SPC的含义和作用

合集下载

SPC的意义与统计学概述

SPC的意义与统计学概述

SPC的意义与统计学概述引言SPC是指统计过程控制(Statistical Process Control),它是一种在工业制造中常用的质量管理工具。

SPC的目的是通过统计方法来监控和控制生产过程中的变异性,以保证产品质量的稳定性和一致性。

本文将介绍SPC的意义以及统计学在SPC中的应用。

SPC的意义SPC对于现代工业制造来说具有重要的意义。

它可以帮助企业实现以下目标:1. 提高产品质量SPC通过对生产过程中的变异性进行监控和分析,可以及时发现和纠正异常情况,以避免制造出次品或不合格品。

通过SPC,企业能够稳定生产过程,减少缺陷品的产生,提高产品的一致性和质量。

2. 降低生产成本通过SPC,企业可以对生产过程进行实时监控和控制,及时发现生产中的问题并采取相应的措施。

这有助于减少废品的产生,降低生产成本。

此外,通过SPC分析,可以找出生产过程中的关键参数和优化点,从而进一步提高生产效率,降低能源和材料的消耗。

3. 改进生产管理SPC可以提供数据和图表,帮助企业管理层了解生产过程的实时状态和趋势。

通过分析SPC图表,可以更好地洞察生产的潜在问题,及时进行调整和改进。

这有助于持续改进生产过程和管理策略,提高企业的竞争力。

统计学概述统计学在SPC中起着至关重要的作用。

它提供了一系列的方法和工具,用于描述和分析数据,帮助我们理解和控制生产过程中的变异性。

描述统计学描述统计学是统计学的一个分支,主要关注数据的收集、整理、描述和汇总。

在SPC中,我们需要对生产过程中的数据进行统计描述,以便更好地理解和分析生产过程的特征。

常见的描述统计学方法包括:•平均数:用于描述数据的集中趋势。

•标准差:用于描述数据的离散程度。

•频率分布:用于描述数据的分布情况。

这些统计指标可以帮助我们了解数据的基本特征,从而更好地进行SPC。

统计过程控制统计过程控制是SPC的核心内容。

它通过收集样本数据并对其进行统计分析,以判断生产过程是否处于控制状态。

详细全面的SPC详解

详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。

SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。

SPC的基本概念包括控制图、过程能力指数、规格界限等。

控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。

控制图通常由均值-标准差控制图和极差控制图两种类型组成。

过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。

规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。

SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。

2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。

3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。

4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。

5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。

6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。

SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。

此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。

未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。

总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。

学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。

SPC的基本概念与特点

SPC的基本概念与特点

SPC的根本概念与特点什么是SPCSPC,即统计过程控制〔Statistical Process Control〕,是一种通过统计方法对过程进行监控和管理的质量管理工具。

