高中数学选修4-4-简单曲线的极坐标方程(教学校园)
人教课标版高中数学选修4-4《简单曲线的极坐标方程》教案-新版

1.3 简单曲线的极坐标方程一、教学目标 (一)核心素养通过这节课学习,了解极坐标方程的意义、能在极坐标系中给出简单曲线的方程,体会极坐标下方程与直角坐标系下曲线方程的互化,培养学生归纳类比推理、逻辑推理能力. (二)学习目标1.通过实例,了解极坐标方程的意义,了解曲线的极坐标方程的求法. 2.掌握特殊情形的直线与圆的极坐标方程.3.能进行曲线的极坐标方程与直角坐标方程的互化,体会在用方程刻画平面图形时选择适当坐标系的意义. (三)学习重点1.掌握特殊情形的直线与圆的极坐标方程. 2.进行曲线的极坐标方程与直角坐标方程的互化. (四)学习难点1.求曲线的极坐标方程.2.对不同位置的直线和圆的极坐标方程的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第12页至第15页,填空:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程 0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程. 2.预习自测(1)下列点不在曲线θρcos =上的是( )A.)3,21(πB.)32,21(π-C.)3,21(π-D.)32,21(π-【知识点】极坐标方程【解题过程】将选项中点一一代入验证可得选项D 不满足方程 【思路点拨】由极坐标方程定义可得 【答案】D .(2)极坐标系中,圆心在极点,半径为2的圆的极坐标方程为( ) A.2=ρ B .4=ρ C.2cos =θρD.1sin =θρ【知识点】极坐标方程【解题过程】任取圆上一点的极坐标为),(θρ,依题意R ∈=θρ,2,所以选A 【思路点拨】根据题意寻找θρ,的等量关系式 【答案】A .(3)将下列曲线的直角坐标方程化为极坐标方程: ①射线)0(3≤=x x y ;②圆0222=++x y x . 【知识点】直角坐标方程与极坐标方程互化【解题过程】①因为=x θρcos ,=y θρsin 代入可得3tan ,cos 3sin ==θθθ 又因为0≤x ,所以射线在第三象限,故取θ=4π3(ρ≥0 )②将=x θρcos ,=y θρsin 代入0222=++x y x ,整理得θρcos 2-= 【思路点拨】利用极坐标与直角坐标互化可得 【答案】①θ=4π3(ρ≥0 ) ②θρcos 2-=.(4)极坐标系下,直线2)4cos(=-πθρ与圆ρ=2的公共点个数是 .【知识点】极坐标方程、直线与圆的位置关系【解题过程】直线方程ρcos )4(πθ-=2,即)sin 22cos 22(θθρ+=2,所以直角坐标方程为x +y -2=0.圆的方程ρ=2,即ρ2=2,所以直角坐标方程为x 2+y 2=2. 因为圆心到直线的距离为d =|0+0-2|2=2=r ,所以直线与圆相切,即公共点个数是1.【思路点拨】将问题转化为平面直角坐标系中的问题处理 【答案】 1 (二)课堂设计 1.知识回顾(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.问题探究探究一 结合实例,类比认识极坐标方程★ ●活动① 类比推理概念在平面直角坐标系中,平面曲线C 可以用方程0),(=y x f 表示.曲线与方程满足如下关系:(1)曲线C 上点的坐标都是方程0),(=y x f 的解; (2)以方程0),(=y x f 的解为坐标的点都在曲线C 上.那么,在极坐标系中,平面曲线是否可以用方程0),(=θρf 表示呢?我们先看一个例子 半径为a 的圆的圆心坐标为)0,(a C ,你能用一个等式表示圆上任意一点的极坐标),(θρ满足的条件吗?类比直角坐标方程的求解过程,我们先建立极坐标系,如右图所示,设圆经过极点O ,圆与极轴的另一个交点为A ,则a OA 2=,设),(θρM 为圆上除A O ,以外的任意一点,则AM OM ⊥,所以在AMO Rt ∆中,MOA OA OM ∠=cos ,即θρcos 2a =.经验证,点)0,2(),2,0(a A O π的坐标满足上式.于是上述等式为圆上任意一点的极坐标),(θρ满足的条件,反之,坐标适合上述等式的点都在这个圆上.所以我们类比直角坐标方程可以得到极坐标方程的定义,即:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不惟一,即一条曲线上点的极坐标有多组表示形式,所以我们这里要求至少有一组能满足极坐标方程.