混沌的研究方法
混沌的研究方法

一. 混沌的研究方法
自动化学院 禹思敏
2012.10
1. 混沌研究与方法
自动化学院
School of Automation
混沌研究包括混沌系统的分析、混沌系统的设计、混沌应用三大部分,概括如下:
1) 混沌系统的分析 : 对于一个给定的动力系统, 分析该系统是否为真正的混沌系统? 分析方法主要包括 : (1) 定性分析方法 : 计算李氏指数、分岔图、吸引子相图等 (2) 机理分析方法 : 分析是否存在马蹄映射、同宿轨道和异宿环等 (3) 回归排斥子法 : 分析系统中是否存在回归排斥子? 2) 混沌系统的设计 : 根据某种理论或方法, 设计出一个混沌系统, 并证明它是混沌的? 设计方法主要包括 : 混沌研究 (1) 数值试验法 : 参数错试、数值仿真、计算李氏指数三步曲设计混沌系统 (2) 反控制方法 : 根据全局有界性和正的李氏指数设计混沌系统 (3) 根据Smale马蹄映射、Shilnikov定理等设计混沌系统, 如异宿环的设计等 3) 混沌应用: 利用混沌具有稠密不稳定周期轨、不可预测性、对参数和初始条件敏感性等 (1) 混沌广义控制(包括混沌控制、反控制、混沌同步) (2) 混沌电路分析与设计 (3) 保密通信和信息安全 (4) 图像和视频加密等
csc x0 + cot x0 可以看出,如果想要从解 t = ln 的结果中很 csc x + cot x
直截了当地回答这两个问题并非易事, 但如果采用定性分析方 法却能较好地回答这两个问题。
9
6. 定性分析的一个典型实例
自动化学院
School of Automation
了解和掌握动力系统的终态行为是研究动力系统的重要
混沌现象研究

−
B
参考文献 [1] 吴景堂等,非线性电路原理,国防工业出版社(1990) 。 [2] T. Matsumoto et al., The Double Scroll (Part I),IEEE Transaction on Circuits and Systems,Vol. CAS-32(1985) ,798-804。 [3] 郝柏林,从抛物线谈起-混沌动力学引论,上海科教出版社(1993) ,1-35。 [4] Bilotta E, Pantano P, Stranges F. A gallery of Chua attractors : Part I,International Journal of Bifurcation and Chaos. 2007 .17(1):l-60. [5] 王珂,田真,陆申龙,非线性电路混沌现象实验装置的研究[J]. 实验室研究与探索 1999 年 04 期 [6] 曹惠贤,李蓉,普通物理实验教程,北京师范大学出版社,2007,p302-309
2
称为双漩结构(double scroll) 。具有双漩结构的吸引子称为双漩吸引子。本次实验研究蔡氏电路从 稳态进入混沌状态的过程,即从单周期振荡过度到双漩吸引子的过程。只要改变电路中的 G、L、 C 其中一个元件的参数,电路即可通过倍周期分岔等过程进入双漩吸引子的混沌态,它是蔡氏电 路进入混沌状态的主要判据。蔡氏电路的详细现象请看本实验的参考资料中列出的文章。 5.20.3 实验仪器与课件 1.双路稳压恒流电源(混沌电路中放大器电源)DH1718D-2,0-30V,0-2A 2.双踪示波器 3.非线性混沌电路板及元件,电路参数如下:L=22mH;C1=100nF;C2=10nF;1/G=1.5-2kΩ; RiL:0-220Ω,测量 iL 的采样电位器。 *4.信号发生器 DF1643,0-1MHz 5.实验室课件:①Chaos 资料;②混沌:抛物线映射和分岔;③混沌与非线性动力学 5.20.4 实验内容 1.练习使用稳压电源、示波器、数字表、插件版等仪器;学习实验室混沌课件,熟悉混沌的 相关知识。 