芳构化反应机理.doc
芳构化装置工艺介绍

芳构化装置一、装置简介芳构化装置,主要原料混合碳四液化气,产品有轻芳烃、重芳烃,民用液化气等。
原料混合碳四液化气,通过原料加热炉加热后,在反应器内与催化剂接触,经过低聚、环化,脱氢芳构化反应生成粗芳烃混合物,经过吸收稳定系统分离成合格的民用液化气和混合芳烃,再通过分馏分离成轻芳和碳9以上重芳烃。
装置区共有油、气罐16台,水储罐2台,其中地下密闭排放罐1台,机泵20台套。
为了防止污染环境和对操作人员造成损害,装置区所有排放的有机液体均排往密闭排放罐,然后根据情况再进行处理和排放。
二、工艺原理反应部分:轻烃芳构化的机理十分复杂。
一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化;b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。
这些小烯烃是芳烃分子的建筑单元。
这步反应属于吸热反应;c)小烯烃分子在B酸中心上低聚(二聚、三聚)生成C6-C8烯烃,后者再通过异构化和环化生成芳烃前体(带6元环的前体)。
这步反应属于强放热反应;d)芳烃前体在L酸中心上通过脱氢生成苯、甲苯和C8芳烃等。
这步反应属于吸热反应。
在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键。
它决定了芳构化反应的活性和选择性。
C3-C8之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。
当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。
由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C8芳烃等产物,并且原料对芳烃产物的分布影响不大。
但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同(如直链烃、支链烃和环烷烃)和碳-碳键饱和程度不同(如烷烃、单烯烃、二烯烃),则其芳构化的活性、热效应和芳烃产率会有一定差别。
一般来说,碳数越小的原料在酸中心上生成正碳离子越困难,其芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。
生物质基重整油模型化合物芳构化制BTX轻质芳烃

生物质基重整油模型化合物芳构化制BTX轻质芳烃宋奇;郑均林;祁晓岚;孔德金【摘要】以戊醇和己醇为生物质基重整油的模型化合物,分别在ZSM-5,Beta和USY催化剂上进行醇芳构化反应制取苯、甲苯和二甲苯(BTX)等芳烃的研究.结果表明:ZSM-5催化剂显示出较好的芳构化性能,液相产物中的BTX可达90%以上;采用急冷淬灭反应的方法对可能的中间物种进行了分析和捕捉,发现取代的烯烃和环烷烃是反应的主要中间物种;模型中间体实验验证了醇类化合物经历了脱水、环化和脱氢等步骤生成BTX芳烃的反应历程.【期刊名称】《化学反应工程与工艺》【年(卷),期】2016(032)004【总页数】6页(P307-312)【关键词】生物质;芳构化;戊醇;己醇;分子筛【作者】宋奇;郑均林;祁晓岚;孔德金【作者单位】中国石油化工股份有限公司上海石油化工研究院绿色化工与工业催化国家重点实验室,上海201208;中国石油化工股份有限公司上海石油化工研究院绿色化工与工业催化国家重点实验室,上海201208;中国石油化工股份有限公司上海石油化工研究院绿色化工与工业催化国家重点实验室,上海201208;中国石油化工股份有限公司上海石油化工研究院绿色化工与工业催化国家重点实验室,上海201208【正文语种】中文【中图分类】TQ241芳烃是石油化工的重要基础原料,其中,苯、甲苯和二甲苯(BTX)是最为重要的芳烃化合物,广泛用于生产化纤、塑料和橡胶等化工产品和精细化学品[1,2]。
