传感器原理复习提纲及详细知识点()

传感器原理复习提纲及详细知识点()
传感器原理复习提纲及详细知识点()

]

传感器原理复习提纲

第一章绪论

k

线性传感器非线性传感器

迟滞

正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。

产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷

$

所造成的,如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、

紧固件松动等。

线性度传感器的实际输入-输出曲线的线性程度。

4种典型特性曲线

非线性误差

%

100

max?

?

±

=

FS

L Y

L

γ

,ΔLmax——最大非线性绝对误差,Y FS——满量程输出值。

直线拟合线性化:出发点→获得最小的非线性误差(最小二乘法:与校准曲线的残差平方和最小。)

例用最小二乘法求拟合直线。

设拟合直线y=kx+b

残差△i=yi-(kxi+b)

分别对k和b求一阶导数,并令其=0,可求出b和k

{

将k和b代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax即为非线性误差。

重复性重复性是指传感器在输入量按同一方向作全量程连续多次变化时,

所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准

差σ计算,也可用正反行程中最大重复差值计算,即

~

%

100

2

max?

?

=

FS

H Y

H

γ

最小

=

?

n

i

i

1

2

%

100

)3

~

2(

?

±

=

FS

R Y

σ

γ%

100

2

max?

?

±

=

FS

R Y

R

γ

6.[

误差部分

t

R R T ?=?αα0以消除。

2)$

3)引入修正值法

知道修正值后,将测量结果的指示值加上修正值,就可得到被测量的实际值。智能传感器更容易采用该方法。

4)零位式测量法

5)

6)

这种方法是标准量与被测量相比较的测量方法,其优点是测量误差主要取决于参加比较的标准器具的误差,而标准器具的误差可以做的很小。这种方法要求检测系统有足够的灵敏度,如自动平衡显示仪表。

5)补偿法

6)对照法

13. 粗大误差的判定及处理。 判别粗大误差最常用的统计判别法:

如果对被测量进行多次重复等精度测量的测量数据为x1,x2,…,xd,…,xn 其标准差为σ,如果其中某一项残差vd 大于三倍标准差,即 则认为vd 为粗大误差,与其对应的测量数据xd 是坏值,应从测量列测量数据中删除。

第二章

第三章

电阻式传感器原理与应用

1. 电阻式传感器的基本原理。

电阻式传感器是将被测量的变化转化为传感器电阻值的变化,再经过测量电路实现测量结果的输出。 2.

·

3. 金属的应变效应:金属丝(导体)在外界力作用下产生机械变形(伸长或缩短)时,其电阻值相应发生变化 敏感栅是由多条直线和圆弧部分组成

直线段:沿轴向拉应变εx ,电阻↑

圆弧段:沿轴向压应度εy ,电阻↓ K ↓(箔式应变片)

5. !

产生原因 (1)敏感栅电阻值 (2)线膨胀系数不匹配 3d

V σ

>

被测量

电阻变化 t

K R R s g T ?-=?)(00βββ000()T T T g s R R R R T R K T

αβαββ?=?+?=?+-?

R R 由于温度变化而引起的总电阻变化为

相应的虚假应变输出为

补偿方法

|

自补偿法

单丝自补偿法(选择式自补偿) 组合式自补偿法(双金属敏感栅自补偿)

实现温度补偿的条件为

当被测试件的线膨胀系数βg已知时,通过选择敏

感栅材料,使成立。

优点:容易加工,成本低,

)

缺点:只适用特定试件材料,温度补偿范围也较窄。

敏感栅丝由两种不同温度系数的金属

丝串接组成选用两者具有不同符号的

电阻温度系数,调整R1和R2的比例,

使温度变化时产生的电阻变化满足

t

2

t

1

)

(

)

(R

R?

?-

=

)

(

)

(

/

/

1

1

1

2

2

2

1

1

2

2

2

1

β

β

α

β

β

α

-

+

-

+

-

=

?

?

-

=

g

g

t

t

K

K

R

R

R

R

R

R

通过调节两种敏感栅的长度来控制应变片的温度

自补偿,可达±0.45μm/℃的高精度

线路补偿法

电桥补偿法

0143

()

B

U A R R R R

=-

01143

[()()]0

t B Bt

U A R R R R R R

=+?-+?=

011143

[()()]0

t B Bt

U A R R R R R R R

=+?+?-+?=

11

R R Kε

?=

优点:简单、方便,在常温下补偿效果较好

缺点:在温度变化梯度较大的条件下,很难做到工作片与补偿片处于

温度完全一致的情况,因而影响补偿效果。

热敏电阻

7.应变电桥产生非线性的原因及消减非线性误差的措施。

原因因为电桥的输出无论是输出电压还是电流,实际上都与ΔRi/Ri呈非线性关系。

T

K

T

K

R

R

s

g

T

T

?

-

+

?

=

?

=)

(

)

(

β

α

ε

)

(

=

?

-

+

?

=t

K

t

s

g

t

β

β

α

ε

)

(

0s

g

β

α-

-

=

\

措施

采用半桥差动电桥

:

R1=R2=R3=R4=R ,ΔR1=ΔR2=ΔR

输出电压为:

严格的线性关系

电桥灵敏度比单臂时提高一倍 温度补偿作用

全桥差动电路

]

[

44333322111

10R R R R R R R R R R R R U U ?++?-?--?-+?+?+=

输出电压为: 消除非线性误差; 具有温度补偿作用;

提高电压灵敏度(为单片的4倍)。

8. 单臂电桥,半桥差动电桥和全桥差动电桥测量电路及输出电压的推导,得出结论。(计算) 单臂电桥

电桥平衡时,检流计所在支路电流为零,则有:

~

(1)流过R 1和R 4的电流相同(记作I 1),流过R 2和R 3的电流相同(记作I 2); (2)B ,D 两点电位相等,即U B =U D 。因而有 I 1R 1=I 2R 3

9. 半导体的压阻效应。 定义 单晶半导体材料在沿某一轴向受外力作用时,其电阻率发生很大变化的现象

10. 金属应变片与半导体应变片在工作机理上有何异同? .

