燃气锅炉燃烧控制系统

合集下载

燃气锅炉的控制系统及其操作方法

燃气锅炉的控制系统及其操作方法

燃气锅炉的控制系统及其操作方法随着我国经济的快速发展,燃气锅炉的应用越来越广泛。

燃气锅炉控制系统是整个锅炉系统的关键所在,能够确保燃气锅炉的安全、高效、稳定地运行。

本文将对燃气锅炉控制系统及其操作方法进行探讨。

一、燃气锅炉控制系统的组成燃气锅炉控制系统主要由以下几个部分组成:自动控制系统、填料控制系统、液位控制系统、排污控制系统、加药控制系统、给水控制系统和燃气供应系统。

这些系统在燃气锅炉的生产过程中,相互协调作用,以确保锅炉的安全、稳定、高效运行。

1.自动控制系统自动控制系统是燃气锅炉的核心,主要由控制器、执行机构、传感器和通讯线路等组成。

其主要功能是监测锅炉出水温度、烟气温度、压力等参数,根据这些参数来指挥燃烧器的工作,并对锅炉的运行状态进行调整。

自动控制系统可以实现批量自动生产,提高生产效率,降低人工干预的可能性,大大提高了燃气锅炉的安全性和稳定性。

2.填料控制系统燃气锅炉填料控制系统主要用于控制内部填料的加注量和压力,确保填料的均匀分布以及压力的平衡。

填料控制系统主要由控制器、执行机构、传感器和通讯线路等组成。

在锅炉生产过程中,系统可以根据锅炉负荷的变化来调整填料的量和压力,从而保证锅炉的工作效率和稳定性。

3.液位控制系统液位控制系统主要用于控制锅炉水位以及补给水的流量。

它主要由控制器、执行机构、传感器和通讯线路等组成。

它可以精确地控制锅炉内部水位,确保锅炉的充水量和污水排放的流量。

液位控制系统的合理设计和操作,可以保证锅炉的稳定性、安全性和高效性。

4.排污控制系统燃气锅炉排污控制系统主要用于控制废气排放和污水排放的流量。

它主要由控制器、执行机构、传感器和通讯线路等组成。

排污控制系统的作用非常重要,一般情况下污水和废气排放对环境造成的危害很大。

通过排污控制系统的运行,可以减少对环境的污染,保证锅炉运行环境的清洁和安全。

5.加药控制系统加药控制系统主要用于对锅炉内部水进行磷酸盐和硫酸盐等药品的添加。

燃气锅炉系统中的燃烧性能优化与排放控制

燃气锅炉系统中的燃烧性能优化与排放控制

燃气锅炉系统中的燃烧性能优化与排放控制在燃气锅炉系统中,燃烧性能优化与排放控制一直是工程师们关注的焦点。

优化燃烧性能和控制排放能够提高锅炉能效,降低燃烧产物对环境的污染。

本文将介绍燃气锅炉系统中燃烧性能优化的方法和排放控制的技术,以期提供一些有用的信息。

1. 燃烧性能优化1.1 空燃比调节空燃比是指燃料和空气在燃烧过程中的化学计量比例。

通过精确调节空燃比可以实现最佳的燃烧效果,提高锅炉的热效率和经济性。

常见的空燃比调节方法包括气体压力调节、调节燃气阀的开度以及通过控制空气与燃气混合的方式。

准确调节空燃比可以避免过量燃料的浪费和烟气中有毒物质的生成。

1.2 燃料燃烧预处理燃料燃烧预处理方法可以提高燃料的可燃性和燃烧效果。

例如,对燃气进行超细粉碎处理可以增加燃气表面积,并提高与空气的混合效果,从而改善燃烧状况。

同时,预处理还可以通过添加化学剂来改变燃烧反应的特性,提高燃烧效率。

1.3 燃烧器设计优化燃烧器是燃气锅炉系统的关键组件,其设计合理与否直接影响燃烧性能。