它通过收集和分析过程数据,以便实时地监测过程的稳定性和能力,并及时采取纠正措施,以保证产品或效劳的质量符合要求。

SPC基于统计学原理,利用数据分析的手段来判断过程的偏差和稳定性,采取控制图等图形化工具来展示过程变化的规律,并通过数学模型对过程进行预测和改良。

SPC的根本特点1.实时性SPC能够实时地监测过程的稳定性和能力,通过实时收集的数据进行分析,及时发现过程的偏差和异常情况,并及时采取纠正措施。

这使得SPC能够快速响应问题,防止质量问题的扩大和重复出现。

2.统计方法SPC基于统计学原理,利用统计方法对过程数据进行分析和判断。

通过对数据的测量、统计和分析,可以客观地了解过程的状态,并进行准确的判断和决策。

这使得SPC能够防止主观判断和盲目决策的问题,提高质量管理的科学性和准确性。

3.图形化工具SPC采用图形化工具展示过程变化的规律,常用的图形化工具包括控制图、趋势图、直方图等。

这些图形化工具直观地展示了过程的状态和变化趋势,使人们能够快速地理解和分析数据,辅助决策和改良。

图形化工具还能够帮助人们发现隐藏在数据中的规律和关联性,进一步优化和改良过程。

SPC通过数据的分析和建模,能够对过程进行预测和改良。

通过建立数学模型和趋势分析,可以预测过程的开展方向和变化趋势,为及时调整和改良提供依据。

这使得SPC能够提前发现潜在问题和缺陷,及时采取措施进行预防和纠正,确保产品或效劳的质量稳定。

5.过程稳定性SPC关注过程的稳定性,即过程的变异是否在可接受的范围内。

通过对数据的统计和分析,可以判断过程的稳定性,并得到稳定性指标,如均值、标准差、过程能力指数等。

这使得SPC能够帮助人们了解过程的状态和品质能力,及时调整和改良过程,提高产品或效劳的稳定性和一致性。

SPC的定义及应用范围

SPC的定义及应用范围

SPC的定义及应用范围什么是SPC?SPC(统计过程控制)指的是一种通过统计方法来监控和控制过程的质量的方法。

它旨在通过分析过程中的数据,以便更好地了解和理解过程的变异性,并采取适当的措施来控制和改进过程的稳定性和能力。

SPC是一种基于数据的方法,它使用统计技术来分析过程中的变异,并通过控制图和其他工具来监控过程的表现。

通过及时识别和解决问题,SPC可以帮助组织提高质量、降低成本,并提高客户满意度。

SPC的应用范围SPC可以应用于各种类型的过程和行业。

无论是制造业还是服务业,SPC都可以用来监控和改进过程的稳定性和能力。

以下是一些常见的应用范围:制造业在制造业中,SPC可以用来监控和控制生产过程中的关键参数。

通过采集和分析实时数据,可以及时发现过程中的异常和变异,并采取相应的纠正措施,以确保产品的一致性和质量。

SPC可以应用于各种制造领域,如汽车制造、电子制造、医疗设备制造等。

例如,在汽车制造中,SPC可以用来监控关键指标,如车身尺寸、涂装厚度等,以确保生产出符合规格的汽车。

服务业尽管SPC最初是为制造业设计的,但它同样适用于服务业。

在服务业中,过程的稳定性和能力同样重要。

通过收集客户反馈和关键指标数据,可以使用SPC来监控和改进服务过程。

例如,在酒店业中,可以使用SPC来检测房间清洁时间、客户满意度等指标,以确保提供高质量的服务。

在银行业中,SPC可以应用于监控关键指标,如服务等待时间、客户投诉率等,以提高客户满意度。

医疗在医疗行业中,SPC可以用于监控和改进各种过程,如手术过程、药品配制过程等。

通过收集和分析相关数据,可以及时发现问题并采取适当的措施,以确保病人的安全和满意度。

SPC在医疗行业中的应用可以帮助医院提供更高质量的医疗服务,减少手术错误和药物错误等。

总结SPC是一种通过统计方法来监控和控制过程质量的方法。

它适用于各种类型的过程和行业,包括制造业、服务业和医疗行业。

通过采集和分析数据,SPC可以帮助组织提高过程的稳定性和能力,从而提高质量、降低成本,并提高客户满意度。

SPC(统计过程控制)知识要点

SPC(统计过程控制)知识要点

SPC(统计过程控制)知识要点SPC是英文Statistical Process Control的字首简称,即统计过程控制。

SPC就是应用统计技术对过程中的各个阶段收集的数据进行分析,并调整制程,从而达到改进与保证质量的目的。

SPC强调预防,防患於未然是SPC的宗旨。

1- What:什么是SPCSPC:统计过程控制SPC说到底,就是一个图表,把生产过程中的数据,收集起来用图表的形式展现出来。

它的作用可以大致总结为:•方便大家从图表中,找出有异常的数据。

•跟进数据趋势,预见异常发生的可能。

•数据异常后,做出相应的改善对策SPC本质上就是一种特殊的趋势图,不过SPC给他们起一个更有气质的名字:控制图。

当然了,控制图还要和普通的趋势图有差异的,具体表现为以下几点:1.控制图都有上下控制线和中心线,UCL和LCL(具体会在6-How里面说明)2.控制图的数据收集规则、数据分析的规则,更加的繁琐,更加的严格3.控制图一定要有相应的改善输出2- Why:为什么要用SPC为了及时发现生产过程中,由特殊原因导致的异常,及时改善。