金属应变片

半导体应变片

异 基于应变效应 基于压阻效应 同

第四章 】 第五章

第六章

变电抗式传感器原理与应用

电感式传感器

1. 有哪三种自感式传感器?变气隙式自感传感器、变面积式自感传感器、螺线管式自感传感器

2. 自感式传感器的测量电路(看图分析测量电路)。 调幅电路 相敏检波电路 谐振式调幅电路

衔铁偏离中间位置而使Z1=Z+ΔZ 增

加,则Z2=Z-ΔZ 减少。

当电源u 上端为正,下端为负时,R1上的压降大于R2上的压降;电压表输出上端为负,下端为正。

当电源u 上端为负,下端为正时,R2上压降则大于R1上的压降,电压表

工作原理:传感器电感L 与电容C 、 变压器原边串联在一起, 接入交流电源,变压器副边将有电压输出,输出电压的频率与电源频率相同,而幅值随着电感L 而变化。

R R U U

?20=]

[

4

3322111

10R R R R R R R R R U U +--+++=???R

R

U

U ?=0

电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交流变压器次级线圈的1/2阻抗。

开路时,桥路输出电压:

1

21

2

212221Z Z Z Z U U U Z Z Z U o

+-?=-+= 当传感器的衔铁处于中间位置,即Z1=Z2=Z 时有, 电桥平衡。 当传感器衔铁上移时, Z1=Z+ΔZ ,Z2=Z-ΔZ

Z

Z U Z Z Z Z Z Z Z Z U Z Z Z Z U U o ??

-=?++?-?+-?-?

+-?=2)()()()(221212 =当传感器衔铁下移时, %

Z1=Z-ΔZ ,Z2=Z+ΔZ

Z Z U U o ??

=2

由于U 是交流电压,输出指示无法判

断位移方向,后续电路中配置相敏检波电路来解决。

输出上端为正,下端为负。

非相敏整流和相敏整流电路输出电压比较 ~ (a) 非相敏整流电路;(b ) 相敏整流电路 使用相敏整流,输出电压U0不仅能反映衔铁位移的大小和方向,而且还消除零点残余电压的影响。

谐振式调幅电路,L 0:谐振点的电感值

特点:敏感度高,非线性差

产生原因 (1)由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的幅值和相位不同,调整

磁芯位置时,也不能达到幅值和相位同时相同。 》

(2)由于铁芯的B-H 特性的非线性,产生高次谐波不同,不能互相抵消。 (3)励磁电压波形中含有高次谐波。

危害

(1)使传感器输出特性在零点附近的范围内不灵敏,限制着分辨力的提高。

(2)零点残余电压太大,将使线性度变坏,灵敏度下降,甚至会使放大器饱和,堵塞有用信号通过,致使仪器不再反映被测量的变化。

减小措施

(1)提高框架和线圈的对称性,特别是两个二次线圈对称。 $

(2)采用适当的测量电路,一般可采用在放大电路前加相敏整流器。

0=o U

(3)在电路上进行补偿,使零点残余电压最小,接近于零。线路补偿主要有:加串联电阻,加并联电容,加反馈电阻或反馈电容等。

5. 差动整流电路和相敏检波电路原理及其作用。(看图进行电路的推导和说明) 差动整流电路 相敏检波电路

差动整流电路是把差动变压器的两个次级输出电压分别整流, 然后将整流的电压或电流的差值作为输出。

(

全波差动整流电路U 0=U dc +U gh =U gh -U cd 电路是以两个桥路整流后的直流电压之差作为输出的,所以称为差动整流电路。它不但可以反映位移的大小(电压的幅值),还可以反映位移的方向。

图中调制电压er 和es 同频,经过移相器使er 和es 保持同相或反相,且满足er>>es ,调节电位器R 可调平衡。图中电阻R 1=R 2=R 0,电容C 1=C 2=C 0,输出电压为U CD 。

电路工作原理:

(1)当差动变压器铁芯在中间位置时,es=0,只有er 起作用。设此时er 为正半周,即A 为“+”,B 为“-”,则D1、D2导通,D3、D4截止,流过R1、R2上的电流分别为i1,、i2,其电压降UCB 及UDB 大小相等方向相反,故输出电压UCD=0。当er 为负半周时,A 为“-”,

B 为“+”,此时D3、D4导通,D1、D2截止,流过,

R1、R2的电流分别为i3、i4,其电压降UBC 与UBD 大小相等方向相反,故输出电压UCD=0。

(2)若铁芯上移es 和er 同位相,由于es>>er ,故er 正半周时D1、D2仍导通,D3、D4截止,但D1回路内总电势为er+es/2,而D2回路为er -es/2,故回路电流i1>i2,输出电压UCD=R0(i1-i2)>0。当er 为负半周时,D3、D4导通、D1、D2截止,此时D3同路内总电势为er -es/2,D4回路内总电势为er+es/2,所以回路电流i4>i3,故输出电压UCD =R0(i4-i3)>0因此,铁芯上移时,输出电压UCD>0。 (3)当铁芯下移时,es 和er 相位相反。同理可得UCD<0。