通过燃烧器内部的结构设计优化,可以改善燃料与空气的混合效果,提高燃烧效率。

常见的燃烧器设计优化包括燃烧室形状改进、气体喷射角度调整、喷口尺寸优化等,这些都有助于实现完全燃烧和降低污染物生成。

2. 排放控制2.1 烟气净化技术烟气净化技术是指利用物理、化学等方法去除燃烧产物中的有害物质。

常见的烟气净化技术包括除尘、脱硫、脱硝等。

除尘技术主要用于去除烟气中的固体颗粒物,如灰尘和颗粒物等;脱硫技术主要用于去除烟气中的二氧化硫;脱硝技术主要用于去除烟气中的氮氧化物。

这些技术能够有效降低燃气锅炉系统的排放物浓度,保护环境和人类健康。

2.2 烟气循环利用技术烟气循环利用技术是指将部分烟气重新引入锅炉系统中,提高能量利用效率。

通过烟气循环利用,可以减少烟气排放量,降低对环境的影响。

常见的烟气循环利用技术包括烟气再循环、废气余热回收等。

这些技术能够最大限度地利用烟气的热能,提高锅炉系统的热效率。

燃气锅炉控制原理

燃气锅炉控制原理

燃气锅炉控制原理
燃气锅炉控制原理是基于自动化技术,通过对燃气供应、燃烧过程、水位控制、温度控制等参数进行监测和调节,以实现锅炉的安全运行和高效燃烧。

以下将详细介绍燃气锅炉控制原理的几个关键方面。

1. 燃气供应控制:燃气锅炉的燃烧过程需要有足够的燃气供应,控制系统通过监测燃气压力和流量,调节燃气阀门的开启程度,以保证燃气的稳定供应。

2. 燃烧过程控制:燃气锅炉的燃烧过程主要包括燃烧区的通风、燃烧的燃气和空气的配比等。

控制系统会通过多个传感器监测燃烧区的氧气含量、烟尘排放量等参数,并对燃气和空气的配比进行调节,以实现燃烧的高效率和低排放。

3. 水位控制:燃气锅炉内有水和蒸汽两种介质,水位过高或过低都会对锅炉的安全运行造成影响。

控制系统通过水位传感器监测锅炉内水位的变化,并根据设定值来控制给水泵的运行,以维持合适的水位。

4. 温度控制:燃气锅炉需要在一定的温度范围内工作,控制系统通过温度传感器监测锅炉的水温和蒸汽温度,并通过控制阀门或调节燃气与空气的配比来调节燃烧热功率,以达到所需的温度。

以上是燃气锅炉控制原理的主要内容,通过对这些参数的监测和调节,可以实现燃气锅炉的安全运行和高效能利用。

燃气锅炉自动控制系统实现与应用研究

燃气锅炉自动控制系统实现与应用研究

燃气锅炉自动控制系统实现与应用研究1. 引言1.1 背景介绍燃气锅炉是一种利用燃气作为燃料进行加热的设备,广泛应用于工业生产、民用暖气等领域。

随着工业化进程的不断加快和人们生活水平的提高,燃气锅炉的需求量也在逐渐增加。

传统的手动控制方式无法满足对燃气锅炉精确控制的需求,因此燃气锅炉自动控制系统的研究与应用变得尤为重要。

燃气锅炉自动控制系统能够实现对燃气锅炉的自动调节和监控,不仅可以提高燃烧效率,减少能源浪费,还能保障设备的安全稳定运行。

燃气锅炉自动控制系统在工业生产和民用领域都具有广阔的应用前景。

本文旨在探讨燃气锅炉自动控制系统的实现与应用研究,从燃气锅炉自动控制系统的组成、工作原理、应用场景、发展现状、优势和局限性等方面进行深入分析,为相关领域的研究和应用提供参考。

1.2 研究意义燃气锅炉自动控制系统的研究意义主要体现在以下几个方面:燃气锅炉作为工业生产和生活供暖中广泛应用的重要设备,其自动控制系统的稳定性和性能直接关系到工作效率和安全性。