2 .非线性电阻伏安特性的测量(外接电源 mA 外接 双运放 ±15V 不能互换,否则会烧组件) 。用两块万用表分 双路 蔡氏电路 V 别测量电压和电流,电表量程根据实验数据自行确 电源 模块 定。绘电路图并标出测量时电表极性。自拟表格记 非线性电阻 RN 录实验参数,要求实验数据分布均匀合理。课后绘 制非线性电阻的伏安特性曲线,各段数据分别进行 图 5.20.5 测量伏安特性的电路图 直线拟合。 3. 实验电路按图 5.20.6 接线,RiL 调零后, 缓慢调节 G 电位器, 观察 v c1 - v c2 的相图和波形 (x-y 方式、 y-t 方式) , 记录产生单周期 P、 2 倍周期 2P、 4 倍周期 4P……混沌……3 周期 3P……单漩…… 双漩时 G 的数值和简单波形图。 G 4*.研究采样电阻 RiL 对相图结构的影响。 C 5*.改变 L 的参数,也可产生双漩吸引子。由于单独改 变 L 比较困难, 可采用包含电感互感的混沌电路。 参见附录。
动力系统理论与混沌现象研究

动力系统理论与混沌现象研究混沌,这个词在我们的日常生活中并不陌生。
当我们听到“混沌”时,脑海中浮现出的是一种无序、不可预测的状态。
然而,混沌并不仅仅是一种表象,它是动力系统理论中一个重要的研究领域。
动力系统理论是数学中的一个分支,研究的是描述物体运动规律的数学模型。
它的基本假设是,物体的运动是由一组微分方程描述的。
通过解析这些微分方程,我们可以了解物体在不同条件下的运动轨迹和变化规律。
混沌现象是动力系统理论中的一个重要分支,它研究的是一类特殊的非线性动力系统,这些系统的特点是具有极其敏感的初始条件。
换句话说,微小的初始条件变化会导致系统演化出完全不同的结果。
混沌现象最早在20世纪60年代被发现,并在此后的几十年中得到了广泛的研究。
研究者们发现,混沌现象存在于许多自然界和人工系统中,如天气系统、金融市场、生物系统等。
这些系统的运动规律并不是简单的线性关系,而是呈现出复杂、非周期性的行为。
混沌现象的研究对于我们理解自然界的复杂性和不确定性具有重要意义。
通过研究混沌现象,我们可以揭示系统内部的隐藏规律和结构,为科学家们提供了一种新的思考方式。
在混沌现象的研究中,一个重要的概念是“吸引子”。
吸引子是描述系统演化过程中的稳定状态的数学概念。
简单来说,吸引子可以看作是系统在长时间演化后的稳定轨迹。
不同的吸引子代表了系统在不同条件下的演化结果。
混沌现象的研究方法主要包括数值模拟和实验观测两种。
数值模拟是通过计算机模拟系统的运动规律,得到系统的演化轨迹和吸引子。
实验观测则是通过实际观测系统的运动行为,如测量物体的位置、速度等参数,来研究系统的演化规律。
混沌现象的研究不仅仅是一种理论探索,它还具有实际应用的价值。
例如,在金融市场中,混沌现象的研究可以帮助我们理解市场的波动和变化规律,从而制定更有效的投资策略。
在天气预报中,混沌现象的研究可以提高预报的准确性,帮助我们更好地应对自然灾害。
总之,动力系统理论与混沌现象的研究为我们揭示了自然界的复杂性和不确定性。
非线性科学中的混沌理论研究

非线性科学中的混沌理论研究随着科技的发展,人们的研究范围越来越广泛,包括非线性科学这一领域。
非线性科学涉及的研究对象有很多,而混沌理论则是其中的一个热点话题。
本文将探讨混沌现象的本质及其在非线性系统中的应用。
一、混沌现象的定义和特征混沌现象最早被人们发现于1960年代,这一时期,计算机的发明使科学家得以对复杂系统进行模拟和研究。
混沌是指一种表现为复杂、不可预测的系统行为的现象,它是一个动态系统经历了一系列非线性作用后的结果。
混沌系统具有以下几个特征:1. 敏感依赖:混沌系统对初始条件敏感,微小的初始差别会导致系统行为的巨大差异。