目前,国内外BTX的生产主要依赖于石油等化石资源,通常是通过催化剂将石脑油经过加氢、重整、芳烃转化和分离等工艺过程获得[3]。
化石资源不可再生,且在利用过程中排放温室气体,促使人们寻找新的生产芳烃的方法。
生物质作为可再生资源,具有碳中性和储量大的特点,目前利用生物质资源生产芳烃已经成为科学界和工业界的研究热点,受到广泛关注。
生物质源于太阳能和植物的光合作用,相比化石资源储量更为丰富[4-6]。
加氢脱芳构化

加氢脱芳构化加氢脱芳构化是一种重要的有机反应,广泛应用于有机合成和石油化工领域。
它通过在反应体系中加入氢气,将芳环化合物的芳基脱除,形成饱和的烷基化合物。
加氢脱芳构化可以用于生成具有新的物化性质的化合物,同时也用于降低芳香烃在环境中的毒性。
加氢脱芳构化的反应机理是一个复杂的过程,通常包括四个主要步骤:氢饱和、芳香性破坏、氢化和脱芳。
首先,氢饱和步骤将芳香烃的芳基转化为饱和的烷基。
接下来,芳香性破坏步骤将产生高能的烯烃中间体。
然后,氢化步骤将烯烃中间体转化为稳定的烷基。
最后,脱芳步骤通过将脱芳产物分离出来,恢复反应体系稳定。
加氢脱芳反应催化剂的选择对反应的效率和选择性有着重要影响。
常用的催化剂包括贵金属催化剂(如铂、钯和钌),非贵金属催化剂(如钼、钨和镍)以及碱金属催化剂(如钠和钾)。
这些催化剂通常以载体的形式存在,并能够与反应物和反应中间体发生相互作用,促进反应的进行。
催化剂的选择取决于反应条件、反应物的性质和对产物的要求。
加氢脱芳反应的反应条件也对反应的效率和选择性起着重要作用。
适当的反应温度、氢气压力、反应时间和溶剂选择能够提高反应速率和产物选择性。
通常情况下,加氢脱芳反应在高温、高压下进行,以增加反应速率。
此外,光照、超声波和微波等外界条件的应用也可以提高反应效果。
加氢脱芳反应在有机合成中有着广泛的应用。
它可以用于合成具有饱和碳链的有机化合物,如脂肪醇、脂肪酸和脂肪胺。
这些化合物在某些行业,如化妆品、润滑油和表面活性剂的生产中具有重要的应用。
此外,加氢脱芳反应还可以用于化学品的精细合成和天然产物的结构修饰。
例如,通过对天然产物如生物碱和天然香精的加氢脱芳反应,可以合成具有更广泛应用价值的化合物。
总之,加氢脱芳构化是一种重要的有机反应,通过在反应体系中加入氢气,将芳环化合物的芳基脱除,形成饱和的烷基化合物。
它在有机合成和石油化工领域有着广泛的应用,可以用于生成具有新的物化性质的化合物,并降低芳香烃在环境中的毒性。
工艺知识芳构化 三

工艺知识芳构化三工艺知识装置概况:1、轻油芳构化装置,产品较重终馏点较高2、装置改造,利用稳定塔再上溶剂油装置生产溶剂油3、由于分离溶剂油的可操作性,改为利用溶剂油装置对轻油芳构化原料进行预处理脱除重组分---拔精粗200#4、正值经济危机之际,原料油涨价而汽油降价,进行液化气芳构化流程改造,再利用溶剂油装置脱轻柴5、为了更加容易控制反应器床层温度进行反应器改造,并更换R101B/D催化剂为液化气芳构化的专用催化剂为了更加容易,期间进行的小流程改造不断;大家也看到了,改造的地方也比较多,都是为了操作稳定容易减少劳动强度与损耗,希望大家在以后的操作生产中能提出更好的流程改造方案。
1、富压机中间冷却器退油2、溶剂油装置的脱丁烷塔顶放空至罐区3、V110放空改至液化气外送线4、吸收塔干气调节阀前改至液化气外送至液化气产品罐给罐区补压,调节阀后补压;由于液化气芳构化的催化剂不同,分阀前阀后补压5、烧焦再生的补风线加调节阀控制补风量,补风管线加粗防冻6、再生系统加放空调节阀改造,空压机入口加调节阀7、P301、P302外送合在一起;P303外送与P305合在一起,P304外送与P306合在一起8、仪表风分净化风与非净化风两条线,烧焦用非净化风9、V101加放空调节阀10、V106向V101压油流程11、脱色塔进料的分布器堵,改用脱己烷塔当脱色塔使用液化气芳构化的理论知识:用富含烯烃(丁烯)的液化气作为原料,在反应器进行液化气芳构化轻油芳构化的主要反应是:裂化、齐聚、环化、脱氢液化气芳构化的主要反应为:叠合反应(属齐聚反应)此反应为强放热反应,所以反应器床层温度是温升而不是温降,有效地控制床层温度是重点;还进行环化、脱氢反应。