则这个点在曲线上.【设计意图】利用类比的思想,从熟悉的概念得到新的数学概念,体会概念的提炼、抽象过程. ●活动② 归纳梳理、理解提升分析上述实例,你能得出求解极坐标方程的一般步骤吗?求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲线上的点的极坐标θρ,的关系式0),(=θρf 表示出来,就得到曲线的极坐标方程,具体如下:(1)建立适当的极坐标系,设),(θρM 是曲线上任意一点.(2)连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理,化简,得出曲线的极坐标方程.(4)检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.【设计意图】通过实例类比总结方法,培养学生数学抽象、归类整理意识. 探究二 探究直线的极坐标方程 ●活动 互动交流、初步实践组织课堂讨论:结合极坐标方程的定义及求解极坐标方程的步骤,我们动手求解:直线l 经过极点,从极轴到直线l 的角为3π的直线的极坐标方程.M如右图,以极点O 为分界点,直线l 上的点的极坐标分成射线,OM 射线M O '两个部分,射线OM 上任意一点的极角都为3π,所以射线OM 的极坐标方程为:)0(3≥=ρπθ;而射线M O '上任意一点的极角都是34π,所以射线M O '的极坐标方程为:)0(34≥=ρπθ 综上:直线l 的极坐标方程可以用)0(3≥=ρπθ和)0(34≥=ρπθ表示现在产生一个问题:能否用一个方程来表示呢?我们定义:若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称.这样就可以将ρ的取值范围推广到全体实数.于是在允许R ∈ρ,那么上述直线l 的极坐标方程就可以写为: )(3R ∈=ρπθ或)(34R ∈=ρπθ 【设计意图】得到特殊直线的极坐标方程,加深对极坐标方程内涵与外延的理解,突破重点. 探究三 探究极坐标方程与直角坐标方程的联系★▲ ●活动① 巩固理解,加深认识在学习了极坐标方程及求解步骤后,动手做一做:在极坐标系中,圆心为)4,1(πA ,半径为1的圆的极坐标方程是多少呢?如右图所示,设),(θρP 为圆上任一点,当P A O ,,三点不共线是,在OPA ∆中利用余弦定理可得222)4cos(2AP OAOP OP OA =--+πθ1)4cos(212=--+∴πθρρ即 )4cos(2πθρ-=当P A O ,,三点共线时,点P 的坐标为)43,0(π或)4,2(π,这两点的坐标满足上式,所以上式为所求的圆的极坐标方程.在找平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.【设计意图】巩固极坐标方程的求解,同时为极坐标方程与直角坐标方程的转化作准备. ●活动② 强化提升、灵活应用),(θρPO根据上节的直角坐标与极坐标的互化,先把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.,然后先求直角坐标系下的圆的方程;即由于圆心在极坐标系下为)4,1(πA ,则在直角坐标系下圆心)22,22(A ,半径1=r ,所以圆的直角坐标方程为:1)22()22(22=-+-y x ,整理得:y x y x 2222+=+,因为=x θρcos , =y θρsin ,代入直角坐标方程得)4cos(2sin 2cos 22πθρθρθρρ-=+=化简得: )4cos(2πθρ-= 【设计意图】掌握极坐标方程与直角坐标方程的转化,进一步认识极坐标系. 活动③ 巩固基础,检查反馈 例1 极坐标方程2πρ=表示( )A .直线B .射线C .圆D .椭圆 【知识点】曲线与极坐标方程.【解题过程】44,222222ππρπρ=+∴=∴=y x ,所以曲线表示的是圆. 【思路点拨】通过转化为直角坐标方程来判断. 【答案】C同类训练 极坐标方程)(21sin R ∈=ρθ表示的曲线是( ) A .两条相交直线 B .两条射线 C .一条直线 D .一条射线 【知识点】曲线与极坐标方程. 【解题过程】∵sin θ=21,∴)(26Z k k ∈+=ππθ或)(265Z k k ∈+=ππθ,又∵R ∈ρ,∴)(21sin R ∈=ρθ表示两条相交直线. 【思路点拨】通过极坐标方程来判断. 【答案】A例2 把下列直角坐标方程化成极坐标方程.