刚体的定轴转动
刚体的定轴转动

J
1 2 m( R12 R2 ) 2
1 mR 2 2 若R1 R2 R, J mR 2
16
例:求长度为L,质量为m的均匀细棒AB的转动惯量。 (1)对于通过棒的一端与棒垂直的轴。 (2)对于通过棒的中心与棒垂直的轴。 m 解(1)细杆为线质量分布,单位长度的质量为: l L 1 3 2 2 dm A B J A x dm x dx L o 0 3 x
2 0
2
0
dm MR
2
绕圆环质心轴的转动惯量为
M
o
R
பைடு நூலகம்dm
J MR
2
讨论:若圆环绕其直径轴转动,再求此圆环的转动 惯量。
14
例: 一质量为m,半径为R的均匀圆盘,求对通过盘 中心并与盘面垂直的轴的转动惯量。
m 解: σ πR 2
dm σ 2π rdr
dJ r dm 2πσ r dr
5
匀变速圆周运动的基本公式
p
1 2 0 0t t 2
0 t
s
R
o
p
x
2 2 0 2 ( 0 )
定轴转动刚体上任一点的速度和加速度 s R 路程与角位移之间的关系:
v R 线速度与角速度的关系:
加速度与角量的关系: 2 dv d v at R R , an 2 R, dt dt R
1
柱壳形状的质元 ,其长为l半径为r厚度为dr, 则该质元的质量为 dm dV ( 2 rdr )l
R2
R2
l
J r dm 2lr dr
2 3 m R1
l
2
刚体的定轴转动

刚体的定轴转动一、刚体极其运动刚体——受力时不改变形状和体积的物体。
注:(1)刚体是固体物件的理想模型。
(2)刚体是一个特殊的质点系(各质点间的相对位置在运动中保持不变)。
刚体的运动分为平动和转动。
平动:刚体中所有点的运动轨迹都保持完全相同,或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线。
(用质点力学处理)转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动。
二、刚体转动的角速度和角加速度刚体定轴转动时,由于各质元间的相对位置保持不变,因此描述各质元的角量是一样的。
角坐标:θ=θ(t)角位移:?θ=θ(t+?t)-θ(t) 角速度:?θdθ=?t→0?tdt角速度的方向:右手螺旋法则。
dω角加速度:α= dt定轴转动的特点:(1)每一质点均作圆周运动,圆面为转动平面;(2)任一质点运动?θ,ω,α均相同,但v,a不同;(3)运动描述仅需一个坐标。
三、匀变速转动公式匀变速转动------刚体绕定轴转动的角加速度为恒量。
刚体匀变速转动与质点匀变速直线运动公式对比匀变速转动匀变速直线运动v=v+at x=x0+v0t+at2212222v=v0+2a(x-x0)2ω=lim 匀四、角量与线量的关系v=rωaτ=rαan=rω24-2力矩转动定律转动惯量一、力矩设一质点系由n个质点组成,其中i质点受力为n-1j=1Fi外+∑fjin-1 Mi=ri?(Fi外+∑fji)现对i质点所受力的力矩:j=1对i求和,刚体所受力的力矩为n M=∑Mi=∑ri?Fi外ii=1(内力矩为零)二、刚体的转动定律组成刚体的各质点间无相对位移,所以刚体对给定轴的力矩为dω2 M=rma=(rm)α=J=Jα∑iz∑∑iiτiidtii即刚体定轴转动的转动定律:绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转动惯量成反比。
它在定轴转动中的地位相当于牛顿第二定律在质点力学中的地位。
刚体定轴转动定律

o
P
x
2.角位移
描写刚体位置变化的物理量。
角坐标的增量:
称为刚体的角位移
y v2 p v1
P
3.角速度
R
x
描写刚体转动快慢和方向
的物理量。
角速度 lim d