通过研究和优化燃气锅炉自动控制系统,可以提高设备的运行效率,降低能源消耗,减少对环境的影响,提升设备的可靠性和安全性。

随着科技的不断发展和工业生产的不断进步,燃气锅炉自动控制系统的应用场景也越来越广泛。

对于一些特定的工业生产过程或大型建筑物供暖系统,需要具有高度智能化和自适应能力的燃气锅炉自动控制系统来实现精确控制和优化调节。

研究燃气锅炉自动控制系统的应用能够满足不同领域的需求,推动相关技术的发展和应用。

燃气锅炉自动控制系统的研究对于提高能源利用率、推动工业转型升级和建设节能型社会具有重要意义。

通过不断深入的研究和创新,可以不断提升燃气锅炉自动控制系统的性能和智能化水平,促进能源结构的优化和可持续发展。

对燃气锅炉自动控制系统的研究具有深远的意义和重要的应用前景。

2. 正文2.1 燃气锅炉自动控制系统的组成燃气锅炉自动控制系统的组成通常由传感器、执行器、控制器和人机界面组成。

燃气锅炉系统-操作说明书

燃气锅炉系统-操作说明书

燃气锅炉操作说明书1 概述本操作说明书为燃气锅炉的基本要求。

1.1燃气锅炉性能参数锅炉型号: JG-160/3.82-Q额定蒸发量: 160t/h额定蒸汽压力: 3.82MPa(表压)额定蒸汽温度: 450℃给水温度(省煤器进口): 104℃空气预热器进风温度: 20℃排烟温度: <160℃排烟处过量空气系数: 1.35锅炉设计热效率: 87.1%减温方式: 给水喷水减温燃料: 高炉煤气,掺烧焦炉煤气,点火及稳燃采用焦炉煤气燃气锅炉设计工况:标准工况: 100%高炉煤气;工况一:30%焦炉煤气+70%高炉煤气。

工况二:30%焦炉煤气在无焦炉煤气时可用同等热值的天然气混合气体替代。

1.2 锅炉结构燃气锅炉额定蒸发量160t/h,中温中压、单锅筒、全膜式壁、前吊后支式“П”型布置结构,全钢架悬吊结构的自然循环锅炉。

煤气燃烧器呈正四角布置,与炉膛下部蓄热稳燃装置相配合,形成切圆燃烧,保证了全烧高炉煤气所需的温度场及燃烧工况,燃烧器分三层布置。

燃用高炉煤气(BFG),并最多掺烧相当于30%B-MCR的焦炉煤气(COG)。

锅炉辅机配送、引风机(均带液力偶合器)各两台,锅炉给水采用主路和旁路二级给水,减温水采用二级除盐水一级喷水减温。

2.锅炉系统简述2.1除氧给水系统汽机凝结水经汽封加热器和低压加热器加热后进入热力除氧器,另外二级除盐水补水进入疏水箱中,经过疏水泵和螺旋板换加热后也进入热力除氧器除氧。

除氧水再由锅炉给水泵升压进入锅炉下、上级省煤器,最后注入锅筒。

锅炉汽水循环系统采用自然循环,锅筒的炉水通过下降管进入锅炉下部集箱,经水冷壁吸热,通过锅炉上集箱连通管回锅筒。

锅筒内有汽水分离装置以保证蒸汽品质,饱和蒸汽由锅筒引出至过热器,过热蒸汽采用给水喷水减温,以调节集箱出口过热蒸汽的温度,最后蒸汽送至汽轮机用户。

高、低压给水系统为母管制。

每台锅炉给水操作台分主路和旁路二级给水调节,减温水采用给水一级喷水减温。

燃气锅炉的燃烧控制及其方法

燃气锅炉的燃烧控制及其方法

燃气锅炉的燃烧控制及其方法燃气锅炉是一种常见的供暖系统,它通过燃烧燃气来产生热量,从而为居住空间提供温暖。

然而,关于燃气锅炉的燃烧控制问题,很多人并不是很清楚。

本文将对燃气锅炉的燃烧控制及其方法进行探讨。

一、燃气锅炉的燃烧控制燃气锅炉的燃烧控制是指通过控制燃气的供应量、气体混合比、燃气流量、气体压力等参数,确保锅炉在燃烧过程中达到最佳状态,从而提高能源利用效率,减少能源浪费,延长设备寿命,降低排放浓度,保护环境等目的。