2. 突变:混沌系统行为经常突变且难以预测,哪怕是微小的变化也会使系统的行为几乎完全不同。
3. 持续不变:混沌系统常常不断变化,但在适当的参数范围内,其总体上呈现出稳定的态势。
由于混沌现象的规律性一般很难被准确地描述,因此比较难以对其中的特征进行量化分析。
二、混沌理论的研究意义混沌现象虽然被认为是复杂、混乱的特征,但实际上它具有深刻的意义。
首先,混沌现象是自然界中普遍存在的一个现象,其涉及的许多问题都与我们的日常生活相关。
其次,混沌现象的存在对线性系统控制理论提出了挑战,让人们认识到人类对于自然规律的掌握仍有很多不足之处。
最后,混沌现象也为人类带来了新的科学思想,即“复杂系统”的概念。
在实际应用方面,混沌理论的研究成果在通信、物理、生物、经济等领域中都得到了广泛应用,取得了很好的效果。
在信息保密通信方面,混沌技术可以使密码更安全可靠;在科学研究中,混沌系统可以被用来模拟气象系统、生物系统,从而更准确地预测系统的变化趋势。
三、混沌理论的数学基础混沌理论是非线性科学中的一部分,其数学基础主要来自于微积分和动力学理论。
在微积分中,混沌现象可以用微分方程来描述,而在动力学中,混沌现象可以用相空间中的相轨迹来表示。
1. 非线性微分方程非线性微分方程是研究混沌现象的基础。
它通常描述了一个动力系统中的状态。
经典力学中的混沌现象研究

经典力学中的混沌现象研究混沌现象是指在经典力学中的一类非线性动力学系统中展现出的高度敏感依赖于初始条件的现象。
它起初被误认为是系统运动的不可预测性,但随着对混沌现象的深入研究,科学家们逐渐认识到混沌是一种具有内在规律性的现象。
经典力学中的混沌现象研究对于科学的发展和理论的构建具有重要的意义。
一、混沌现象的起源混沌现象的起源可以追溯到1887年霍普夫提出的迭代逃逸现象。
他在研究一个简单的力学系统时发现,该系统在经过多次迭代后产生了无规则的运动。
这一发现引起了科学家们的兴趣,随后,洛伦兹在20世纪60年代提出了著名的洛伦兹方程,揭示了混沌现象的基本特征。
二、混沌现象的基本特征混沌现象的基本特征包括:敏感依赖于初始条件、确定性、自组织、非周期性等。
敏感依赖于初始条件是混沌现象最引人注目的特征,它意味着微小的初始条件变化会导致系统演化出完全不同的轨迹。
确定性表示混沌现象的演化过程是可以通过确定的数学方程描述和预测的。
三、混沌现象的数学模型混沌现象可以通过一系列的数学模型来描述。
其中最经典的混沌模型之一是洛伦兹方程。
洛伦兹方程是一个三维非线性系统,它描述了大气运动中的流体对流现象。
洛伦兹方程的解具有非常复杂的轨迹,即使微小的初始条件变化也会导致系统行为的剧烈改变。
四、混沌现象的应用混沌现象的研究在许多领域都有广泛的应用。
在天体力学中,混沌现象的研究可以用于描述行星轨道的演化和宇宙运动的复杂性。
在气候学中,混沌现象的研究可以用于分析气候系统的变化和周期性。
在信息加密中,混沌现象的应用可以用于生成随机数和保护数据安全。
五、混沌现象的研究挑战与展望尽管经典力学中的混沌现象已经取得了许多重要的研究成果,但仍然存在许多挑战和未解之谜。
例如,尚未找到一种通用的方法来确定混沌系统的初始条件,这限制了对混沌现象的深入研究。
此外,混沌现象在理论上的解释和数学模型的构建仍然需要更多的理论探索和实验验证。
总之,经典力学中的混沌现象是一门极富挑战性的研究领域。
微分方程中的混沌理论研究

微分方程中的混沌理论研究混沌理论是20世纪70年代后期发展起来的重要学科,它主要研究非线性系统中的混沌现象。
而微分方程作为数学中一门重要的分支,也渗透了混沌理论的探索与研究。
本文将着重探讨微分方程中的混沌理论研究。
一、混沌现象的起源和定义混沌现象最早可以追溯到1800年代的天体力学领域。
之后,其他领域也发现了类似的混沌现象,比如流体力学、电路分析和生物学等。