t0 t dt 方向:满足右手定则,沿刚体转动方向右旋大拇指指向。
角速度是矢量,但对于刚体定轴 转动角速度的方向只有两个,在表 示角速度时只用角速度的正负数值 就可表示角速度的方向,不必用矢 量表示。
11mb 2
例4、半径为 R 质量为 M 的 圆环,绕垂直于圆环平面的 质心轴转动,求转动惯量J。
解: J R2dm MR 2
M o R dm
例5、半径为 R 质量为 M 的圆盘,绕垂直于圆盘 平面的质心轴转动,求转动惯量 J。
解:分割圆盘为圆环
dm
M
R2
2
rdr
J r2dm
M
dr
R
0
t 细杆绕一端的转动惯量
J 1 ml 2 3
摩擦阻力
t
例8、质量为 m1 和m2 两个物体, 跨在定滑轮上 m2 放在光滑的桌 面上,滑轮半径为 R,质量为 M,求:m1 下落的加速度,和 绳子的张力 T1、T2。
解:m1 g T1 m1a (1)
T2 m2a
b)作圆周运动的质点的角动量 L= r m v
c)角动量是描述转动状态的物理量;
P L
d)质点的角动量又称为动量矩。
or
dL
d (r mv)
dr
mv
r
d (mv)
r
F
dt
刚体的定轴转动

2
平行
J 2 J 0 m0d
2
其中 J o
mo R
2
d LR
2 2
J J1 J 2
1 3
mLL
2
1 2
mo R mo (L R)
2.对薄平板刚体的正交轴定理 z
yi xi x z m 圆盘 R y ri Δ mi y
J z mi ri
2
mi ( x y )
所有点运动轨迹都相同。
转动: 刚体各质点都绕同一直线(轴)做圆周运动。
o
o
Δ
平动和转动——可以描述所 有质元(质点)的运动。 定轴转动:各质元均作圆周 运动,其圆心都在一条固定 不动的直线(转轴)上
Δ
二、定轴转动
z
各点的角量相同
转动平面
d
v
O
刚体 r θ 定轴 P
dt d
例2、求质量为m、半径为R、厚为l 的均匀圆盘 的转动惯量。轴与盘平面垂直并通过盘心。 解:取半径为r、宽为dr的薄圆环,
dm 2 rdr l
R
dJ r dm 2 lr dr
2
3
l
r
O
dr
J
dJ
m
R
2 lr dr
3
1 2
R 4 l
M dL
mi
M
dL
O
刚体 定轴
( mi ri )
2
M J
2
M ( mi ri )
2
d dt
F=ma
M J ——刚体的定轴转动定律
刚体的定轴转动

角速度是代数量,其正负表示刚体的转向。角速度为正值时表
明转角随时间而增加,刚体作逆时针转动;反之,转角随时间而减
小,刚体作顺时针转动。
角速度的单位是rad/s。工程上还常用每分钟转过的圈数表示刚
体转动的快慢,称为转速,用n表示,单位是r/min。角速度ω与转速
n之间的换算关系为
2n n
60 30
理论力学
刚体的运动\刚体的定轴转动
刚体的定轴转动
刚体运动时,若刚体内或其延伸部分有一直线始终保持不动, 刚体的这种运动称为定轴转动,简称转动。这条保持不动的直线称 为转轴。显然,刚体转动时,刚体内不在转轴上的各点都在垂直于 转轴的平面内作圆周运动,其圆心都在转轴上,圆的半径为该点到 转轴的垂直距离。
刚体的定轴转动在工程实际中随处可见,例如电动机转子的转 动,胶带轮、齿轮的转动等。
目录
刚体的运动\刚体的定轴转动
1.1 转动方程
设某刚体绕固定轴z转动,如图所示,为确定 该刚体在任一瞬时的位置,过转轴z作一固定平 面Ⅰ,再过转轴z作一与刚体固连、随刚体一起 转动的动平面Ⅱ。这样,该刚体在任一瞬时的位
置就可以用动平面Ⅱ与定平面Ⅰ的夹角确定, 角称为刚体的转角。当刚体转动时,转角是时
间t的单值连续函数,即 (t)
上式称为刚体的转动方程。若转动方程已知,则刚体在任一瞬时的 位置就确定了。因此,转动方程反映了刚体转动的规律。