叠合反应是指两个或者两个以上的烯烃分子生成一个高分子量的烯烃的过程。
原料中烯烃含量越高,反应放出的温度越多,床层温度越高,反应周期缩短。
液化气芳构化的影响因素:1、原料组成对芳构化反应的影响随着原料中烯烃含量的增加,液体收率和芳烃增加,干气产率下降。
芳构化反应机理

芳构化反应机理芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。
当用烯烃含量较低的FCC装置产的C4液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。
另一方面,当用烯烃含量较高的原料,如裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。
同催化重整反应相比,芳构化反应相对节能,而重整反应耗能较大。
这主要是因为:重整反应采用C6-C8烷烃为原料,主要发生脱氢反应,因此只有吸热过程;虽然芳构化技术中的芳烃前体也必须通过脱氢反应才能生成芳烃(吸热),但是芳构化技术中采用的轻烃原料一般含有相当一部分烯烃,因此总体上脱氢反应比重整工艺减少。
其次,由于轻烃分子在生成芳烃时必须经过低聚和环化反应,而这些反应是强放热反应。
因此,同重整反应相比,芳构化反应吸热程度低,而且其中一些放热反应所放出的热量可抵消另外一些吸热反应所吸收的热量(吸热和放热的平衡点根据原料性质不同而不同)。
值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。
这是因为,烯烃浓度过高时容易在设备及催化剂表面发生聚合,缩短催化剂单程操作周期。
二烯烃的危害甚于单烯烃。
在实际生产中,一方面要通过原料控制二烯烃的含量,同时要注意保持足够的芳构化干气循环。
另外,轻烃中的水分、含氧化合物和氮也是催化剂的毒物,应该加以严格控制。
水分和含氧化合物反应生成的水分能够钝化催化剂上的酸性活性中心,缩短催化剂的寿命;而碱性氮则能中和破坏酸性中心,缩短催化剂单程操作周期及催化剂寿命。
HZSM--5催化剂上甲醇芳构化研究的开题报告

HZSM--5催化剂上甲醇芳构化研究的开题报告一、选题背景与意义甲醇芳构化是一种将甲醇通过催化剂转化为苯和其他芳烃的化学反应。
芳构化反应产物广泛用于生产化学制品和清洁燃料等重要工业领域。
HZSM-5催化剂是一种新型的沸石催化剂,被广泛用于甲醇芳构化反应。
本文将研究HZSM-5催化剂上甲醇芳构化反应以及其反应机理,旨在探究HZSM-5催化剂对甲醇芳构化反应的催化性能和优化条件,为芳构化反应的实际应用提供理论基础和指导。
二、研究内容和方法本研究将通过实验方法,研究HZSM-5催化剂上甲醇芳构化反应的反应条件和机理。
具体研究内容包括以下几方面:(1)调节反应温度、甲醇浓度和反应时间等关键反应参数,研究HZSM-5催化剂对甲醇芳构化反应的催化效果。
(2)通过XRD、TEM等方法表征HZSM-5催化剂的物理性质。
(3)利用GC-MS等方法分析反应产物,确定反应机理和优化反应条件。
三、研究预期成果通过本研究,预期实现以下目标:(1)掌握HZSM-5催化剂的制备方法和物理性质。
(2)确定HZSM-5催化剂的最佳催化反应条件及其催化效果。
(3)揭示HZSM-5催化剂上甲醇芳构化反应的机理。
(4)为甲醇芳构化反应的工业应用提供理论基础和指导。
四、研究进度安排第一年:研究HZSM-5催化剂制备方法;调节反应条件,研究HZSM-5催化剂的催化效果。
第二年:通过XRD、TEM等方法表征HZSM-5催化剂的物理性质;利用GC-MS等方法分析反应产物,揭示HZSM-5催化剂上甲醇芳构化反应的机理。
第三年:总结研究成果,完成论文写作和答辩。