混沌现象的定义可以简单地理解为对初始条件的微小扰动会引发系统近乎无法预测的行为。
混沌系统具备无序性、不可预测性和敏感依赖于初始条件等特征。
二、微分方程中的混沌现象微分方程是研究变化率和求解变化率的数学工具。
在微分方程中,一阶微分方程、二阶微分方程以及其他高阶微分方程的研究中,混沌现象被发现并引起了学者们的浓厚兴趣。
例如,一个简单的非线性微分方程可以描述一个摆的运动情况。
当摆的角度小于某个阈值时,系统表现为有序的周期运动;而当摆的角度超出这个阈值时,系统将表现出混沌行为,摆动的轨迹变得无法预测和重复。
三、混沌理论在微分方程中的应用混沌理论在微分方程中的应用十分广泛,涵盖了许多领域,比如机械振动、电路理论、流体力学、生物系统和经济学等。
在机械振动方面,混沌理论可以用于研究非线性振动系统的运动规律。
通过对非线性微分方程进行建模和仿真,可以揭示系统运动的混沌行为,进而对系统进行优化和控制。
在电路理论领域,混沌电路的设计和分析是一个重要研究方向。
通过巧妙构造非线性电路模型,可以实现具有混沌行为的电路系统。
这种电路系统对于信息加密等应用有着重要的作用。
流体力学是混沌理论应用最为广泛的领域之一。
在流体力学中,混沌现象的研究可以帮助解释流体运动的复杂性,并揭示其中的规律性。
例如,通过对湍流流动的混沌特性进行研究,可以改善天然气输送管道和空气动力学领域中的气流控制等问题。
此外,混沌理论还可以应用于生物系统和经济学等领域。
在生物系统中,混沌现象的研究有助于理解生命的底层机制,并促进对疾病等问题的诊断和治疗。
馄饨 里的科学知识

馄饨里的科学知识
馄饨是一种中国传统的食品,它的制作和食用中蕴含了许多科学知识。
以下是一些关于馄饨的科学知识:
1. 面粉科学:馄饨是用面粉做的,面粉是由小麦磨制而成的。
小麦是一种含有丰富淀粉、蛋白质、脂肪、矿物质和维生素的谷物,是人类重要的食物来源之一。
面粉的品质和加工方式会影响馄饨的口感和品质。
2. 物理学:在制作馄饨的过程中,涉及到许多物理学的原理。
比如在擀面皮时,要利用杠杆原理来擀动擀面杖;在煮馄饨时,要利用热传导原理来加热水,使水沸腾后煮熟馄饨。
3. 化学:馄饨的制作过程中涉及到许多化学反应。
比如在面粉中加入水和酵母后,会发生化学反应产生二氧化碳,使面团膨胀;在煮馄饨时,会发生水解反应,使馄饨皮中的淀粉糊化,从而使馄饨更加柔软。
4. 生物学:在制作馄饨馅时,需要用到各种蔬菜和肉类。
这些食材中含有的蛋白质、脂肪、碳水化合物、维生素和矿物质等营养成分,对人体的生长和发育有着重要的作用。
同时,在制作过程中需要注意食材的新鲜度和卫生情况,以避免食品污染和有害微生物的滋生。
5. 文化学:馄饨是中国传统的食品之一,它与中国文化有着密切的联系。
在中国的许多地区,都有着独特的馄饨制作方法和口味,这些不同的制作方法
和口味反映了中国文化的多样性和地域性。
同时,馄饨也是中国节日和庆典的重要食品之一,它代表着团圆和和谐的意义。
总之,馄饨的制作和食用中蕴含了许多科学知识,这些知识不仅有助于我们更好地了解这种传统食品的制作工艺和原理,也有助于我们更好地享受美食。
混沌现象研究实验报告

混沌现象研究实验报告混沌现象是一种复杂的动力学现象,它展现了一种看似随机但又有序的行为。
混沌现象在物理学、数学、生物学等多个领域都得到了广泛的研究和应用。
在本实验中,我们将使用一个简单的混沌系统模型进行研究,探究混沌现象的基本特征和产生机制。
首先,我们介绍实验所使用的混沌系统模型,这是一个基于离散映射的模型。
模型的动力学方程如下:x(n+1) = r*x(n)*(1-x(n))其中,x(n)是系统在第n个时间步的状态变量,r是一个控制参数,决定了系统的行为。
该方程描述了一个种群数量的变化规律,可以用来研究种群的动态演化。
为了观察混沌现象,我们在模型中引入了一个初始条件x0。