燃气锅炉燃烧控制主要包括三个方面:点火控制、燃烧控制和安全控制。

点火控制:燃气锅炉在启动前需要进行点火操作,即将燃气与空气混合后进行点火。

点火控制的目的是确保燃气与空气的混合比例正确,点火过程安全可靠。

燃烧控制:燃气锅炉的燃烧控制是指通过调节燃气与空气混合比例、燃气流量、进气压力、燃气预热温度等参数来调整锅炉的燃烧效率和排放浓度。

例如,燃气与空气的混合比例过高,会导致燃烧不完全,浪费能源;混合比例过低,则会导致燃烧不稳定,影响锅炉的使用寿命。

安全控制:燃气锅炉的安全控制包括燃气泄漏报警、氧气浓度检测、水位保护、过热保护等措施。

这些控制措施能够及时发现和解决可能存在的安全隐患,保障设备和人员的安全。

二、燃气锅炉的燃烧优化方法除了上述控制措施外,还有一些燃烧优化方法可以帮助提高燃气锅炉的能源利用效率。

1、氧气浓度控制:在锅炉燃烧过程中,通过控制氧气浓度来调整燃气和空气的混合比例。

在保证燃烧效率的同时,能够减少废气排放量达20%以上。

2、锅炉辅助设施优化:燃气锅炉还需要配套一些辅助设施,如送风机、废气处理装置等。

这些设施的优化能够减少能源浪费和环境污染程度。

3、锅炉清洗:锅炉内部容易积累灰尘等污物,影响热能传递。

定期对锅炉进行清洗和维护,能够提高燃烧效率,降低能源消耗。

4、锅炉负荷控制:通过调整锅炉的负荷来控制燃烧效率。

如果锅炉负荷过低,则会造成燃气浪费;如果负荷过高,则会影响锅炉寿命。

燃气锅炉控制原理图

燃气锅炉控制原理图

燃气锅炉控制原理图燃气锅炉是一种常见的供暖设备,其控制原理由下述几个基本部分组成。

1. 燃气供应系统:燃气供应系统包括天然气或液化石油气的主管道、压力调节阀、安全阀等。

主管道将燃气输送到锅炉燃烧室,而压力调节阀和安全阀可确保燃气供应的稳定和安全。

2. 燃烧室:在燃烧室内,燃气与空气混合并被点火燃烧。

为了保证燃气的充分燃烧,燃烧室内通常设置有燃气喷嘴、风扇和点火系统。

燃气喷嘴负责将燃气喷入燃烧室,风扇则将大量空气吹入燃烧室以与燃气混合,而点火系统则通过电极产生火花点燃混合气体。

3. 温度控制系统:燃气锅炉的温度控制系统能够根据设定的温度要求,控制燃气供应和燃烧效率。

该系统通常包括温度传感器、温度控制器和执行器。

温度传感器负责监测燃气锅炉的温度,将温度信号传递给温度控制器。

温度控制器根据设定的温度值和实际温度值进行比较,并通过执行器控制燃气供应量,以保持锅炉温度在设定范围内。

4. 水位控制系统:燃气锅炉的水位控制系统负责监测锅炉内的水位,并控制给水量以维持适当的水位。

该系统通常包括水位传感器、水位控制器和电磁阀。

水位传感器监测锅炉内的水位变化,并将水位信号传递给水位控制器。

水位控制器根据实际水位和设定的水位值进行比较,并通过控制电磁阀的开启和关闭来调整给水量,以维持锅炉内的水位稳定。

5. 安全保护系统:燃气锅炉还配备有多个安全保护装置,以保障设备和使用者的安全。

这些安全装置包括过热保护器、超高温保护器、燃气漏气报警器、烟道堵塞报警器等。

当锅炉温度超过安全限值、燃气泄漏或烟道堵塞时,安全保护系统能够及时发出警报并停止燃气供应,以防止事故的发生。

燃气锅炉控制原理图的各个部分相互协调,以实现安全、高效的供暖过程。

这些部分通过传感器、控制器和执行器之间的信息传递和互动,使燃气锅炉能够在设定的温度范围内稳定运行,并保证供暖系统的安全性和可靠性。

燃气锅炉的工作原理

燃气锅炉的工作原理

燃气锅炉的工作原理燃气锅炉是一种常见的采用燃烧燃气来产生热能的设备。

它广泛应用于家庭、工业和商业领域,用于供暖、热水和蒸汽等热能需求。

下面将详细介绍燃气锅炉的工作原理。

一、燃气锅炉的基本构成燃气锅炉主要由燃气供应系统、燃烧系统、热交换系统、控制系统和排烟系统等组成。

1. 燃气供应系统:燃气供应系统包括燃气管道、燃气调压器、燃气阀门等。

燃气通过管道输送到燃气锅炉,经过调压器降低压力后,进入燃气阀门控制燃气的流量。

2. 燃烧系统:燃烧系统由燃气喷嘴、燃气阀门、点火器和燃烧器等组成。