为了深入分析系统中的普通原因,进一步提高产品品质,为客户提供更好的产品。

(当成为一个工厂的品质副总时,如何将一线数据浮上来,你会自然而然的想到SPC)在思考为什么要用SPC时,我们的观点和认知,是随着职位不断成长的。

不要硬逼着自己去理解SPC手册里,那十几页鸡汤式的SPC 概述。

格局到了,自然就理解了。

但是SPC的作用是不会发生变化的,做就对了。

3- When:在什么时候用SPCSPC手册里面说,SPC只有在过程受控状态下,才能使用。

但是实际上,SPC就是一个图表,任何情况,任何产品,只要有数据就可以用SPC控制图。

只是它所体现出来的信息不同,使用者透过SPC发现问题的程度不一样。

举个通俗一点的例子。

张飞和关羽出征沙场,张飞去探路。

张飞趴在地上,用听音识距离之术,听了半晌得出一个结论:敌人距离我们还有250米。

spc质量管理

spc质量管理

spc质量管理SPC (Statistical Process Control)是指统计过程控制,是一种在生产过程中使用统计方法来监测和控制制造产品质量的方式。

SPC与传统的控制方法不同,它通过对过程数据的分析,使生产过程更可控,从而达到提高产品质量、减少浪费和成本的目的。

下面我们将就SPC的原理和方法以及在质量管理中的应用做详细介绍。

一、SPC理论基础1、过程变异在任何时刻,一种生产过程的输出不能百分百相同。

这种不同可以由多种因素产生,包括异常的原材料、工艺变更、机器磨损、操作者错误等等。

导致输出中变异的因素称为特殊因素,也称为系统性因素。

这种特殊因素变异是造成过程差异的主要原因。

2、常规变异除了特殊因素外,生产过程的输出也有常规变异。

常规变异是指,即使没有特殊因素,也会有一些小的差异在过程输出中出现。

常规变异主要由不可避免的自然因素或生产设备的某些功能限制引起。

3、SPC方法SPC方法的核心是确定过程总体的变异范围,并确定过程中的差异是否在可接受的范围内。

在某些情况下,它可以通过实施统计控制来消除这种变异。

SPC方法可以有效地降低过程差异,提高产品质量,减少成本,增加可靠性,提高客户满意度。

二、SPC的应用范围SPC方法可以应用于所有类型的制造过程,包括离散、连续、传统目视检验和自动化检验。

以下是SPC可以处理生产过程的举例:•\t安装对象的物理特性:例如长度、宽度、高度、重量、颜色、性质等。

•\t材料特性:例如硬度、强度、韧性、导电性等。

•\t流体特性:例如温度、压力、流量、粘度等。

•\t机器特性:例如速度、功率、电流、温度、气压等。

•\t操作员特性:例如工作时间、工作速度、操作标准等。

三、SPC的主要原理SPC的主要原理是基于过程变异性的持续监测和控制,包括以下步骤:1、控制图建立控制图以时间为横轴,测量数据为纵轴。

每次收集数据时,都将点绘制到控制图上。

然后通过绘制中心线、上界和下界来确定控制限。

什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题

什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题

什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题SPC即英文“Statistical Process Control”之缩写,意为“统计制程控制”SPC或称统计过程控制。

SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。

为什么要用SPC,SPC的作用是什么?重视企业内部外部顾客,以顾客满意作为主要目标,这些目标必须不断地在价值上得以改进,运用SPC,能使我们致力于更有效的改进,同时,我们组织中的每一个人都必须确保不断改进及使用有效的方法.在我们的企业当中,很多都是不重视统计过程控制的,或者只是把统计过程控制当做一个口号或者一个用来通过各种认证用的手段,并没有真正的用到现实生产当中,也没有起到真正的作用.于是就产生了一个问题,如果仔细的审核所有的统计过程,会发现存在很多的问题.1、在作XBar-R图时,数据搜集不准确。

数据的搜集来自于现场,往往我们根据控制计划或者其他文件的要求,到现场察看数据采集情况,会发现现场的数据采集没有按照要求来进行。

有些企业会采用连续测量,100%测量的方式,同时也不做任何的纪录,只要检验人员发现没有问题,也不需要进行任何变动,一旦发现,则进行调整设备参数或采取别的措施。

而采用该方法是与SPC相违背的。

有些公司采用了100%检验不说,根据大体情况,再进行编制控制图,专门用来应付审核或者提交客户用,这样的SPC是没有作用的,同时还浪费更多的人力物力。

所以,希望我们运用统计技术的企业,能够真正的将统计技术运用起来,而不仅仅是流露与形式。

2、做控制图时部分或者全部的曲线类似。

这也是数据经过编辑的一种可能。

在SPC教材当中明显指出几种应该注意的曲线形状(包括点的运动趋势),这就要求绘制该图表的人员具有相当的水平,即要避免出现教材中描述的情况,又要让数据基本合理,便出现了连续几次数据统计采用相同或类似的数据。

spc概述

spc概述

S P C一、含义:SPC 统计过程控制(Statistical Process Control )作用:SPC 是利用数理统计方法对过程中的各个阶段进行监控,科学的区分生产过程中产品质量的正常波动与异常波动;及时对异常趋势提出预警,消除异常因素,使过程恢复到可接受的稳定水平,从而达到提高和控制质量的目的。