我们会通过调节参数r和初始条件x0的值,观察系统的演化过程。
在实验中,我们将选择不同的参数r值和初始条件x0,观察系统的行为。
例如,我们可以选择r=2.5和x0=0.5作为初始条件。
我们将通过迭代计算x(n)的值,并绘制出x(n)随时间的变化图像。
实验结果显示,当r取不同的值时,系统的行为也会发生明显的变化。
当r小于3时,系统的行为相对简单,呈现出周期性和收敛性;当r大于3时,系统的行为变得复杂,呈现出混沌现象。
我们可以通过统计混沌系统产生的时间序列数据的特征,如Lyapunov指数、分岔图、功率谱等来定量描述混沌现象。
此外,我们还可以通过系统的相图来观察混沌现象。
相图描述了系统状态变量的轨迹,可以直观地展示系统的复杂行为。
我们将绘制x(n)和x(n+1)的关系图像,以及x(n+1)和x(n+2)的关系图像,通过观察图像的形状和分布情况,可以发现混沌现象的特征。
通过实验的观察和分析,我们可以得出以下结论:1. 混沌现象具有确定性,但是在初值和参数微小变化的情况下表现出不可预测的特点;2. 混沌系统的行为对参数和初值条件非常敏感,微小的变化可以导致完全不同的演化结果;3. 混沌系统的行为可以通过一些统计特征来描述,如Lyapunov指数、分岔图、功率谱等;4. 混沌现象具有普适性,可以在不同的领域中观察到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 反控制方法: 根据全局有界性和正的李氏指数设计混沌系统
(3) 根据Smale马蹄映射、Shilnikov定理等设计混沌系统, 如异宿环的设计等
ห้องสมุดไป่ตู้
3) 混沌应用:
利用混沌具有稠密不稳定周期轨、不可预测性、对参数和初始条件敏感性等
(1) 混沌广义控制(包括混沌控制、反控制、混沌同步)
(2) 混沌电路分析与设计
(1) 定性分析方法: 计算李氏指数、分岔图、吸引子相图等
(2) 机理分析方法: 分析是否存在马蹄映射、同宿轨道和异宿环等
(3) 回归排斥子法: 分析系统中是否存在回归排斥子?
2) 混沌系统的设计:
根据某种理论或方法, 设计出一个混沌系统, 并证明它是混沌的?
混沌研究
设计方法主要包括 : (1) 数值试验法: 参数错试、数值仿真、计算李氏指数三步曲设计混沌系统
图 3 区间 [−2π , 2π ] 内任意初始条件时 x(t) 随时间的变化趋势及终态
13
自动化学院
School of Automation
siminyu@
14
点,其中空心圆点为不稳定平衡点,实心圆点为稳定平衡点。
10
6. 定性分析的一个典型实例
x
−2π −π
0π
2π x
自动化学院
School of Automation
图 1 x = sin x 的流形与平衡点
根据图 1,可对于上述提出的两个问题得出明确的解答结果如下: 1)在 x0 = π / 4 处,首先是越来越快地向右到达 x = π / 2 ,当到达 x = π / 2 后,再越来越慢地趋于稳定平衡点 x = π ,x(t) 随时间变化的趋势如图 2 所示。 2)对任意初始条件 x0 ,当 t → ∞ 时 x(t) 的行为也有类似结果,最终趋向 离它最近的稳定平衡点,在区间 [−2π , 2π ] 内任意初始条件下 x(t) 随时间的变 化趋势如图 3 所示。 上述实例虽然有点特殊,但说明了定性分析方法的特点及优越性。今后 我们将看到,定性分析法是求解混沌问题的一种很实用的方法,应该掌握。
5
4. 机理研究方法
自动化学院
School of Automation
1) Smale马蹄映射:
(1) 混沌系统分析: 对于给定系统, 分析是否存在马蹄映射?
关键是要能找到一个不变集, 并在该集上有拉伸折叠变换
(2) 混沌系统设计: 根据马蹄映射的方法设计出混沌系统?