由此可见,相敏检波电路能判别铁芯移动方向,而且,移动位移的大小决定输出电压UCD 的高低。 差动式自感传感器

# 差动变压器

结构

三组线圈 两组线圈 工作原理 将被测量的变化转化为电感线圈的电感值把被测量的变化转换为传感器互感的变化

[

电压输出型

全波整流电路

变化传感器本身是互感系数可变的变压器

相同点

工作原理都是建立在电磁感应的基础上,都可以分为变气隙式、变面积式和螺旋式等

定义根据法拉第电磁感应定律,块状金属导体置于变化的磁场中或在磁场中切割磁力线运动时,通过导体的磁通将发生变化,产生感应电动势,该电动势在导体表面形成电流并自行

闭合,状似水中的涡流,称为电涡流。

高频反射式涡流传感器&

低频透射式涡流传感器

基本结构

工作原理一个通以交变电流的传感器线圈,由于电流的存在,

线圈周围就产生一个交变磁场H1。若被测导体置于该

磁场范围内,导体内便产生电涡流,也将产生一个新

磁场H2 , H2与H1方向相反,力图削弱原磁场H1,从

而导致传感器线圈的等效阻抗发生变化。

感应电动势E的大小间接反映了

M的厚度t

%

9.电涡流传感器的应用。

被测参数变换量

特征

位移、厚度、振动x"(1)非接触测量,连续测量

(2)受剩磁的影响。

表面温度、电解质浓度

材质判别、速度(温度)

ρ

(1)非接触测量,连续测量;

(2)对温度变化进行补偿

>

应力、硬度

μ(1)非接触测量,连续测量;

(2)受剩磁和材质影响

探伤μ

ρ,

,x

可以定量测量

10.$

11.电感传感器可以测量哪些量。位移、振动、压力、应变、流量、比重

电容式传感器

平板电容桶装电容

2

d ?d

电容量与极板间距离的关系

b

?x

a

d

x A

R

r

x ?l x

-?(a )平板状

(b )筒状

电桥电路

2221122120

U Z Z Z Z U Z Z U Z U ?+-=-+=

若采用变极距式电容传感器

输出电压与位移呈线性关系 。 }

运算放大器电路

最大特点:能克服变极距型电容传感器的非线性 Cx 是传感器电容C 是固定电容u0是输出电压信号

,( )/x C S d ε= 0 uC

u d

S ε=-

输出电压Uo 与极板间距离d 成线性关系

结论:从原理上保证了变极距型电容式传感器的线性。假设放大器开环放大倍数A=∞,输入阻抗Zi=∞,因此仍然存在一定的非线性误差,但一般A 和Zi 足够大,所以这种误差很小。

脉宽调制电路

《 利用对传感器电容的充放电使电路输出脉冲的宽度随传感器电容量变化而变化 通过低通滤波器就能得到对应被测量变化的直流信号

当差动电容不相等时,uAB 电压经低通滤波器滤波后,Uo 输出

r

ε221210U C C C C U ?+-=2

0U d d U ??=d d A

C d d A C ?+=

?-=εε21,U 2

U

2U C 1

C 2o

U +

-+-+-

u j C j C u C

C u x x

011=-=-/()/()ωω2

12

11212111T T T

T U T T T U T U U U U B A o +-=+-=

-=

式中:U1 —— 触发器输出高电平;

T1、T2 —— C1、C2充电至Ur 时所需时间。

r

U U U ln

C R T -=11

111,

r U U U ln C R T -=11222, 1

212

10U C C C C U +-=

"

结论:输出的直流电压与传感器两电容差值成正比

设电容C1和C2的极间距离和面积分别为d1、d2和S1、S2

差动变极距型

21

021

E

d d U U d d -=

+,差动变面积型E U S S S S U 12210+-=

特性:差动脉冲调宽电路能适用于任何差动式电容式传感器,并具有理论上的线性特性

调频电路

)

(21

2101C C C C L LC

f i ?±++=

=

ππ

当被测信号为零时,△C=0,振荡器有一个固有振荡频率f0,

)

(21

010C C C L f i ++=

π

当被测信号不为零时,△c ≠0,此时频率为

f

f C C C C L f i ?±=?±++=

001)

(21

π

有较高的灵敏度,可测至0.01μm 级位移变化量,易于用数字仪器测量,并与计算机通讯,抗干扰强

双T 型电桥电路

电源为正半周,D1短路,D2开路,,电容C1被充电 影响不予考虑,电容C2的电压,初始值为UE

]

传感器没有输入时,C1=C2,R1=R2=R , 则正、负半周对称

00=U

"

双T 型电桥电路

传感器有输入时

如C1↑>C2,00>U

如果C1 < C2↑,00

^

电路的优点:简单,不须附加相敏检波电路。

正半周:C1充电电量增多,C2放电情况不变。输出正电压情况不变。

正半周:C1充电电量不变,C2放电情况增加。输出正电压情况变大。

负半周:C2充电情况不变,C1放电电流增大 。输出负电压变小。

#

负半周:C2充电电量增加,C1放电电流不变。输出负电压情况不变。

面积变化型

角位移或较大的线位移 介质变化型 物位测量和各种介质的温度、密度、湿度的测定 | 极距变化型

微小的极距变化 第七章 光电式传感器

内光电效应:在光线作用下能使物体电阻率改变的现象,如光敏电阻等。 外光电效应 光电导效应 [ 光生伏特效应 在光线作用下能使物体产生一定方向的电动势的现象。如光电池、光敏晶体管等。

