点总结|典例分析】考点01一次方(组)程应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型×100%;售价=标价×折扣;销售(1)销售打折问题:利润 售价-成本价;利润率=利润成本额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209a%.求a的值.考点02不等式的应用3、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.1.(2022·四川泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B 种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?2.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?3.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?4.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?5.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.6.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的1 3,请设计出最省钱的购买方案,并求出最少费用.考点03分式方程的应用4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.1.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.2.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.3.(2020•常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?4.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.5.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的1 3,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?6.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...720元,A,B两种奖品共100件.求购买A,...预算资金且购买A奖品的资金不少于B两种奖品的数量,有哪几种方案?7.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?8.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?考点04二次方程的应用5、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.6.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.7.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%.8.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.1.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?2.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?3.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?4.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.5.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2925 a%.求a的值.。

列一元一次方程解应用题复习课(一)-北京版七年级数学上册教案

列一元一次方程解应用题复习课(一)-北京版七年级数学上册教案

列一元一次方程解应用题复习课(一)北京版七年级数学上册教案
课时目标
通过本课的复习,学生能够掌握列一元一次方程解应用题的基本方法,提高综合运用能力。

教学重点
1.掌握列一元一次方程解应用题的思路和方法;
2.能够熟练解决一元一次方程解应用题。

教学难点
1.独立思考、灵活运用;
2.应用题目的理解。

教学过程
一、引入
1.讲解本课程内容,并解释为什么要学习列一元一次方程解应用题。

2.针对上课前老师提前留下的练习题,让学生思考解决方案。

二、学习及练习
1.分段讲解列一元一次方程解应用题的基本方法和套路,同时,老师演示如何列方程。

2.帮助学生思考列方程的过程,并针对不同的题目类型,进行多种列方程方法的练习。

3.引导学生独立思考和举一反三,让学生尝试自己解决列方程问题。

三、巩固和拓展
1.让学生在小组内,相互交流,分享解决列一元一次方程解应用题的经验和方法;
2.提出对应用题应用更加广泛的一元一次方程问题,让学生进行思考。

课后作业
1.根据老师练习题目要求,解决练习题目;
2.课堂内容复习。

课程反思
该节课主要是通过讲解及练习,让学生掌握列一元一次方程解应用题的基本方法,并提高其综合运用能力。

在今后的教学中,要更加注重引导学生独立思考,让其在课堂和作业中灵活应用解决问题的方法和过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题第六讲列方程解应用题列方程解应用题是用字母代替未知数,根据等量关系列出含有未知数的等式,也就是方程,然后解出未知数。

这样解答应用题的优点在于可以设未知数直接参与运算。

列方程解应用题的关键在于正确、合理地设未知数,找出等量关系从而建立方程。

列方程解答应用题的一般步骤是:1.根据题意,找出已知条件和所求问题。

2.依据题意找到等量关系,正确、合理地设未知数。

3.根据等量关系列出方程。

4.解答方程。

5.检验,写出答案。

第一课时例1.父亲今年47岁,儿子今年11岁,多少年后父亲的年龄是儿子的3倍?分析:设x年后父亲的年龄是儿子的3倍。

父亲现在47岁,x年后年龄应为(47+x)岁;而x年后,儿子的岁数也增加了x岁,即(11+x)岁。

知道x年后各自的岁数,根据题意“父亲的年龄是儿子的3倍”,可以找到等量关系:“父亲的年龄=儿子的年龄×3。

”收集于网络,如有侵权请联系管理员删除解:设x年后父亲的年龄是儿子的3倍,列方程得47+x=(11+x)×347+x=33+3x47-33=3x-x14=2xx=7答: 7年后父亲的年龄是儿子的3倍。

例2.一条轮船在两个码头之间航行,顺水航行需要8小时,逆水航行需要10小时,水流的速度是每小时2千米,求轮船在静水中的速度。

分析:顺水航行的船的实际速度是船在静水中的速度与水速之和,逆水航行的船的实际速度为船在静水中的速度与水速之差。

船在两个码头之间往返,显然顺水行驶的路程与逆水行驶的路程相等,都是两个码头之间的距离,所以有等量关系:“顺水速度×顺水时间=逆水速度×逆水时间。

”解:设轮船在静水中的速度是每小时x千米,列方程得8(x+2)=10(x-2)8x+16=10x-2010x-8x=16+202x=36x=18答:轮船在静水中的速度是18千米/小时。