特点:强调全过程监控预--整个过程[可应用于一切管理过程]、实现预防["事前"控制]。

SPC 手册是由美国三大汽车公司编写并由AIAG 发行的。

好处:1、“检验法”:是只对于结果控制:1.质量难以保证[全检可信度差],2.质量成本高[检验出的不合格品已造成浪费]。

公司不但浪费时间和金钱,而且面对业内的对手失去竞争优势。

2、SPC 法:定时的观察和系统的测量方法用在过程中最容易产生产品缺陷的关键部位,可用来减少甚至可能取消大量的视觉检查和验证的操作[依赖]。

改进质量和降低成本。

二、背景:一般说来,先进的技术科学可以提高产品质量指标的绝对值,而先进的质量科学则可以在现有条件下将其质量波动调整到最小。

预防原则是现代化质量管理的核心与精髓,旨在依据适当的信息来源,找出发生潜在不合格的原因,制定预防措施,有效地消除潜在不合格的原因,防止不合格发生,从而可保证产品质量、降低产品成本、保证生产进度。

为了保证预防原则的实施, 20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题小组:休哈特[过程控制组]提出了过程控制理论及控制过程的具体工具(控制图),道奇与罗米格[产品控制组]提出了抽样检验理论和抽样检验表。

休哈特和道奇是统计质量控制的奠基人。

休哈特首先在生产过程管理中应用正态分布特性,被誉为统计过程控制之父。

三、生产过程中的两种波动过程存在波动—随机正态/不随机—正常/异常波动—产生原因—例子/特性—改进[正常波动(规范放宽/6sigma改进)、异常波动(8D 方法对6因分析)] 1、生产过程中的质量特性存在波动过程是由人员、设备、原料、方法和环境等因素构成,各基本因素客观上是在波动的,则过程也是在随之波动的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPC即统计过程控制。

是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。

SPC强调以全过程的预防为主。

也是中国人民武装警察部队特种警察学院的简称,该学院又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.目录利用统计的方法来监控制程的状态,确定生产过程在管制的状态下,以降低产品品质的变异编辑本段SPC(2)soy protein concentrate,大豆浓缩蛋白。

在大豆压榨过程中的产品,比豆粕蛋白含量高,且更易吸收。

常用于乳猪、水产、幼禽、犊牛、宠物等饲料制作。

是理想的饲料原料。

SPC(3) 增量脉冲编码器,编辑本段SPC(3)中国人民武装警察部队特种警察学院的简称,同时又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.编辑本段SPC(质量管理与控制)统计工序控制即SPC(Statistical Process Control)。

它是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。

SPC强调以全过程的预防为主。

编辑本段SPC能解决之问题1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。

使制程稳定,能掌握品质、成本与交期。

2.预警性:制程的异常趋势可即时对策,预防整批不良,以减少浪费。

3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。

4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。

5.改善的评估:制程能力可作为改善前後比较之指标。

利用管制图管制制程之程序1.绘制「制造流程图」,并用特性要因图找出每一工作道次的制造因素(条件)及品质特性质。

2.制订操作标准。

3.实施标准的教育与训练。

4.进行制程能力解析,确定管制界限。

5.制订「品质管制方案」,包括抽样间隔、样本大小及管制界限。

6.制订管制图的研判、界限的确定与修订等程序。

7.绘制制程管制用管制图。

8.判定制程是否在管制状态(正常)。

9.如有异常现象则找出不正常原因并加以消除。

10.必要时修改操作标准(甚至於规格或公差)。

分析用管制图主要用以分析下列二点:(1)所分析的制(过)程是否处於统计稳定。

(2)该制程的制程能力指数(Process Capability Index)是否满足要求。

-控制图的作用1.在质量诊断方面,可以用来度量过程的稳定性,即过程是否处于统计控制状态;2.在质量控制方面,可以用来确定什么时候需要对过程加以调整,而什么时候则需使过程保持相应的稳定状态;3.在质量改进方面,可以用来确认某过程是否得到了改进。