(1)0132=--y x (2)0222=++y y x (3)1022=-y x【知识点】直角坐标方程化成极坐标方程.【解题过程】(1)由=x θρcos ,=y θρsin ,代入直角坐标方程0132=--y x 得,01sin 3cos 2=--θρθρ,即01)sin 3cos 2(=--θθρ(2)由上同理可得:θρsin 2-= (3)102cos 2=θρ 【思路点拨】利用直角坐标与极坐标互化公式求解.【答案】(1)01)sin 3cos 2(=--θθρ;(2)θρsin 2-=;(3)102cos 2=θρ同类训练 把下列极坐标方程化为直角坐标方程. (1) 2sin =θρ (2) θθρsin 4cos 2-= 【知识点】直角坐标方程与极坐标方程互化.【解题过程】(1)由=x θρcos , =y θρsin ,代入极坐标方程2sin =θρ得,2=y ,即02=-y (2)由θθρsin 4cos 2-=,等式两边同乘以ρ得θρθρρsin 4cos 22-=,所以y x y x 4222-=+,即:5)2()1(22=++-y x【思路点拨】极坐标方程化为直角坐标方程要通过变形,构造形如θρsin ,θρcos ,2ρ的形式,进行整体代换.【答案】(1)02=-y ; (2)5)2()1(22=++-y x .【设计意图】巩固极坐标方程的求解、判断以及直角坐标方程与极坐标方程的互化. ●活动4 强化提升、灵活应用例3 已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程22)4sin(=+πθρ化为直角坐标方程,得:1=+y x .把点A 的极坐标)47,2(π化为直角坐标,得:)2,2(-在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离222122=--=d ,所以点)47,2(πA 到直线22)4sin(=+πθρ的距离为22. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】22. 同类训练 求极点到直线2)cos (sin =-θθρ的距离. 【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程2)cos (sin =-θθρ化为直角坐标方程,得:2=-x y . 把极点的极坐标)0,0(化为直角坐标,得:)0,0(在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离22200=--=d ,所以极点到直线2)cos (sin =-θθρ的距离为2. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】2. 3.课堂总结 知识梳理(1)一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.(2)求曲线的极坐标方程的一般步骤:①建立适当的极坐标系,设),(θρM 是曲线上任意一点.②连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. ③将列出的关系式进行整理,化简,得出曲线的极坐标方程.④检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.(3)若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称. 重难点归纳(1)求解平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.(2)极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验. (三)课后作业 基础型 自主突破1.经过极点,从极轴到直线l 的夹角是4π的直线l 的极坐标方程是( )A .)0(4≥=ρπθ B .4πρ=C .)0(4>=ρπθ D .)(4R ∈=ρπθ【知识点】极坐标方程.【解题过程】将直线l 画在极坐标系中,易得选项D 正确. 【思路点拨】根据根据图像进行判断. 【答案】D .2.直线33x -y =0的极坐标方程(限定ρ≥0)是( ) A .θ=π6 B .θ=76π C .θ=π6和θ=76πD .θ=56π【知识点】极坐标方程与直角坐标方程互化. 【解题过程】由33x -y =0,得33ρcos θ-ρsin θ=0,即tan θ=33,∴θ=π6和θ=76π.