在光线作用下使电子逸出物体表面

的现象。如光电管、光电倍增管。

&

在入射光极为微弱时,光电管能产生的光电流就很小, 光电倍增管:放大光电流 光电阴极→光电倍增极→阳极 倍增极上涂有锑化铯或银镁合金等光敏材料,并且电位逐级升高。

阴极发射的光电子以高速射到倍增极上,引起二次电子发

射。

二次电子发射系数 σ = 二次发射电子数/入射电子数

若倍增极有n ,则倍增率为σn

在光的照射下,光电子从阴极表面逸出,被阳极吸引,

在光电管内形成电子流,在外部电路就产生了电流。若

光强增大,光电流就变大,从而实现光电转换。

光敏电阻 当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小

当有光照时,光敏电阻值(亮电阻)急剧减少,电流迅速增加

#

光敏二极管

结构与一般二极管相似,装在透明玻璃

外壳中。在电路中一般是处于反向工作状态的。

光敏晶体管

与一般晶体管很相似,具有两个PN 结。把光信号转换为电信号同时,又将信号电流加以放大。

光电池

有光线作用下实质上就是电源,电路中有了这种器件就不再需要外加电源。

直接将光能转换为电能的光电器件,是一个大面积的pn 结。当光照射到pn 结上时,便在pn 结的两端产生电动势(p 区为正,n 区为负) 。

用导线将pn 结两端用导线连接起来,就有电流流过,电流的方向由P 区流经外电路至n 区。若将电路断开,就可以测出光生电动势。

,

第八章 电动势式传感器原理与应用

电磁测量:测量恒定的或交变的磁感应强度、有功功率、无功功率、相位、电能等参数;自动检测系统:多用于位移、压力的测量。

不等位电阻 r 0

6. 什么是正压电效应和逆压电效应?

正压电效应

对某些电介质,沿着一定方向施力而使它变形时,在它的两个表面上产生符号相反的电荷, 当外力去掉后,又重新恢复到不带电状态。 当作用力方向改变时,电荷的极性也随之改变。

;

逆压电效应(电致伸缩 )

当在电介质极化方向施加交流电压时,这些电介质会产生机械振动,即压电片在电极方向上产生伸缩变形。例子:蜂鸣器

7. 常用的压电材料有哪些?比较几种常用压电材料的优缺点,说出各自适用于什么场合? 石英晶体

X 方向受压力Y 方向受压力

沿x 方向施力fx ,在与x 垂直的平面上将产生电荷。 ,与尺寸无关

沿y 方向施力fy ,在与x 轴垂直的平面上产生电荷

y y y f b a

d f b a d q 1112

-==,

与尺寸有关 式中:d11为x 方向受力的压电系数,d12为y 轴方向受力的压电系数,有d12=—d11;

a 、

b ——晶体切片的长度和厚度。

x x f d q 11=

压电陶瓷

当作用力沿极化方向时,在极化面上出现电荷:

f

d

q

33

=

,d33—压电陶瓷的纵向压电常数。

压电陶瓷是人工制造的多晶压电材料,

它具有电畴结构。电畴是分子自发形成

的区域,它有一定的极化方向,从而存

在一定的电场。在没有外电场作用时,

各个电畴在晶体上杂乱分布,它们的极

化效应被相互抵消,因此原始的压电陶

瓷内极化强度为零,见图(a)。

%

高分子压电材料

8.石英晶体和压电陶瓷的压电效应原理。

9.为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式电压等效电路

等效为一个电荷源Q与一个电容Ca并联的电路

电荷等效电路

等效成一个电源U = Q/Ca 和一个电容Ca的串联电路。

电压放大器(阻抗变换器)

Ca:传感器的电容Ra:传感器的漏电阻Cc:连接电缆的等效电容

Ri:放大器的输入电阻Ci:输入电容

i

a

i

a

R

R

R

R

R

+

=

i

c

a

C

C

C

C+

+

=

RC

j

R

i

U

+

=

1

10./

11.压电式传感器的等效电路。

12.

在一定条件下,传感器的灵敏度与电缆长度无关。

1、电荷放大器的输出电压只与输入电荷量和反馈电容有关,而与放大器的放大系数的变化或电缆电容等均无关系。

2、只要保持反馈电容的数值不变,就可得到与电荷量Q变化成线形关系的输出电压。

3、反馈电容Cf小,输出就大,要达到一定的输出灵敏度要求,必须选择适当的反馈电容。

4、输出电压与电缆电容无关条件:(1+K)C f>>(Ca+Cc+Ci)

]

第十章温度检测

1.接触式测温方法的优点和缺点。(简答)

优点

直观、可靠,测量仪表也比较简单。

缺点由于敏感元件必须与被测对象接触,在接触过程中就可能破坏被测对象的温度场分布,从而造成测量误差。

有的测温元件不能和被测对象充分接触,不能达到充分的热平衡,使测温元件和被测对象温度不一致,也会带来误差。

*

在接触过程中,介质腐蚀性,高温时对测温元件的影响,影响测温元件的可靠性和工作寿命。

华氏温标、摄氏温标

材料温度系数α(1/℃)比电阻ρ(.mm2/m)温度范围(℃),

特性

√铂 3.92×10-3 0.0981

-200 ~ +650

近线性

√铜~

4.25×10-3

0.0170 -50 ~ +150 线性

6.50×10-30.0910 [

-50 ~ +150

非线性

镍 6.60×10-3 0.1210 -50 ~ +100

非线性

热敏电阻热电阻

优点①具有电阻值和电阻温度系数大(4~9倍)、灵敏度高;②体积小、结构简单;

③热惯性小、响应速度快;④使用方便;⑤寿命长;⑥易于实现远距离测量。

灵敏度低

缺点①互换性较差,同一型号的产品特性参数有较大区别;②稳定性较差;③非线性

严重,不能在高温下使用。

稳定性好,线性关系好

√负温度系数热敏电阻NTC 热敏电阻在不同值时的电阻-温度特性,温度越高,阻值越小,且有明显的非线性。NTC热敏电阻具有很高的负电阻温度系数,特别适用于:-100~+300℃之间测温。应用较多。NTC的温度系数

.