转角是一个代数量,其正负号的规定如下:从转轴z的正端向 负端看去,逆时针转为正,反之为负。转角的单位是rad。
目录
刚体的运动\刚体的定轴转动
【例6.2】已知汽轮机在启动时主动轴的转动方程为t3,式中 的单位是rad,t的单位是s,求t=3s时该轴的角速度和角加速度。
刚体定轴转动定律公式

刚体定轴转动定律公式刚体定轴转动定律是描述刚体绕定轴做转动运动的数学公式。
本文将详细介绍刚体定轴转动定律的公式及相关参考内容。
1.刚体定轴转动定律公式1.1角位移公式刚体绕定轴做转动运动时,它的每一个质点都有一个角位移,角位移是一个标量,用Δθ表示。
角位移与刚体绕定轴转动的弧长有关,它们之间的关系可以用以下公式表示:Δθ = Δl / r其中,Δl表示弧长的长度,r表示刚体绕定轴的半径。
1.2角速度公式角速度是描述刚体绕定轴的旋转速度的物理量,用ω表示,角速度是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
角速度与角位移之间的关系可以用以下公式表示:ω = Δθ / Δt其中,Δt表示时间间隔。
1.3角加速度公式角加速度是描述刚体绕定轴转动加速度的物理量,用α表示,角加速度是一个矢量,它的方向也垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
角加速度与角速度之间的关系可以用以下公式表示:α = Δω / Δt其中,Δt表示时间间隔。
1.4力矩公式力矩是描述外力对刚体绕定轴转动影响的物理量,用M表示,力矩是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
力矩与角加速度之间的关系可以用以下公式表示:M = I α其中,I表示刚体绕定轴的转动惯量,α表示角加速度。
2.参考内容2.1转动惯量的定义转动惯量是描述刚体绕定轴转动惯性的物理量,用I表示,它反映了刚体对于绕定轴转动的惯性大小。
转动惯量的计算方法取决于刚体的形状和密度分布。
常见的刚体的转动惯量计算公式:(1)矩形薄板绕转轴的转动惯量Izz = 1/12m(a²+b²)其中,m表示薄板的质量,a和b表示薄板的长和宽。
(2)圆环绕轴的转动惯量Izz = mr²其中,m表示圆环的质量,r表示圆环的半径。
2.2角动量的定义角动量是描述刚体绕定轴转动动量的物理量,用L表示,它反映了刚体绕定轴转动的惯性大小和角速度大小。
刚体定轴转动(公式)

旋转木马通常配备安全带、护栏等安全措施,以确保乘客安全。
儿童游乐设施
旋转木马是儿童游乐场常见的设施之一,为儿童提供娱乐和刺激。
电风扇的转动
电风扇的工作原理
电风扇通过电机驱动叶片 旋转,产生风流,实现送 风效果。
风力调节
电风扇通常配备调速器, 可调节电机转速,从而调 节风力大小。
维护保养
定期清洗电风扇叶片和外 壳,检查电线和开关是否 正常,以确保安全和正常 使用。
04
刚体定轴转动的实例分析
匀速转动的飞轮
01
02
03
飞轮的转动
飞轮在匀速转动时,其角 速度保持恒定,不受外力 矩作用。
动能与势能转换
飞轮在转动过程中,动能 和势能之间相互转换,但 总能量保持不变。
平衡状态
在匀速转动状态下,飞轮 的合力矩为零,处于平衡 状态。
旋转木马的转动
旋转木马的转动原理
旋转木马通过电机驱动,使木马旋转,当木马旋转时,离心力作 用使木马保持稳定。
力矩平衡方程
合力矩=0,即所有作用在刚体上的力对旋转轴产生的力矩之和为零。
注意事项
在应用力矩平衡方程时,需要明确各个力的作用点和方向,并计算其对旋转轴产生的力矩。同时,需要注意力的 方向和力臂的长度对力矩的影响。
如何应用动量矩守恒定律?
动量矩守恒定律
在没有外力矩作用的情况下,刚体的动量矩是守恒的。
05
刚体定轴转动的常见问题与解决方案
如何计算转动惯量?