又ρ≥0,因此直线的方程可以用θ=π6和θ=76π表示 【思路点拨】极坐标方程与直角坐标方程互化. 【答案】C3.极坐标方程cos θ(ρ≥0)表示的曲线是( ).A .余弦曲线B .两条相交直线C .两条射线D .一条射线 【知识点】极坐标方程的求解.【解题过程】∵cos θ,∴θ=4π±+2k π(k ∈Z ).又∵ρ≥0,∴cos θ表示两条射线. 【思路点拨】利用三角函数图像可得. 【答案】C .4.圆的极坐标方程ρ=cos θ-2sin θ对应的直角坐标方程为( )A.45)1()21(22=+++y xB.45)1()21(22=++-y xC.45)1()21(22=-+-y xD.45)1()21(22=-++y x【知识点】极坐标方程与直角坐标方程互化.【解题过程】θρθρρθθρsin 2cos ,sin 2cos 2-=∴-= ,所以y x y x 222-=+即45)1()21(22=++-y x ,所以选B.【思路点拨】利用极坐标与直角坐标互化公式求解. 【答案】B .5.极坐标系内,点)2,1(π到直线ρcos θ=2的距离是________.【知识点】极坐标与直角坐标的转化.【解题过程】点)2,1(π的直角坐标为(0,1),直线ρcos θ=2的直角坐标方程为x =2,故点(0,1)到直线x =2的距离是d =2.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】2.6.在极坐标系中,A ,B 分别是直线3ρcos θ-4ρsin θ+5=0和圆ρ=2cos θ上的动点,则A ,B 两点之间距离的最小值是________.【知识点】直线与圆的极坐标方程、点到直线的距离. 【数学思想】分类讨论思想.【解题过程】:由题意,得直线的平面直角坐标方程为3x -4y +5=0,圆的普通方程为(x -1)2+y 2=1,则圆心(1,0)到直线的距离d =|3×1-4×0+5|32+42=85,所以A ,B 两点之间距离的最小值为d -r =85-1=35.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】 35. 能力型 师生共研7.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.)2,1(πB.)23,1(π C .)0,1(D .),1(π【知识点】极坐标与直角坐标互化、圆的标准方程.【解题过程】由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为)23,1(π. 【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】B .8.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1)3cos(=-πθρ,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 【知识点】极坐标与直角坐标互化、极坐标方程.【解题过程】 (1)由1)3cos(=-πθρ,得1)sin 23cos 21(=+θθρ又x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 2+32y =1, 即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0). 当θ=π2时,ρ=233,∴点N )2,332(π.(2)由(1)知,M 点的坐标(2,0),点N 的坐标)332,0(. 又P 为MN 的中点, ∴点P )33,1(,则点P 的极坐标为)6,332(π. 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 【思路点拨】把极坐标化为直角坐标求解. 【答案】(1)M (2,0),N )2,332(π;(2) θ=π6(ρ∈R ) 探究型 多维突破9.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为22)4cos(=-πθρ,曲线C 的极坐标方程为),2(sin 4⎥⎦⎤⎢⎣⎡∈=ππθθρ,求直线l 与曲线C 的交点的极坐标.【知识点】极坐标方程的应用. 【数学思想】分类讨论的思想.【解题过程】由⎪⎩⎪⎨⎧=-=22)4cos(sin 4πθρθρ 得:1sin cos sin 2=+θθθ,即:θθθ2cos cos sin = (1)当0cos =θ时,即2πθ=时,4=ρ(2)当0cos ≠θ时,即2πθ≠时,此时θθcos sin =,即⎥⎦⎤⎢⎣⎡∈=ππθθ,21tan ,所以不成立. 