)1(const

T≠

α

↓T

)2(

低温段比高温段灵敏

2

1R R =若 灵敏度比金属热电阻高(10倍)

正温度系数热敏电阻PTC 热敏电阻的阻值随温度升高而增大,且有斜率最大的区域,当温度超过某一数值时,其电阻值朝正的方向快速变化。可以用作各种电器设备的过热保护。

临界温度系数热敏电阻CRT

也具有负温度系数,但在某个温度范围内电阻值急剧下降,曲线斜率在此区段特别陡,灵敏度极高。主要用作温度开关。

平衡:)()(421r R R r R R t +=+

142R R R R t =

r :电桥电源;2r :相邻臂 导线电阻 r 对测量无影响。

特点:用于工业测量,精度较好。

管道流量测量、热敏电阻体温表、CPU 的温度测量、电热水器的温度控制9. 什么是热电效应?热电偶测温回路的热电动势由哪两部分组成?由同一种导体组成的闭合回

含义 热电偶、热电阻和热敏电阻的结构及测温范围 热电动势 来源:接触电动势和温差电动势

产生热电势的条件: ①热电偶不同电极材料 ②两端温度不同

10. 热电偶的结构形式有哪几种?

普通型热电偶

特殊热电偶

铠装型热电偶

薄膜热电偶

中间导体定律 在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度相同,则对回路的总热电

势没有影响。

连接导体定律 在热电偶回路中,如果热电极A 和B 分别于连接导体A ’和B ’相接,其接点温度

分别为T 、Tn 和T0。则回路的总热电动势等于:

)

,(),(),,(00T T E T T E T T T E n B A n AB n B A AB ''''+=

当A 与A ’,B 与B ’材料分别相同时

)

,(),(),,(00T T E T T E T T T E n AB n AB n AB +=

中间温度定律

均质导体定律

由两种均质导体组成的热电偶,其热电动势的大小只与两材料及两接点温度有关,与热电偶的大

小尺寸、形状及沿电极各处的温度分布无关。即热电偶必须由两种不同性质的均质材料构成。

补偿导线是在一定温度范围内(0~100℃)具有与所匹配热电偶热电动势相同标称值的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。

1

142)(R r

R r R R R t -+=∴

传感器技术原理试题库(包含答案)

一、填空题(每题3分) 1、传感器静态性是指 传感器在被测量的各个值处于稳定状态时 ,输出量和 输入量之间的关系称为传感器的静态特性。 2、静态特性指标其中的线性度的定义是指 。 3、静态特性指标其中的灵敏度的定义是指 。 4、静态特性指标其中的精度等级的定义式是 传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数 ,即A =ΔA/Y FS *100%。 5、最小检测量和分辨力的表达式是 。 6、我们把 叫传感器的迟滞。 7、传感器是重复性的物理含意是 。 8、传感器是零点漂移是指 。 9、传感器是温度漂移是指 。 10、 传感器对随时间变化的输入量的响应特性 叫传感器动态性。 11、动态特性中对一阶传感器主要技术指标有 时间常数 。 12、动态特性中对二阶传感器主要技术指标有 固有频率 、阻尼比。 13、动态特性中对二阶传感器主要技术指标有固有频率、 阻尼比。 14、传感器确定拟合直线有 切线法、端基法和最小二乘法 3种方法。 15、传感器确定拟合直线切线法是将 过实验曲线上的初始点的切线作为按惯例直线的方法 。 16、传感器确定拟合直线端基法是将 把传感器校准数据的零点输出的平均值a 0和滿量程输出的平均值b 0连成直线a 0b 0作为传感器特性的拟合直线 。 17、传感器确定拟合直线最小二乘法是 用最小二乘法确定拟合直线的截距和斜率从而确定拟全直线方程的方法 。 18、确定一阶传感器输入信号频率范围的方法是由一阶传感器频率传递函数 ω(jω)=K/(1+jωτ),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωτ)2)1/2,从而确定ω,进而求出f=ω/(2π)。 Y K X ?=?CN M K =max max 100%100%H H F S F S H H Y Y δδ????=±?=±?2或23100%K F S Y δδδ?-=±????0F S 100% Y Y 零漂=max 100%F S T Y ???? max *100%L F S Y Y σ??=±

传感器原理及种类介绍

传感器原理及种类介绍 ――年度教育训练 一、传感器的基础知识 1、传感器的定义 国家标准GB7665-87 对传感器下的定义是:“ 能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 2.1、按传感器的被测物理量分类,可分为位移传感器、压力传感器、速度传感器、温度传感器等传感器。 2.2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。 2.3、按传感器输出信号的性质分类,可分为:输出为开关量(“ 1” 和“ 0” 或“ 开” 和“ 关” )的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

二、传感器的原理 1、应变式电阻传感器 电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是应变式电阻传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及应用期末考试试卷(含答案)

传感器原理及应用 一、单项选择题(每题2分.共40分) 1、热电偶的最基本组成部分是()。 A、热电极 B、保护管 C、绝缘管 D、接线盒 2、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括( )。 A、补偿导线法 B、电桥补偿法 C、冷端恒温法 D、差动放大法 3、热电偶测量温度时( )。 A、需加正向电压 B、需加反向电压 C、加正向、反向电压都可以 D、不需加电压 4、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪 个基本定律( )。 A、中间导体定律 B、中间温度定律 C、标准电极定律 D、均质导体定律 5、要形成测温热电偶的下列哪个条件可以不要()。 A、必须使用两种不同的金属材料; B、热电偶的两端温度必须不同; C、热电偶的冷端温度一定要是零; D、热电偶的冷端温度没有固定要求。 6、下列关于测温传感器的选择中合适的是()。 A、要想快速测温,应该选用利用PN结形成的集成温度传感器; B、要想快速测温,应该选用热电偶温度传感器; C、要想快速测温,应该选用热电阻式温度传感器; D、没有固定要求。 7、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是( )。 A、接线方便 B、减小引线电阻变化产生的测量误差 C、减小桥路中其他电阻对热电阻的影响 D、减小桥路中电源对热电阻的影响 8、在分析热电偶直接插入热水中测温过程中,我们得出一阶传感器的实例,其中用到了()。 A、动量守恒; B、能量守恒; C、机械能守恒; D、电荷量守恒; 9、下列光电器件中,基于光电导效应工作的是( )。 A、光电管 B、光敏电阻 C、光电倍增管 D、光电池