五、研究难点和解决方案HZSM-5催化剂制备方法的优化及对反应条件的控制是本研究的难点所在。
通过分析制备工艺和反应条件,采用反应条件表面响应法(RSM)的优化方法,解决制备和反应条件的问题,并进一步探索研究更为细致和深刻的问题。
六、研究意义本研究将为芳构化反应领域的发展提供新思路和新方法,为我国工业发展提供新的技术指导。
有机催化芳构化促进亚胺的极反转反应

有机催化芳构化促进亚胺的极反转反应一、概述有机催化是现代有机合成领域中的一个重要分支,通过有机催化反应可以高效、高选择性地合成具有生物活性的化合物,为药物合成、材料合成等领域提供了重要的手段。
而芳构化反应是有机合成中的一类重要反应,能够提供对芳香化合物的合成途径。
在芳构化反应中,促进亚胺的极反转反应是一个重要的研究方向,本文将对有机催化芳构化促进亚胺的极反转反应进行探讨。
二、有机催化芳构化促进亚胺的极反转反应概述在有机催化芳构化过程中,亚胺的极反转反应起着至关重要的作用。
在这类反应中,亚胺分子可以通过极反转机理进行转化,实现碳-碳键的构建。
由于亚胺分子的特殊结构,使得其极反转反应过程具有一定的挑战性,然而通过有机催化的手段可以有效地促进亚胺的极反转反应,为芳构化反应的进行提供了有力支持。
三、有机催化芳构化促进亚胺的极反转反应机理在有机催化促进亚胺的极反转反应过程中,常见的催化剂包括贵金属催化剂、过渡金属催化剂等。
这些催化剂可以与亚胺分子发生相互作用,形成中间物种,进而引发极反转反应的进行。
在催化剂的作用下,亚胺分子的极性会发生改变,极反转的进行可以实现碳-碳键的形成,从而实现芳构化反应的进行。
四、有机催化芳构化促进亚胺的极反转反应的研究进展近年来,有机催化芳构化促进亚胺的极反转反应在研究领域取得了不断的进展。
研究人员通过设计新型催化剂、优化反应条件等手段,实现了对亚胺的高效促进,提高了芳构化反应的转化率和选择性,为有机合成领域的发展提供了重要的支持。
五、有机催化芳构化促进亚胺的极反转反应在有机合成中的应用有机催化芳构化促进亚胺的极反转反应在有机合成中具有重要的应用价值。
该反应不仅可以高效、高选择性地合成目标化合物,还可以拓展合成途径,为有机合成领域的发展提供新的思路和方法。
有机催化芳构化促进亚胺的极反转反应在药物合成、材料合成等领域具有广泛的应用前景。
六、结论有机催化芳构化促进亚胺的极反转反应是有机合成领域的重要研究方向,通过对其机理和研究进展的深入探讨,可以为有机合成领域提供重要的理论和实践支持。
芳构化技术 文档

芳构化技术一、芳构化技术的诞生轻质芳烃(苯、甲苯、二甲苯)是最基本的石油化工原料之一,随着合成橡胶、合成纤维、合成树脂三大合成材料的迅猛发展及国民经济对其它精细化学品需求的不断增长,轻质芳烃的需求急速增长。
另外,燃料油市场对高辛烷值汽油的需求量也在不断增长,轻质芳烃正是高辛烷值清洁汽油的重要调合组份,我国绝大多数的清洁汽油中芳烃含量远低于国家标准对芳烃含量的要求,因此,开发新的芳烃来源和生产技术显得越来越重要。
目前,催化重整技术是炼油企业获得优质石油芳烃或高辛烷值汽油调合组分的最主要手段。
催化重整反应的重要特征是将直馏石脑油中的环烷烃经脱氢等过程转化为芳烃。
所以,无论早期的半再生重整工艺还是经催化剂及工艺改进后的连续重整工艺,均要求原料具有一定的芳烃潜含量(主要指环烷烃含量)。
对原料组成的要求事实上限制了由催化重整生产芳烃的原料资源。
轻烃芳构化技术是近二十年来发展的一种新的石油加工技术,其特征是利用改性的沸石分子筛催化剂将低分子的烃类直接转化为苯、甲苯和二甲苯等轻质芳烃。
轻烃芳构化技术与目前炼厂采用的重整工艺相比,具有以下优点:(1)使用的分子筛催化剂具有很好的抗硫、抗氮能力,原料无需深度加工;(2)芳烃产率不受原料油芳烃潜含量的限制,原料不需预分馏;(3)低压、非临氢操作,其基本建设投资少,操作费用低;(4)通过改变催化剂配方及芳构化反应工艺条件,可在一定范围内调整产品分布,以适应市场需要;(5)芳构化反应产生的干气富含氢气,可以作为加氢装置的氢源。