应用步骤如下:1.选择控制图拟控制的质量特性,如重量、不合格品数等;2.选用合适的控制图种类;3.确定样本容量和抽样间隔;4.收集并记录至少20~ 25个样本的数据,或使用以前所记录的数据;5.计算各个样本的统计量,如样本平均值、样本极差、样本标准差等;6.计算各统计量的控制界限;7.画控制图并标出各样本的统计量;8.研究在控制线以外的点子和在控制线内排列有缺陷的点子以及标明异常(特殊)原因的状态;9.决定下一步的行动。

应用控制图的常见错误:1.在5M1E因素未加控制、工序处于不稳定状态时就使用控制图管理工作;2.在工序能力不足时,即在CP< 1的情况下,就使用控制图管理工作;3.用公差线代替控制线,或用压缩的公差线代替控制线;4.仅打“点”而不做分析判断,失去控制图的报警作用;5.不及时打“点”,因而不能及时发现工序异常;6.当“5M1E”发生变化时,未及时调整控制线;7.画法不规范或不完整;8.在研究分析控制图时,对已弄清有异常原因的异常点,在原因消除后,未剔除异常点数据。

分析用控制图应用控制图时,首先将非稳态的过程调整到稳态,用分析控制图判断是否达到稳态。

确定过程参数特点:1、分析过程是否为统计控制状态2、过程能力指数是否满足要求?控制用控制图等过程调整到稳态后,延长控制图的控制线作为控制用控制图。

应用过程参数判断编辑本段SPC的作用1、确保制程持续稳定、可预测。

2、提高产品质量、生产能力、降低成本。

3、为制程分析提供依据。

4、区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。

1. 贯彻预防原则是现代质量管理的核心与精髓。

2. 质量管理学科有一个非常重要的特点,即对于质量管理所提出的原则、方针、目标都要有科学措施与科学方法来保证它们的实现。

这体现了质量管理学科的科学性。

保证预防原则实现的科学方法就是:SPC (统计过程控制) 与SPD (统计过程诊断)。

SPC不是用来解决个别工序采用什么控制图的问题,SPC强调从整个过程、整个体系出发来解决问题。

SPC的重点就在于“P(Process,过程)”产品质量具有变异性“人、机、料、法、环” + “软(件)、辅(助材料)、(水、电、汽)公(用设施)”变异具有统计规律性随机现象;统计规律随机现象:在一定条件下时间可能发生也可能不发生的现象。

管制和一般的统计图不同,因其不仅能将数值以曲线表示出来,以观其变异之趋势,且能显示变异系属于机遇性或非机遇性,以指示某种现象是否正常,而采取适当之措施。

解析用控制图ν决定方针用ν制程解析用ν制程能力研究用ν制程管制准备用管制用控制图ν追查不正常原因ν迅速消除此项原因ν并且研究采取防止此项原因重复发生之措施。

ν普通原因指的是造成随著时间推移具有稳定的且可重复的分布过程中的许多变差的原因,我们称之为:“处於统计控制状态”、“受统计控制”,或有时简称“受控”,普通原因表现为一个稳定系统的偶然原因。

只有变差的普通原因存在且不改变时,过程的输出才可以预测。

ν特殊原因:指的是造成不是始终作用于过程的变差的原因,即当它们出现时将造成(整个)过程的分布改变。

除非所有的特殊原因都被查找出来并且采取了措施,否则它们将继续用不可预测的方式来影响过程的输出。

如果系统内存在变差的特殊原因,随时间的推移,过程的输出将不稳定。

ν局部措施ν通常用来消除变差的特殊原因ν通常由与过程直接相关的人员实施ν大约可纠正15%的过程问题ν对系统采取措施ν通常用来消除变差的普通原因ν几乎总是要求管理措施,以便纠正ν大约可纠正85%的过程问题ν合理使用控制图能ν供正在进行过程控制的操作者使用ν有於过程在质量上和成本上能持续地,可预测地保持下去ν使过程达到ν更高的质量ν更低的单件成本ν更高的有效能力ν为讨论过程的性能提供共同的语言ν区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。

SPC的作用:1、确保制程持续稳定、可预测。

2、提高产品质量、生产能力、降低成本。

3、为制程分析提供依据。

4、区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。

编辑本段──制程(Process)Quality,是指产品的品质。

换言之,它是著重买卖双方可共同评断与鉴定的一种「既成事实」. 而在SPC的想法上,则是希望将努力的方向更进一步的放在品质的源头──制程(Process)上.因为制程的起伏变化才是造成品质变异(Variation)的主要根源.1)异常变动过程中变动因素是不在统计管理状态下的非随机性原因,由于异常因素不是过程所固有,固不难除去,一般情况现场人员对异常因素的消除可以自行决定采取措施,而不必要请示更高级的管理人员,所以也称之为减少变动的局部措施。