燃气通过燃气喷嘴进入燃烧器,在燃气阀门的控制下,通过点火器点燃燃气,形成火焰。

3. 热交换系统:热交换系统由燃烧室、烟道和换热器等组成。

燃气燃烧产生的高温烟气通过烟道进入换热器,与循环水或者蒸汽进行热交换,将热能传递给循环介质。

4. 控制系统:控制系统用于监测和控制燃气锅炉的工作状态。

它包括温度传感器、压力传感器、燃气阀门控制器等。

通过对传感器信号的采集和处理,控制系统可以自动调节燃气的供应和燃烧过程,以实现燃气锅炉的稳定运行。

5. 排烟系统:排烟系统用于排放燃烧产生的废气。

烟气从燃烧室经过烟道排出,通过烟囱排放到室外。

二、燃气锅炉的工作过程燃气锅炉的工作过程主要包括燃气供应、燃烧、热交换和排烟等阶段。

1. 燃气供应:当需要使用热能时,控制系统打开燃气阀门,燃气从燃气供应系统进入燃烧系统。

2. 燃烧:燃气进入燃烧器后,在点火器的作用下点燃,形成火焰。

同时,控制系统监测火焰的状态,根据需要调节燃气的供应量,以保持火焰的稳定和适当的温度。

3. 热交换:燃烧产生的高温烟气通过烟道进入换热器,与循环介质(如水或者蒸汽)进行热交换。

烟气的热能被传递给循环介质,同时烟气冷却,形成烟气中的水蒸气凝结成水滴,然后排出燃气锅炉。

4. 排烟:烟气通过烟道排出燃气锅炉,经过烟囱排放到室外。

排烟的同时,燃气锅炉也会通过补水系统补充消耗的水量,以保持循环介质的稳定循环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燃气锅炉燃烧控制系统李凯凯(山东建筑大学热能工程学院山东省济南市 250101)摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。

主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。

由最终设计结果可知此方法可行。

关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力0 引言近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。

一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。

国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。

为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。

1 锅炉情况本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm³/h,排烟温度230℃,热效率90%。

1.1 燃气蒸汽锅炉的组成结构组成:具体结构由主要部件和辅助设备组成。

主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。

系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。

1.2 燃气蒸汽锅炉的工作原理燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。

水在锅筒中不断被炉里气体燃料燃烧释放出来的能量加热,温度升高并产生带压蒸汽,由于水的沸点随压力的升高而升高,锅是密封的,水蒸气在里面的膨胀受到限制而产生压力形成热动力作为一种能源广泛使用。

燃气蒸汽锅炉的工作原理见下图。

图1 燃气蒸汽锅炉的工作原理2 燃烧器选型燃烧器是一种将燃料和空气,按所要求的浓度、速度、湍流度和混合方式送入炉膛,并使燃料能在炉膛内稳定着火与燃烧的热能装置。

燃料以燃油和燃气为主。

一般应用在中小型燃油或燃气锅炉上。

2.1 燃烧器组成结构组成:一般由燃烧器外壳、程序控制器、风机、伺服电机、燃气蝶阀、燃烧头、电离电极或紫外线电眼、稳焰盘、燃气阀门组(其中包括球阀、膨胀节、过滤器、调压阀、电磁阀、点火电磁阀等)组成。