传感器原理与应用复习题及答案【精选】

《传感器原理与应用》试题及答案 一、名词解释 1.传感器2.传感器的线性度3.传感器的灵敏度4.传感器的迟滞5.绝对误差6.系统误差7.弹性滞后8.弹性后效9.应变效应10.压电效应11.霍尔效应12.热电效应13.光电效应14.莫尔条纹15.细分 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.按输出量形类可分为、、。 4.误差按出现的规律分、、。 5.对传感器进行动态的主要目的是检测传感器的动态性能指标。 6.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 7.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 8.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 9.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 10.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。 11.电容式压力传感器是变型的。 12.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL为Pa-1。 13.图像处理过程中直接检测图像灰度变化点的处理方法称为。 14.热敏电阻常数B大于零的是温度系数的热敏电阻。 15.若测量系统无接地点时,屏蔽导体应连接到信号源的。 16.目前应用于压电式传感器中的压电材料通常有、、。 17.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型 18.热敏电阻按其对温度的不同反应可分为三类、、。 19.光电效应根据产生结果的不同,通常可分为、、三种类型。 20.传感器的灵敏度是指稳态标准条件下,输出与输入 的比值。对线性传感器来说,其灵敏度是。 21.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。 22.采用热电阻作为测量温度的元件是将的测量转换为的测量。23.单线圈螺线管式电感传感器主要由线圈、和可沿线圈轴向

各类传感器介绍

目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。 一、压力传感器 压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、绝压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于 0.05% 直流稳压电源: 精度优于0.05%。 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要) 压力传感器使用注意事项 压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,压力传感器及压力变送器周围应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,简单介绍一些常用传感器原理及其应用:

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理及应用试题库(已做)

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 3.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器。 4.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 5.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性度。 6.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 8.应变式传感器一般是由电阻应变片和测量电路两部分组成。 9.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 11.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 =输出量的变化值/输入量的变化12.传感器静态特性的灵敏度用公式表示为:k (x) 值=△y/△x 13.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变; 蠕变小;机械滞后小;耐疲劳性好;具有足够的稳定性能;对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。14.根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类: 物理传感器,化学传感器,生物传感器。

最新传感器试题及答案

一、填空题(20分) 1.传感器由(敏感元件,转换元件,基本转换电路)三部分组成。 2.在选购线性仪表时,必须考虑应尽量使选购的仪表量程为欲测量的(1.5 ) 倍左右为宜。 3.灵敏度的物理意义是(达到稳定工作状态时输出变化量与引起此变化的输入变化量之比。) 4. 精确度是指(测量结果中各种误差的综合,表示测量结果与被测量的真值之间的一致程度。) 5.为了测得比栅距W更小的位移量,光栅传感器要采用(细分)技术。 6.热电阻主要是利用电阻随温度升高而(增大)这一特性来测量温度的。 7.传感器静态特性主要有(线性度,迟滞,重复性,灵敏度)性能指标来描述。 8.电容传感器有三种基本类型,即(变极距型电容传感器、变面积型电容传感器, 变介电常数型电容传感器) 型。 9.压电材料在使用中一般是两片以上在,以电荷作为输出的地方一般是把压电元件(并联)起来,而当以电压作为输出的时候则一般是把压电元件(串联)起来 10.压电式传感器的工作原理是:某些物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为(顺压电效应)。相反,某些物质在外界磁场的作用下会产生机械变形,这种现象称为(逆压电效应)。 11. 压力传感器有三种基本类型,即(电容式,电感式,霍尔式)型. 12.抑制干扰的基本原则有(消除干扰源,远离干扰源,防止干扰窜入). 二、选择题(30分,每题3分)1、下列( )不能用做加速度检测传感器。D.热电偶 2、将超声波(机械振动波)转换成电信号是利用压电材料的( ).C.压电效应 3、下列被测物理量适合于使用红外传感器进行测量的是(). C.温度 4、属于传感器动态特性指标的是().D.固有频率 5、对压电式加速度传感器,希望其固有频率( ).C.尽量高些 6、信号传输过程中,产生干扰的原因是( )C.干扰的耦合通道 7、在以下几种传感器当中( )属于自发电型传感器.C、热电偶 8、莫尔条纹光栅传感器的输出是( ).A.数字脉冲式 9、半导体应变片具有( )等优点.A.灵敏度高 10、将电阻应变片贴在( )上,就可以分别做成测力、位移、加速度等参数的传感器. C.弹性元件 11、半导体热敏电阻率随着温度上升,电阻率( ).B.迅速下降 12、在热电偶测温回路中经常使用补偿导线的最主要的目的是( ). C、将热电偶冷端延长到远离高温区的地方 13、在以下几种传感器当中( ABD 随便选一个)不属于自发电型传感器. A、电容式 B、电阻式 C、热电偶 D、电感式 14、( )的数值越大,热电偶的输出热电势就越大.D、热端和冷端的温差 15、热电阻测量转换电路采用三线制是为了( B、减小引线电阻的影响). 16、下列( )不能用做加速度检测传感器.B.压电式 三、简答题(30分) 1.传感器的定义和组成框图?画出自动控制系统原理框图并指明传感器在系统中的位置和