2)偶然变动过程中的变动因素是统计管理的状态下,其产品的特性有固定的分布,即分布位置、分布及分布形状三种,由于偶然因素是过程所固有的,难于消除,要消除偶然因素必须涉及到人、机、料、法、环境等整个系统的改造问题,需要投入大量的资金,故不是现场人员所能决定的,而必须经过深入的调查研究和做出全面的可行性报告后,再经高层领导做最后的定夺,所以称之为减少变动的系统措施。

特殊原因一种间断性的,不可预计的,不稳定的变差来源。

有时被称为可查明原因,存在它的信号是:存在超过控制线的点或存在在控制线之内的链或其他非随机性的情形。

普通原因造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中,它表现为随机过程变差的一部分。

合理使用控制图的益处• 供正在进行过程控制的操作者使用• 有助于过程在质量上和成本上能持续的、可预测的保持下去• 使过程达到:• 更高的质量• 更低的单件成本• 更高的有效能力• 为讨论过程的性能提供共同的语言• 区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南在实际应用中,当各组容量与其平均值相差不超过正负25%时,可用平均样本容量( )来计算控制限.在什么条件下分析阶段确定的控制限可以转入控制阶段使用:ν控制图是受控的ν过程能力能够满足生产要求控制图是根据稳定状态下的条件(人员、设备、原材料、工艺方法、测量系统、环境)来制定的。

如果上述条件变化,则必须重新计算控制限,例如:ν操作人员经过培训,操作水平显著提高;ν设备更新、经过修理、更换零件;ν改变工艺参数或采用新工艺;ν改变测量方法或测量仪器;ν采用新型原材料或其他原材料;ν环境变化。

使用一段时间后检验控制图还是否适用,控制限是否过宽或过窄,否则需要重新收集数据计算控制限;过程能力值有大的变化时,需要重新收集数据计算控制限。

对于p,np图, 过程能力是通过过程平均不合格品率来表示,当所有点都受控后才计算该值.当Cpk指数值降低代表要增加:ν控制ν检查ν返工及报废,在这种情况下,成本会增加,品质也会降低,生产能力可能不足。

当Cpk指数值增大,不良品减少,最重要是产品/零件接近我们的“理想设计数值/目标”,给予顾客最大满足感。

当Cpk指数值开始到达1.33或更高时对检验工作可以减少,减少我们对运作审查成本。

ν普通原因变差υ影响过程中每个单位υ在控制图上表现为随机性υ没有明确的图案υ但遵循一个分布υ是由所有不可分派的小变差源组成υ通常需要采取系统措施来减小ν特殊原因变差υ间断的,偶然的,通常是不可预测的和不稳定的变差υ在控制图上表现为超出控制限的点或链或趋势υ非随机的图案υ是由可分派的变差源造成该变差源可以被纠正ν工业经验建议为:υ只有过程变差的15%是特殊的可以通过与操作直接有关的人员纠正υ大部分 (其余的85%) 是管理人员通过对系统采取措施可纠正的ν控制图可以区分出普通原因变差和特殊原因变差υ特殊原因变差要求立即采取措施υ减少普通原因变差需要改变产品或过程的设计控制图 - 过程的声音υ试图通过持续调整过程参数来固定住普通原因变差,称为过度调整,结果会导致更大的过程变差造成客户满意度下降υ试图通过改变设计来减小特殊原因变差可能解决不了问题,会造成时间和金钱的浪费υ控制图可以给我们提供出出现了哪种类型的变差的线索,供我们采取相应的措施ν能力指数的计算基于以下假设条件:υ过程处于统计稳定状态υ每个测量单值遵循正态分布υ规格的上、下限是基于客户的要求υ测量系统能力充分ν如果理解关满足了这些假设后,能力指数的数值越大,潜在的客户满意度越高过程能力分析的用途-设计部门可参考目前之制程能力,以设计出可制造的产品-评估人员、设备、材料与工作方法的适当性-根据规格公差设定设备的管制界限-决定最经济的作业方式过程控制和过程能力◎目标:过程控制系统目标,是对影响过程的措施作出经济合理的决定, 避免过度控制与控制不足◎过程能力讨论:必需注意二个观念○由造成变差的普通原因来确定○内外部顾客开心过程的输出及与他们的要求的关系如何。

相关文档
最新文档