系统组成:送风系统、点火系统、监测系统、燃料系统、电控系统。

2.2 燃烧器性能特点1 热效率高:能适应压力波动,自行调节一次配风 ( 即燃气压力大,吸入一次风多;燃气压力小,吸入一次风少 ) ,燃烧充分,热效率高。

2 安全性高:该燃烧器配备小火。

锅炉启动时,先点小火,当小火正常稳定燃烧时,自控系统才打开主燃气阀门,燃料才能进入锅炉正常燃烧,不会产生爆燃现象。

3 燃料适应性强:该种燃烧器只需更换少量部件就能适用于天然气、液化石油气、煤气、液化石油混合气以及其它类燃气。

2.3 燃烧器工作过程当可燃气体(城市煤气、天然气、液化石油气)由微电脑控制系统按程序控制进入燃烧器的燃烧头内,由一次风与可燃气体混合,点火燃烧,二次风助燃,实现充分燃烧。

燃烧状况由火焰自动跟踪系统检测控制燃烧,当燃烧出现故障(燃烧室缺氧、可燃气体欠压、可燃烧气体断流、气量不足等),控制系统发出指令,供气系统的电磁阀迅速关闭,切断气电源,燃烧器自动吹扫后停机,指示故障。

2.4 燃烧器调节方式燃气燃烧器的运行方式有单段火、两段火和两段渐进式/比例调节式。

2.5 燃烧器的选择根据已知锅炉条件求得以下各项 水蒸气额定流量为:h kg q /139102000955.6q v m =⨯==ρ锅炉产生的水蒸气产生的热量为:h kg t cq Q m /8.2093176)194230(1391018.4=-⨯⨯=∆= 锅炉所需的总热量为:kw Q Q 042.646)36009.0/(8.2093176/=⨯==η总 燃烧器所需的功率为:kw Q P 55.8078.0042.6468.0/=÷==总综上计算所选的燃烧器的型号为:WM-G10/3-A ZM 。

燃烧器需带鼓风机与伺服马达驱动的风门,具燃气调节阀,支持两段火力和比例调节,可选配火力调节器SIEMENS RWF40。

3 燃烧与汽压控制设计3.1 燃烧过程特点1 迅速炉膛燃烧率改变迅速,适应外部负荷变化。

2 控制系统能迅速发现并消除燃烧率扰动。

3 燃料、送风和引风等参数协调变化。

4 燃烧过程稳定。

3.2 工况要求锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。

一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。

对给定出水温度的情况,则需要调节鼓风量与给燃气量的比例,使锅炉运行在最佳燃烧状态。

同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。

3.3 画出燃气锅炉汽包压力与炉膛火力的控制系统原理图图2 燃气锅炉汽包压力与炉膛火力控制系统原理图3.4 表述燃烧火力给定信号形态及其与燃烧器的关联作用方式控制系统包括:滑压运行主汽压力设定值计算模块、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。

主蒸汽压力控制系统采用常规串级PID 控制结构。

当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。

燃料量控制是锅炉控制中最基本也是最主要的一个系统。

因为给燃气量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响3.5 调节过程和控制原理1 燃料量调节:通过调节燃料量使入炉燃料燃烧所产生的量能与锅炉外部负荷需求的量能相适应。

2 送风量调节:燃料量改变时送风量也应改变,以保证燃料的完全燃烧和排烟热损失最小。

调节送风量的目的是保证锅炉燃烧过程的经济性。

3引风量调节:引风量调节的目的是使引风量与送风量相适应,以保持炉膛压力的要求范围内。

4 炉膛压力控制设计4.1 炉膛压力变化因素外因为机组负荷增加,进气量增加造成锅炉蒸汽压力降低;锅炉主蒸汽管道泄漏,造成主蒸汽压力降低;内因为锅炉燃烧调整不及时,风量和燃煤量偏低,造成主蒸汽压力降低。

4.2 过程特点、工况要求对于负压燃烧锅炉,如果炉膛压力接近于大气压力,则炉烟往外冒出,能源浪费且影响设备和工作人员的安全;反之,如果炉膛压力太低,又会使大量的冷空气漏入炉膛内,降低炉膛温度,增大了引风机负荷和排烟带走的热量损失。