2) Shilnikov定理(Shilnikov不等式、同宿轨道和异宿环):
和设计混沌系统。
1) 离散时间系统的反控制: (1) Chen - Lai算法 (2) Wang - Chen算法 反控制方法 2) 连续时间系统的反控制: (1) 建立设计准则和判定定理 (2) 控制器设计 (3) 平衡点设计 (4) 通过设计控制器和平衡点, 使系统全局有界和正李氏指数
7
6. 定性分析的一个典型实例
自动化学院
School of Automation
定性研究的基础是微分动力系统的定性理论,主要分析平衡点 的类型及其稳定性、平衡点的分岔行为等。此外,还包括计算李氏 指数、分岔图、混沌吸引子的相图等,这些也可以认为属于定性分 析的范畴或者说属于工程层面的分析方法,但不属于严格的混沌机 理研究范畴。尽管定性分析方法不能得出严格的解析解,但有时却 能把握住整个系统的全局,目前在混沌问题的研究中仍不失为一种 主要手段与方法。一方面,目前情况下绝大多数非线性系统很难获 得解析解,并且需要有很高的数学技巧与先验知识。另一方面,即 使是能获得严格解析解,但有时结果的物理意义并不明晰,采用定 性分析法却能较好地把握住全局。
(3) 保密通信和信息安全
2
(4) 图像和视频加密等
1. 混沌研究与方法
自动化学院
School of Automation
1) 定量研究方法 2) 定性研究方法 混沌研究方法 3) 机理研究方法 4) 反控制研究方法
3
2. 定量研究方法
自动化学院
School of Automation
设 t = 0 时的初始条件为 x = x0 ,得 C = ln | csc x0 + cot x0 | 。最 后得其严格的解析解为
t = ln csc x0 + cot x0 csc x + cot x
8
6. 定性分析的一个典型实例
自动化学院
School of Automation
虽然获得了严格的解析解,但解的物理意义并不明晰,尤其是 不能把握住全局。例如,根据解的结果,可提出以下两个问题:
在定性分析中,可通过对平衡点稳定性的分析来掌握系统 的终态行为,平衡点指的是系统的状态不随时间变化,即
=x f= (x) 0 通过求解方程 f (x) = 0 ,可得系统的平衡点之值。
根据定性分析法,得 x = sin x 的流形如图 1 所示。图中 =x s= in x 0 的解(对应空心圆点和实心圆点)便是系统的平衡
定量研究方法指的是求出混沌系统的严格解 析解。由于混沌系统是非线性系统,要想求出其严 格的解析解,在目前情况下几乎不可能。因此,通 常只能通过用 MATLAB 编程,通过数值模拟的方 法求得混沌吸引子的相图。这就是我们经常在许多 文献中只看到混沌吸引子的相图而没有看到解析 解的原因。
4
3. 定性研究方法
直截了当地回答这两个问题并非易事,但如果采用定性分析方 法却能较好地回答这两个问题。
9
6. 定性分析的一个典型实例
自动化学院
School of Automation
了解和掌握动力系统的终态行为是研究动力系统的重要 方法。对于一维系= 统 x f (x), x ∈ R 来说,其终态行为只有收 敛和发散两种情况。而对于二维系= 统 x f (x), x ∈ R2 来说,其 终态行为有收敛、发散和周期三种情况。而对于三维以上系统 来说,除收敛、发散和周期三种行为外,可能有混沌行为。
(1) 混沌系统分析: 对于给定系统, 分析是否存在同宿轨道或异宿环?
(2) 混沌系统设计: 根据Shilnikov定理设计具有同宿轨道或异宿环的混沌系统?
3) Melnikov方法:
主要用于非自治混沌系统的分析与设计
6
5. 反控制方法
自动化学院
School of Automation
根据混沌系统的全局有界性和正的李氏指数(拉伸和折叠)来分析
11
6. 定性分析的一个典型实例
自动化学院
School of Automation
x(t) π
π 4
0
t
图 2 初始条件为 x0 = π / 4 时 x(t) 随时间的变化趋势及终态
12
6. 定性分析的一个典型实例
x(t) 2π
自动化学院
School of Automation
π
0 t
−π
−2π
1)假定 x0 = π / 4 ,描述解的结果 x(t) 对于所有的 t > 0 时 的定性特征是什么?当 t → ∞ 时的稳态是什么?
2)对于任意一个初始条件 x0 ,请说明 x(t) 当 t → ∞ 时的 行为是什么?
可以看出,如果想要从解 t = ln csc x0 + cot x0 的结果中很 csc x + cot x
混沌理论与应用
一. 混沌的研究方法
自动化学院 禹思敏
2012.10
1. 混沌研究与方法
自动化学院
School of Automation
混沌研究包括混沌系统的分析、混沌系统的设计、混沌应用三大部分,概括如下:
1) 混沌系统的分析:
对于一个给定的动力系统, 分析该系统是否为真正的混沌系统?
分析方法主要包括 :
自动化学院
School of Automation
考虑以下非线性微分方程 x = sin x
注意到这个方程可通过变量分离法获得严格的解析解(注意 到这样的例子是凤毛麟角)。根据上式,得
dt = dx sin x
对上式积分,得
t = ∫ csc xdt = −ln | csc x + cot x | +C