随着现代工业的发展,作为基础化学工业原料和高辛烷值汽油组分的轻质芳烃的需求量不断增加,而石油资源却日益短缺,因此,立足现有石油资源,利用芳构化工艺过程来拓宽生产芳烃的原料资源、增加芳烃产量具有很强的现实意义。
二、轻烃芳构化技术概况二十世纪70年代初,美国Mobil公司合成出了ZSM-5型硅铝沸石,并将其应用于催化剂研究中,进而开发出生产芳烃的催化剂和工艺,使得从其它途径生产芳烃成为可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 工艺原理及特点
液化气芳构化装置的目的是将来自界区的碳四组分其它适宜的原料在DLP催化剂的作用下,通过芳构化反应转化为含有苯、甲苯及二甲苯的混合芳烃,同时生成含有氢气、甲烷及碳二至碳五馏分的气相。
然后通过一系列的分离,最终产出符合标准的混合芳烃、轻芳烃及重芳烃,同时副产低烯烃的液化气及少量的干气。
C4液化气等低碳烃在芳构化催化剂中进行芳构化反应的过程较为复杂,以烷烃为例一般要经过脱氢、齐聚、环化及芳构化等过程最终才能生成芳烃,而烯烃的转化则没有脱氢的过程。
上述过程中,烷烃脱氢的过程为吸热过程,而齐聚、环化及芳构化过程为放热的过程,所以烷烃的芳构化生成芳烃的能耗要比烯烃的芳构化过程要高。
在低温条件下生产轻芳烃汽油组分时,齐聚、环化及芳构化的反应为主导反应,所以是一个强的放热反应。
2.2.1 工艺原理
反应机理
液化石油气等轻烃的芳构化机理十分复杂。
一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化;
b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。
这些小烯烃是芳烃分子的建筑单元。
该步反应属于吸热反应;c)小烯烃分子在B酸中心上低聚(二聚、三聚)生成C6-C8烯烃,后者再通过异构化和环化生成芳烃前体(带6元环的前体)。
该步反应属于强放热反应;d)芳烃前体在L酸中心上通过脱氢生成苯、甲苯和C8等芳烃。
这步反应属于吸热反应。
在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键,它决定了芳构化反应的活性和选择性。
C3-C8之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。
当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。
由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C8等芳烃产物,并且原料对芳烃产物的分布影响不大。
但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同(如直链烃、支链烃和环烷烃)和碳-碳键饱和程度不同(如烷烃、单烯烃、二烯烃),则其芳构化的活性、热效应和芳烃产率会有一定差别。
一般来说,碳数越小的原料在酸中心上生成正碳离子越困难,其芳构化活性越低;在同
碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。
当用烯烃含量较低的FCC装置产的C4液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。
另一方面,当用烯烃含量较高的原料,如裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。
同催化重整反应相比,芳构化反应相对节能,而重整反应耗能较大。
这主要是因为:重整反应采用C6-C8烷烃为原料,主要发生脱氢反应,因此只有吸热过程;虽然芳构化技术中的芳烃前体也必须通过脱氢反应才能生成芳烃(吸热),但是芳构化技术中采用的轻烃原料一般含有相当一部分烯烃,因此总体上脱氢反应比重整工艺减少。