收集于网络,如有侵权请联系管理员删除例3 .五(1)班期中考试全班的平均成绩是87.5分,男生的平均成绩是86分,女生的平均成绩是90分。

这个班共有56人,求男、女生各有多少人?分析:已知男、女生人数的和是56,若设男生的人数是x,则女生的人数是(56-x)。

知道男生、女生以及全班人数和他们各自的平均分,就可以表示出对应的总分,而分数之间,存在着“男生总分+女生总分=全班总分”这一等量关系。

解:设这个班有男生x人,列方程得80x+(56-x)×90=87.5×56x=35女生人数:56-x=56-35=21答:男生35人,女生21人。

第二课时例1 . 甲、乙、丙、丁四人共有有45本书,如果甲的书减到2本,乙的书增加2本,丙的书增加1倍,丁的书减少一半,那么四人的书就一样多。

求原来四个人各有多少本书?分析:因为四个人书的本数发生了变化后才相等,所以设相等后本数为x本,比较后,甲、乙、丙、丁原来的本数依题意可表示为(x+2)本,(x -2)本,(x÷2)本,2x本。

收集于网络,如有侵权请联系管理员删除解:设相等的本数为x本。

(x+2)+(x-2)+(x÷2)+2x=45x=10甲原有书:10+2=12本乙原有书:10-2=8本丙原有书:10÷2=5本丁原有书:10×2=20本答:甲原有书12本,乙原有书8本,丙原有书5本,丁原有书20本。

例2 . 有一首民谣:“火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯”。

这首民谣是一道应用题,问第四层有多少盏灯?分析:本题等量关系很明显,七层彩灯总和是381。

若直接设第四层有彩灯x盏,则第三第二,以及第一层的彩灯数不好表示;若设第一层彩灯数为x,那么二到七层彩灯数依次为2x,4x,8x,16x,32x,64x,可很快列出方程并求解。

解:设第一层彩灯数为x,那么二到七层彩灯数依次为2x,4x,8x,16x,32x,64x,列方程得x+2x+4x+8x+16x+32x+64x=381x=3第四层有彩灯:8x=8×3=24(盏)答:第四层有彩灯24盏。

收集于网络,如有侵权请联系管理员删除第三课时例1. 有一个两位数,其个位数字与十位数字之和是13。

如果把这个两位数的个位数字与十位数字互换,得到的新数就比原数小9,求原来两位数。

分析:任何一个两位数ab,都可以表示为10a+b,设原来两位数的个位数字为x,则十位上的数字为(13-x),原来两位数可表示为(13-x)×10+x;互换后的新的个位是(13-x),十位上为x,新数可表示为10x+(13-x)。

解:设原来数的个位数字是x,原来两位数可表示为(13-x)×10+x,新数可表示为10x+(13-x)。

列方程得(13-x)×10+x-[10x+(13-x)]=9x=6十位上的数字是13-6=7,原来的数字是76。

答:原来数字是76。

例2. 如图,长方形ABCD的长是6厘米,线段CF=5厘米,且三角形ADE 的面积比三角形EFG的面积小3平方厘米,求BC的长。

收集于网络,如有侵权请联系管理员删除AFC分析:本题若采取常规思路需要中间量的代换比较复杂。

如果运用方程解答可以达到“直设直解”的目的。

设BC的长为x厘米,那么BF的长可表示为(x+5)厘米。

然后将长方形的面积和三角形ABF的面积用x表示出来,因为“三角形ADE的面积比三角形EFG的面积小3平方厘米”即“长方形ABCD的面积比三角形EFG的面积小3平方厘米”这就是等量关系。

解:设BC的长为x厘米,那么BF的长可表示为(x+5)厘米,列方程得6(x+5)÷2-6x=6x=4答: BC长为4厘米。

练习1.女儿今年12岁,母亲今年39岁,几年前母亲年龄是女儿的4倍?收集于网络,如有侵权请联系管理员删除2.一次数学考试有10道题,评分规则是对一题10分,错一题倒扣2分,小明回答了全部10道题,但只得了76分,问他回答对小几道题。

3.男生和女生平均每人植树17棵。

男生有20人,共植树460棵;女生平均植树12棵,女生有多少人?4.一辆汽车从甲地到乙地去,如果每小时行45千米,就要比计划迟到0.5小时;如果每小时行50千米,则要比计划早到30分钟,求甲、乙两地间的距离是多少千米?5.一只船往返于甲、乙两个港口之间,已知船从甲港开往乙港顺水用10小时到达;从乙港开往甲港逆水要多用2小时。