转动惯量计算公式
I=mr^2,其中m是刚体的质量,r是质心到旋转轴的距离。
注意事项
在计算转动惯量时,需要明确旋转轴的位置,并计算质心到旋转轴的距离。同时 ,需要考虑刚体的质量分布情况,因为不同位置的质量对转动惯量的贡献不同。
刚体定轴转动知识点总结

刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。
在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。
2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。
角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。
3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。
在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。
因此,可以根据力矩的大小和方向来分析刚体的转动运动。
4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。
转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。
转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。
5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。
转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。
6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。
通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。
稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。
7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。
比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0
圆盘所受阻力矩
M d M
d r d r 0
2
R
2 3
geR
3
20
也可以把圆盘分成许多圆环形质元, 每个质元的质量dm= dV= 2rdre, 所受到的阻力矩是rdmg 。
M r d m g g r 2 r d re 2 g e 0 r d r
质元1
d S r d r d
dV d Se r d r d e
阻力矩向下,与0方向相反!
如图,把圆盘分成许多如图的质元1, 每个质元的质量为dm, dm= dV= rddre,(e是盘的厚度) 所受到的阻力矩dM=rdmg。
M r d mg g r re d d r
2
m
πR
2
2πr d r
m,R
mR
2
18
例:如图所示,滑轮质量m,半径R ( I mR ). (注意:在中学里 2 一般滑轮质量略去不计)求:物体的加速度和绳的张力。
2
1
T1 T1
T 2 T 2
( m 2 ): m 2 g T 2 m 2 a (1 )
( m2 m1 )
又,绳与轮间无滑动,滑轮边缘的切向 加速度R,和物体的加速度相等.
a R ) (4
19
例: 一半径为R,质量为m匀质圆盘,平放在粗糙的水平桌 面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘面的轴旋转,问它经过多少时间才停 止转动? 0 解:由于摩擦力不是集中作用于 某一点,而是分布在整个圆盘与 桌子的接触面上,其力矩的计算 e d 要用积分法。 dr
d dt
I
d dt
2
质量是平动中惯性大小的量度。
转动惯量是转动中惯性大小的量度。
15
注意:转动惯量与质量有关,与运动速度无关。 质量一定时,与质量的分布有关,并且与转轴的位置有关。 转动惯量计算:
I
i
Δ m i ri ,
2
例: d
0 A
m
d d m
d 3
三个质点m组成一个正三角形 刚体结构。求IA、I0 。
9
2 转动定理 转动惯量(刚体动力学)
2.1力对转轴的力矩. (1)外力在垂直于转轴的平面内。
M
F
p 力F的作用点。 M r F
方向 ,大小 M rF sin
p
0
r
如果:方向 ,
M , (同向)加速转动。 M , ( 反向)减速 —阻力矩。 M 、 , 对转动无贡献。
ˆ L r P L x iˆ L y ˆ L z k j
讨论
P63
Lz :质点对z轴的角动量
ˆ M r F M x iˆ M y ˆ M z k j
Mz :质点对z轴的力矩
ˆ ˆ M r F ( x iˆ y ˆ z k ) ( F x iˆ F y ˆ F z k ) j j
对于匀变速转动,应用以角量表示的运动方程, 在t=50s 时刻 =0,代入方程 =0+ t 得