(完整word版)传感器原理及应用复习题.docx

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3.对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂 比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡 流传感器的应用场合中必须存在金属材料。 5.霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温 区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得 到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数 系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其 范围是300~400℃,要求实现高精度测量,应该在铂铑- 铂热电偶、铂电阻和热 敏电阻中选择铂电阻。 8.一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的 20 位码盘,其外圈分别间隔 为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器 是把光纤作为敏感元件。光纤的 NA 值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏 电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可 用光照特性表征,它反映光电器件的输入光量与输出光电流(电压 )之间 的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12. 传感器一般由敏感元件 _ 、转换元件 ___ 、测量电路及辅助电 源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化 量的比值。对线性传感器来说,其灵敏度是一常数。

《传感器原理》试卷及答案

第 1 页 共 3 页 铜陵学院继续教育学院 2009-2010学年第二学期 《传感器原理与应用》考试试卷 (适用班级:08级电气工程专升本) 一、 填空题(每小题2分,共20分): 1、传感器通常由 、 和 三部分组成。 2、根据测量误差出现的规律和产生的原因不同,误差可分为 、 和 三种类型。 3、电阻应变片由 、 、 和引线等部分组成。 4、单线圈变隙式电感传感器的结构主要由 、 、 三部分组成。 5、按照电涡流在导体内的贯穿情况,电涡流式传感器可分为 式和 式两类。 6、对于电容式传感器,改变 、 和 中任意一个参数都可以使电容量发生变化。 7、霍尔元件的零位误差主要由 、 、 和自激场零电势等原因产生。 8、热电偶测温回路的热电势由 和 两部分组成。 9、按测温转换原理的不同,接触式测温方法可分为 式、 式和 式等多种形式。 10、光栅式传感器一般由 、 和 组成。 二、简答题(每小题6分,共24分): 1、什么叫迟滞? 2、螺旋管式差动变压器由哪几部分组成?各部分的作用是什么? 3、什么是霍尔效应? 4、热电偶的中间温度定律的内容是什么? 三、 论述题(每小题10分,共20分): 1、下图是单管液柱式压力计示意图,已知大容器直径为 D ,通入被测压力1p ,玻 璃管直径为d ,通入大气压2p ,且D 远大于d ,试论述该压力计测量被测压力的原理。 姓 班级 学号 ―――――――――装――――――――――订―――――――――线―――――――――――

2、利用光电靶测量弹丸飞行速度的结构原理如图所示,试论述其工作原理。 光源 光束 光电元件 测时仪 四、计算题(每小题9分,共36分): 1、已知被测电压范围为15~25V,现有(满量程)50V、0.5级和200V、0.1级两只电压表,应选用哪只电压表来进行测量? 2、有一金属应变片,其灵敏系数K=2.0,初始电阻值为120Ω,将应变片粘贴在悬臂梁上,悬臂梁受力后,使应变片阻值增加了1.2Ω,问悬臂梁感受到的应变是多少? 3、已知变面积式电容传感器的两极板间距离为10mm,极板间介质的介电常数为ε0=50μF/m,两极板几何尺寸一样,为30mm×20mm,在外力作用下,其中动极板在原位置上向外移动10mm,试求电容变化量△C和传感器灵敏度K各为多少? 4、用R型热电偶测某高炉温度时,测得参比端温度t1=30℃;测得测量端和参比端之间的热电动势E(t,30)=11.402mV,试求实际炉温(已知:E(30,0)=0.172mV;E(1080,0)=11.574mV)。 第 2 页共 3 页

传感器原理与使用方法

传感器原理与使用方法 传感器的原理与使用方法 1 概述 在监控系统中,测量范围广泛,包括高低压配电设备、柴油发电机组、空调设备的交流电量:交流电压、交流电流、有功功率、功率因数、频率等;整流器、直流配电设备、蓄电池组的直流量:直流电压、直流电流;机房环境的各种物理量:温度、湿度、红外、烟感、水浸、门禁等;同时还有表示各种物理状态的开关量。由于监控系统数据采集设备的输入电量范围只能是一些小电压、小电流,而上述各种测量量却是一些非电量、强电量,因此必须用一种信号变换装置将它们转换成4一20mA或0一5V的标准直流或交流信号。传感器、变送器就是这样一种信号变换装置,它们把一种形式的信号变换成另外一种形式的信号(传感器),或把同一种信号变换成不同大小或不同形式的信号(变送器)。因此,传感器和变送器在监控系统中得到了广泛应用,是监控系统中必不可少的组成单元。 一般地,传感器是把各种物理量变换成另外一种大小、形式的物理量输出,以便于观察、测量或处理的装置,在监控系统中,传感器是把各种物理量变换成一定形式电量输出,以便于进行测量和数据采集的装置。电量变送器则是把各种形

式的电量变换成标准电量输出的装置。输出的标准电量一般为:4--20mA或0--20mA的标准直流电流信号和0一5V 的标准直流或交流电压信号。在监控系统中,电量变送器一般用于各种交流电量的变换,这些交流电量包括:交流电压、交流电流、有功功率、功率因数和频率等。交流电量的表示方法有多种,常用的有:瞬时值,有效值,平均值。 由于监控系统中各种要测量的电量和非电量种类繁多,相应的传感器和变送器也各种各样,但根据它们转换后的输出信号性质,可分为分为模拟和数字两种。在我公司的监控系统中,各类传感器、变送器有如下几种: 数字信号传感器(变送器): 1. 离子感烟探测器,用于探测烟雾浓度。当烟雾达到一定的浓度时,给出对应的数字量报警信号。 2. 微波双鉴被动式红外探测器XC-1、单红外探测器XP-5,当其探测范围内,有人体侵入时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 3. 玻璃破碎传感器,当玻璃被击碎时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 4.