由于送风量的变化时引起负压波动的主要原因,为了使引风量快速地跟踪送风量,以保持二者的比例,可将送风量作为前馈引入引风调节器。

这样当送风控制系统动作时,引风控制系统也立即跟着动作,而不是等炉膛负压偏离给定值后再动作,从而能使炉膛负压基本保持不变。

所以引风控制系统引入送风前馈信号以后,将有利于提高引风控制系统的稳定性和减小炉膛负压的动态偏差。

锅炉运行时,如果机组要求的负荷指令改变,则进入炉膛的燃料量和送风量将跟着改变,燃料在炉膛中燃烧后产生的烟气量也将随之改变。

这时,为了维持炉膛内的正常压力,必须对引风量进行相应的调节。

如果炉膛压力过低,炉膛和烟道的漏风量将增大,燃烧损失增大,甚至会燃烧不稳定或灭火。

此外,还可能会引起过热气温升高或加大灰粒对受热面的磨损及引风机的损耗。

反之,如果炉膛压力过高,炉膛内火焰和高温烟气就会向外面泄露,影响锅炉的安全运行。

因此必须对炉膛压力进行控制,以保证炉膛压力保证在一定的允许范围内。

4.3 工况要求炉内燃烧工况一旦发生变化,炉膛压力随即发生相应变化。

当锅炉的燃烧系统发生故障或异常时,最先将在炉膛压力上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。

因此,监视和控制炉膛压力对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。

4.4炉膛压力的控制系统原理图图3 炉膛压力的控制系统原理图4.5 说明调节过程和控制原理1 燃料量调节:通过调节燃料量使入炉燃料燃烧所产生的量能与锅炉外部负荷需求的量能相适应。

2 送风量调节:燃料量改变是,送风量也应改变,以保证燃料的完全燃烧和排烟热损失最小。

调节送风量的目的是保证锅炉燃烧过程的经济性。

3引风量调节:引风量调节的目的是使引风量与送风量相适应,以保持炉膛压力的要求范围内。

5仪表装置选型5.1仪表、控制装置等进行选型控制系统要想充分发挥它的功能作用,正确的仪表选型至关重要。

对于不同的控制工况,仪表选型会有很大不同。

仪表选型的一般原则是根据控制的实际对象、实际工况、实际功能来选择合适的仪表类型。

燃气燃烧器选配威索燃气燃烧器WM – G10/4-A / ZM型号;火力调节器选配SIEMENS RWF40型号;压力变送器选择JKS318智能型压力变送器,该变送器采用高性能的感压芯片,配合先进的电路处理和温度补偿技术,将压力变化转化为4~20mA的线性电流,压力测量范围最大为0~40MPa,最小为0~1KPa 5.2控制设备材料表表1 控制设备材料表5.3 安装事项1 在安装工作开始前要断开主开关和保护开关。

忽视此点可能导致受到电击,造成伤亡事故。

2 由于燃气泄漏可能形成可爆炸的燃气-空气混合。

在遇到明火时可能造成爆炸。

3 燃烧器功率必须符合加热装置的功率范围。

铭牌上的功率数据是燃烧器可能达到的最低和最高功率。

4 一些燃烧器部件(如火焰筒、燃烧器法兰等)在设备运行时发热。

触摸前要注意先让其冷却。

5 多个控制器并排安装间隙最小纵向30.5mm,水平10.5mm。

参考文献:[1] 威索monarch燃气燃烧器WM10安装使用说明书[2] 西门子RWF40说明书[3] 合康HID300变频调速器使用说明书[4] 潘永湘过程控制与自动化仪表北京:机械工业出版社 2007[5] 丁崇功工业锅炉设备北京:机械工业出版社 2005[6] 俞金寿,孙自强过程自动化及仪表北京:化学工业出版社 2007[7] 刘德昌锅炉改造技术北京:中国电力出版社 2000山东建筑大学课程(设计说明书)论文题目:燃气锅炉燃烧控制系统课程:新能源自动化课程设计院(部):热能工程学院专业:能源工程及自动化班级:能源111学生姓名:李凯凯学号: 2011031287指导教师:宋永明完成日期: 2014年12月山东建筑大学课程(设计说明书)论文题目:燃气锅炉燃烧控制系统课程:新能源自动化课程设计院(部):热能工程学院专业:能源工程及自动化班级:能源111学生姓名:李凯凯学号: 2011031287指导教师:宋永明完成日期: 2014年12月。

相关文档
最新文档