已知水的流速是每小时2千米,求甲、乙两港之间的水路长多少千米?收集于网络,如有侵权请联系管理员删除6.如图,已知在直角三角形ABC中,AB=20厘米,BC=30厘米,EDFB为正方形,求三角形DFC的面积。

C列方程解应用题第一章:解方程例1:7(3+x)-2(x+5)=81 19x-3(5x-3)=73 解:7(3+x)-2(x+5)=81 19x-3(5x-3)=7321+7x―2x―10=81 19x-15x+9=735x+11=81 4x+9=735x=70 4x=64X=14 x=16收集于网络,如有侵权请联系管理员删除巩固练习:5(2x-3)+9(10x-8)=113 100-4(8-3x)=200 例2: 8x-2=7x+9 40-3x=52-6x解: 8x-7x=9+2 6x-3x=52-40X=11 3x=12X=4巩固练习:4.1x+221.4=4.25x+216 15(3x+4)=100-35x例3:28-(7+5x)=4+2(2+4x)(x+4)÷3=2x-7解: 28-7-5x=4+4+8x (x+4)÷3×3=(2x-7)×3 28-7-4-4=8x+5x x+4=6x-2113=13x 4+21=6x-xX=1 x=5巩固练习:(19-2x)÷5= x+1 43-2(5+3x)=3+6(x -1)综合练习:4x+6=22-12x2(3x-4)+7(4-x)=4x收集于网络,如有侵权请联系管理员删除4(x-2)+20x-4=5(1-2x)第二章:解基本题型例1、上学期,学校举行数学比赛。

比赛共15道题,规定:答对一题得8分,答错一题扣4分,小名最后得84分,你知道他答错了几道题?分析:倒扣4分实际上就是从答对的得分中减去4分。

数量关系:答对的总分-答错的总分=最后得分解:设答错了x道题,则答对了(15-x)道题。

8×(15-x)-4x=84X=3答:小名答错了3道题。

例2、甲乙两桶油,甲桶油有60千克,乙桶油有24千克,问从甲桶倒多少千克油到乙桶,才能使甲桶中的油的质量是乙桶的2倍?分析:设甲桶倒出x千克油到乙桶,那么,现在甲桶的油是(60-x)千克,乙桶的油是(24+x)千克。

根据变动以后“甲桶中油的重量是乙桶的2倍”,可以列出等量关系式。

解:设从甲桶倒出x千克油到乙桶。

(24+x)×2=60-xX=4答:从甲桶倒4千克油到乙桶,才能使甲桶中的油的质量是乙桶的2倍。

例3、春季是植树树的黄金季节。

李老师决定带同学们去植树。

到了植树的现场,同学们发现:如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。

他们一共带了多少棵树?分析:因为不管怎样,植树的人数和树苗的棵树是不变的。

但如果直接假设树苗总数,求植树的人数比较麻烦,所以此题不便于直接设。

解:设一共有x人参加植树。

5x+14=7x-4X=9树苗棵树:5×9+14=59(棵)答:他们一共带了59棵树苗。

例4、小军家离学校有4500米,早上六点半小军步行去学校。

开始每分钟走70米,走了一段时间后,他怕迟到,改为每分钟走80米,结果早上七点半准时到学校。

小军是在离家多少米的地方开始改变速度的?分析:由于改变速度前和改变速度后所行驶的路程正好是小军家到学校的全程,所以只需要用算式表示出两段路程就可以列出方程。

解:设以70米/分的速度走了x分钟,则以80米/分的速度走了(60-x)分。

70x+80×(60-x)=4500X=3030×70=2100(米)答:小军是在离家2100米的地方开始改变速度的。

例5、学校举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?分析:本题所求的参赛人数包括及格的人数和不及格的人数,而第一次,第二次的参赛人数不变。

所以我们设第一次参赛的不及格人数为X人,那么第一次单赛及格的人数就可以用(3 X+4)人来表示;第二次参赛及格的人数是(3 X+4+5)人,不及格的人数比第一次不及格的人数少5人即(X-5)人,根据第二次及格的人数正好是不及格人数的6倍这一等量关系,可以列方程。

解:设第一次参赛不及格的人数是X人,可得方程:3 X+4+5=(X-5)×6X=13答:参加竞赛的人数有56人。

相关文档
最新文档