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器考试试题答案终极版 - 副本

传感器原理考试试题 1、有一温度计,它的量程范围为0--200℃,精度等级为0.5级。该表可能出现的最大误差为__±1℃______,当测量100℃时的示值相对误差为_±%1_______。 2、传感器由___敏感元件___ 转换元件_、______测量电路_三部分组成 3、热电偶的回路电势由_接触电势、温差电势_两部分组成,热电偶产生回路电势的两个必要条件是_即热电偶必须用两种不同的热电极构成;热电偶的两接点必须具有不同的温度。。 4、电容式传感器有变面积型、变极板间距型、变介电常数型三种。 5.传感器的输入输出特性指标可分为_静态量_和____动态量_两大类,线性度和灵敏度是传感器的__静态_量_______指标,而频率响应特性是传感器的__动态量_指标。 6、传感器静态特性指标包括__线性度、__灵敏度、______重复性_______及迟滞现象。 7、金属应变片在金属丝拉伸极限内电阻的相对变化与_____应变____成正比。 8、当被测参数A、d或ε发生变化时,电容量C也随之变化,因此,电容式传感器可分为变面积型_、_变极距型_和_变介质型三种。 9、纵向压电效应与横向压电效应受拉力时产生电荷与拉力间关系分别为 F y。 和q y=?d11a b 10、外光电效应器件包括光电管和光电倍增管。 1、何为传感器的动态特性?动态特性主要的技术指标有哪些? (1)动态特性是指传感器对随时间变化的输入量的响应特性; (2)动态指标:对一阶传感器:时间常数;对二阶传感器:固有频率、阻尼比。

2、传感器的线性度如何确定?拟合直线有几种方法? 传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;。 四种方法:理论拟合,端基连线拟合、过零旋转拟合、最小二乘法拟合。 3、应变片进行测量时为什么要进行温度补偿?常用的温度补偿方法有哪些?(1)金属的电阻本身具有热效应,从而使其产生附加的热应变; (2)基底材料、应变片、粘接剂、盖板等都存在随温度增加而长度应变的线膨胀效应,若它们各自的线膨胀系数不同,就会引起附加的由线膨胀引起的应变;常用的温度补偿法有单丝自补偿,双丝组合式自补偿和电路补偿法。 4、分布和寄生电容对电容传感器有什么影响?一般采取哪些措施可以减小其影 响? 寄生电容器不稳定,导致传感器特性不稳定,可采用静电屏蔽减小其影响,分布电容和传感器电容并联,使传感器发生相对变化量大为降低,导致传感器灵敏度下降,用静电屏蔽和电缆驱动技术可以消除分布电容的影响。 5、热电偶测温时为什么要进行冷端补偿?冷端补偿的方法有哪些? 答:热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0℃为依据,否则会产生误差。因此,常采用一些措施来消除冷锻温度变化所产生的影响,如冷端恒温法、冷端温度校正法、补偿导线法、补偿电桥法。 三、计算题 1、下图为圆形实芯铜试件,四个应变片粘贴方向为R1、R4 轴向粘贴,R 2、R3 圆周向粘贴,应变片的初始值R1=R2=R3=R4=100Ω,灵敏系数k=2,铜试件的箔松系数μ= 0.285,不考虑应变片电阻率的变化,当试件受拉时测得R1 的变化ΔR1 = 0.2Ω。如电桥供压U = 2V,试写出ΔR2、ΔR 3、ΔR4 输出U0(15分)

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理与应用试题答案(一)

传感器原理与应用试题答案(一) 一填空(在下列括号中填入实适当的词汇,使其原理成立5分) 1.用石英晶体制作的压电式传感器中,晶面上产生的电荷与作用在晶面上的压强成正比,而与晶片几何尺寸和面积无关。 2.把被测非电量的变化转换成线圈互感变化的互感式传感器是根据变压器的基本原理制成的,其次级绕组都用同名端反向形式连接,所以又叫差动变压器式传感器。 3.闭磁路变隙式电感传感器工作时,衔铁与被测物体连接。当被测物体移动时,引起磁路中气隙尺寸发生相对变化,从而导致圈磁阻的变化。 4.电阻应变片是将被测试件上的应变转换成电阻的传感元件。 5.影响金属导电材料应变灵敏系数K。的主要因素是导电材料几何尺寸的变化。 评分标准:每填一个空,2.5分,意思相近2分。 二选择题(在选择中挑选合适的答案,使其题意完善每题4分) 1.电阻应变片的线路温度补偿方法有(A.B.D )。 A.差动电桥补偿法 B.补偿块粘贴补偿应变片电桥补偿法 C.补偿线圈补偿法 D.恒流源温度补偿电路法 2.电阻应变片的初始电阻数值有多种,其中用的最多的是(B)。 A.60ΩB.120ΩC.200ΩD.350Ω 3.通常用应变式传感器测量(BCD)。 A.温度B.速度C.加速度D.压力 4.当变间隙式电容传感器两极板间的初始距离d增加时,将引起传感器的(B,D)。A.灵敏度增加B.灵敏度减小 C.非统性误差增加D.非线性误差减小 5.在光线作用下,半导体的电导率增加的现象属于(BD)。 A.外光电效应B.内光电效应 C.光电发射D.光导效应 评分标准:3\4\5题回答对一个2分,1题(A.B.D)回答对一个2分,两个3分,2题(B)不对没有得分。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

传感器原理及应用试题库

传感器原理及应用试题 库 SANY GROUP system office room 【SANYUA16H-

一:填空题(每空1分)1.依据传感器的工作原理,传感器分敏感元件,转换元件,测量电路三个部 分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分 为外光电效应,内光电效应,热释电效应三种。 4.光电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管内部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为: 传感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx。

11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一种度 量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过 程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补 偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入射光 强改变物质导电率的物理现象称为内光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。 多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.内光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感 器

相关文档
最新文档