0
t 50 50 rad s
2
O
r
3.14 rad s
2
从开始制动到静止,飞轮的角位移 及转数N分别为
0 0t t 2 1 50 50 50 1250 rad 2 1250
例:一个有固定轴的刚体,受到两个力的作用。当这两个力的合力为零时, 它们对轴的合力矩也一定为零吗?举例说明之。 答: 并不是一定为零。 如汽车的方向盘可绕垂直于转盘且过盘中心的定轴转动。当驾驶员用 两手操纵方向盘时,就可在盘的左右两侧加上方向相反、大小相等的两个 力。对转盘而言,合外力为零,但这两个力的力矩大小相等,方向一致, 故合力矩不为零。
第3步,算出力对z轴的力矩. ˆ r F M zk
r F ( x iˆ y ˆ ) ( F x iˆ F y ˆ ) j j ˆ ( xF y yF x ) k
转轴
z
r轴
F
F 轴
转动平面
o
r
o
结论:z轴转动平面内的分量的运算就是对z轴的力矩
2 i i i
合外力矩M
合内力矩=0
I -转动惯量
M=I —转动定理
dω dt d θ dt
2 2
定轴转动定理(律)在转动问题中的地位 相当于平动时的牛顿第二定律
13
例:几个力同时作用在一个具有光滑固定转轴的刚体上, 讨论 如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. 答案:( D ) 参考解答:在应用转动定律M=I 时应注意M是合外力矩,是外力 力矩之和,而不是合外力的力矩。几个力的矢量和为零,有合外力 矩也为零或不为零的两种情况,所以定轴转动的刚体其转速可能不 变,也可能改变。
F1对转动无贡献,仅考虑 F2, M r F2 (有效力矩)。
11
2.2 转动定理
fi
O
Fi
i
取质点 P ( m i ) 受外力 Fi、内力 f i, 并设 Fi、 f i 都在转动平面内。
现对 P 质点 m i 写出法、切向 运动方程(按牛顿定律 ):
因为: d dt , d dt 。
d
P
参考方向
K
d
所以:刚体中任何其它质点都具有相同的,,
3
即(,, )三量具有普遍性。知一点 的(,, ),可知整个刚体的运动。 故用(,,)描写刚体的转动。
所以:定轴转动刚体中任何其它质点 都具有相同的,,
1 12
得: I 1 x d m x
l 2
m
d x
ml
2
l
(2) 转轴过顶端,与棒垂直
x
dx
0
x
l 2
取dx:
得: I 2 x d m
0
m l
x d x
2
1 3
ml
2
17
平行轴定理:
l 2
I I c md
质心 C
2
d 两平行轴之间的距离。
解: 2k 单位: s1 ), (rad v r 2πk (3i 4 j 5k ) 8πi 6πj
还可解行列式
i j
k
0 0 2 π 3 4 5
2
对刚体中所有 质点求和:
Fi ri sin i f i ri sin θ i (Δ m i ri )
2 i i i
合外力矩M
合内力矩=0
I -转动惯量
12
Fi ri sin i f i ri sin θ i Δ m i ri
2
Fi ri sin i f i ri sin θ i (Δ m i ri )
I1 1 12 ml 、 I 2
2
1 3
2
ml
2
2
1
1 I 2 I1 m l 2
例:均匀薄圆盘,转轴过中心与盘面垂直,求I0 。 取半径为r,宽为dr的圆环 r
0
dr
d m σ d s
m
r
I0
πR
R
2
2πr d r
1 2
r dm
2
0
r
10
(2) 外力不在垂直于转轴的平面内
P63 结论:z轴转动平面内的分量 的运算就是对z轴的力矩。
转轴
F1
F
F2
z
r轴
F
F 轴
0
r
P
转动平面
o
r
将F分解成 F1和F2。
F1与转轴平行, F 2 在转动平面内。
o
ˆ r F M zk
ˆ ˆ ( yF z zF y ) i ( zF x xF z ) ˆ ( xF y yF x ) k j
M z ( xF y yF x )
8
求力对z 轴的力矩Mz的(教材)简化步骤:
M z ( xF y yF x )
第1步,通过质点画z轴转动平面(过质点垂直转轴的平面,即 过质点的xy平面) 第2步,认定位矢和力在转动平面内的分量,
6 j 8 i
6
刚体运动学综合例题: 一飞轮转速n=1500r/min,受到制动后均匀 地减速,经t =50 s后静止。 (1)求角加速度 和飞轮从制动开始到静止所转过的转数N; 0 (2)求制动开始后t =25s 时飞轮的角速度 ; 解(1)初角速度为0 =21500/60=50 rad/s,方向如图
( m 1 ):
T1 m 1 g m 1 a ( 2 )
T1 T 2 ?
T1
对滑轮:取
方向为正方向 , 由 M Iβ
1 2 mR (3 )
2
a
m1
m1g
T2
m2
T 2 R T1 R
0,T 1 T 2 ,
a
m2g
( a,T 1 ,T 2 , ) 共 4 个未知数,3个方程。
2
(3)刚体的转动
刚体中各点都绕同一直线(转轴)作圆周运动. 转轴固定不动,称为定轴转动.