其次,由于轻烃分子在生成芳烃时必须经过低聚和环化反应,而这些反应是强放热反应。
因此,同重整反应相比,芳构化反应吸热程度低,而且其中一些放热反应所放出的热量可抵消另外一些吸热反应所吸收的热量(吸热和放热的平衡点根据原料性质不同而不同)。
值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。
这是因为,烯烃浓度过高时容易在设备及催化剂表面发生聚合,缩短催化剂单程操作周期。
二烯烃的危害甚于单烯烃。
在实际生产中,一方面要通过原料控制二烯烃的含量,同时要注意保持足够的芳构化干气循环。
另外,轻烃中的水分、含氧化合物和氮也是催化剂的毒物,应该加以严格控制。
水分和含氧化合物反应生成的水分能够钝化催化剂上的酸性活性中心,缩短催化剂的寿命;而碱性氮则能中和破坏酸性中心,缩短催化剂单程操作周期及催化剂寿命。
不同烃分子生成正碳离子的途径及其相对难易
不同烃分子在DLP催化剂上芳构化的反应过程图解
(1)原料活化为正碳离子及乙烯、丙烯、丁烯和戊烯等低碳烯烃中间体生成
H3C H2
C
C
H2
H2
C
C
H2
H2
C
R
H+
H3C
H2
C
C
H2
H2
C
C
H2
H
C
R
H H
-H2
H3C
H2
C
C
H2
H2
C
C
H2
H
C
R
α
β
H3C
H2
C
C
H2
CH2
+R
H3C
H2
C
C
H
CH3
+R
β
1,2-H-shift
R=H,CH3,C2H5 R H+R
H
H3C
H2
C
C
H2
H2
C
C
H
R
R=H,CH3,C2H5,C3H8(2)原料的活化及甲烷、乙烷、丙烷等低碳烷烃副产物的生成
H3
C
H2
C
C
H2
H2
C
C
H2
H2
C
R
H+
3
C
H2
C
C
H2
H2
C
CH2
H
2R H3C
H2
C
C
H2
H2
C
CH2+R CH3
H3C
H2
C
C
H2
H
C
CH3+R CH3
1,2-H-shift
R=H,CH3,C2H5
H 3C
H 2C
H 2
H 2C
H H 3C
H 2C
C H 2
H 2C
C H 2
H C
R +R'
H 2C
3
R
H C C H 2
H 2C CH 3
CH 3
H +
H
2C
H
2
C
C H 2
CH 3
CH 3H R
R H +H 3C
H C
C H 2
H 2C CH 3
R=CH 3,C 2H 5,C 3H 7
H 3C
H 3C
C
C H 2
H 2C
R CH 3
+R'
H 2C
CH 3
R'=H,CH 3,C 2H 5
(3)低碳烯烃聚合增链、链烷烃环化
R1-C=C
H +
R1-C-C
+R2-C-C -
C
R1-C-C-C-R2
-
C +
Oligomerization
R 1, R 2=H, CH 3, C 2H 5, C 3H 7
R '
+
or +
R ''
R1-C=C
+R1-C-C-C-R2
Cyclo-R '
+
or
+
R ''
(4)五元环扩环生成六元环:
R H+
R
H
H
H+
-H2
R
+1,2-H-Shift
R
+扩环+
R'
R = CH3, C2H5, C3H7
R' = H, CH3, C2H5
(5)六元环脱氢或氢转移芳构化
R
+
+
+
H-transfer
R,R'=H,CH3,C2H5
H
H
H+
H
R-H2
H
H
R
R'-C=C
R
H
H
H-
R'-C-C
R R'-C-C
+
R
R
H
R'-C-C
+
+R
H
H
R'-C=C
H+
R
R'-C-C
+
H-transfer
'
R
R,R'=H,CH3,C2H5(6)单环芳烃稠环化—结焦
R1
H+
+
H
H
R1
R2
+
H
H
R1
R2
H-H2H
R1
R2
δ+δ+
+
+
H
H
R1
R2
H
H H
R2
H
R1
+-H+-H-
H-transfer
炭
焦
(7)烯烃多聚—结焦。