交点极坐标为)2,4(π【思路点拨】类比直角坐标系,联立方程组求解.【答案】)2,4(π.10.已知椭圆的中心在坐标原点O ,椭圆的方程为:12222=+b y a x ,B A ,分别为椭圆上的两点,且OB OA ⊥. (1)求证:2211OB OA +为定值;(2)求AOB ∆面积的最大值和最小值.【知识点】极坐标方程的应用.【解题过程】将椭圆的直角坐标方程化为极坐标方程得(ρcos θ)2a 2+(ρsin θ)2b 2=1,即ρ2=a 2b 2b 2cos 2θ+a 2cos 2 θ,由于OA ⊥OB ,可设A (ρ1,θ1),B ⎝ ⎛⎭⎪⎫ρ2,θ1+π2,则ρ21=a 2b 2b 2cos 2 θ1+a 2sin 2 θ1,ρ22=a 2b 2b 2sin 2 θ1+a 2cos 2 θ1.于是1|OA |2+1|OB |2=1ρ21+1ρ22=b 2cos 2θ1+a 2sin 2 θ1+b 2sin 2 θ1+a 2cos 2θ1a 2b 2=a 2+b 2a 2b 2.所以1|OA |2+1|OB |2为定值.(2)解析:依题意得到S △AOB =12|OA ||OB |=12ρ1ρ2= 12·a 2b 2(b 2cos 2θ1+a 2sin 2θ1)(b 2sin 2θ1+a 2cos 2θ1)=12·a 2b 2(a 2-b 2)2sin 22θ14+a 2b 2,当且仅当sin 22θ1=1,S △AOB 有最小值为a 2b 2a 2+b 2;当sin 22θ1=0,S △AOB 有最大值为ab 2. 【思路点拨】由于涉及到长度,所以将椭圆直角坐标方程转化为极坐标方程求解.【答案】(1)1|OA |2+1|OB |2=a 2+b 2a 2b 2;(2)S △AOB 有最小值为a 2b 2a 2+b 2,S △AOB有最大值为ab2. 自助餐1.过点)4,2(πA 且平行于极轴的直线的极坐标方程是( )A .2sin =θρB .2sin =θρC .2cos =θρD .2cos =θρ【知识点】极坐标方程的求解.【解题过程】如图所示,如图所示,在直线l 上任意取点M (ρ,θ)(ρ≥0),过Mx 轴于H .⎭⎪⎫2,π4,在直线l 上任意取点),(θρM ,过M 作x MH ⊥轴于H ,)4,2(πA 24sin 2==∴πMH ,,sin sin Rt OMH MH OM θρθ∴∆=∴=,所以,选B【思路点拨】利用根据所给的几何条件,寻找θρ,的关系式. 【答案】B .2.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是( ) A.22B.2C.1D.2 【知识点】极坐标与直角坐标互化、两圆的关系.【解题过程】:将方程化为直角坐标方程.因为ρ不恒为零,可以用ρ分别乘方程两边,得ρ2=ρcos θ和ρ2=ρsin θ.∴x 2+y 2=x 和x 2+y 2=y .它们的圆心分别是(21,0)、(0,21),圆心距是22.【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】A .3.在极坐标系中,曲线C :ρ=2sin θ上的两点A ,B 对应的极角分别为2π3,π3,则弦长|AB |=________.【知识点】极坐标与直角坐标互化、两点间的距离. 【解题过程】A ,B 两点的极坐标分别为)3,3(),32,3(ππ,化为直角坐标为)23,23(),23,23(-.故3)2323()2323(22=-+--=AB 【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】3.4.曲线θ=0,θ=π3(ρ≥0)和ρ=4所围成图形的面积是__________. 【知识点】极坐标与直角坐标的互化、扇形的面积. 【数学思想】数形结合的思想【解题过程】将极坐标方程化为直角坐标系下的方程,分别为射线)0(3,0≥==x x y y ,圆1622=+y x ,他们围成的是一个圆心角为3πθ=,半径为4=r 的扇形,所以38212πθ==r S . 【思路点拨】先化为直角坐标方程,再在直角坐标系中画出相应的图形可得.【答案】38π. 5.把下列直角坐标方程与极坐标方程进行互化:(1)x 2+(y -2)2=4; (2)ρ=9(sin θ+cos θ); (3)ρ=4;【知识点】极坐标与直角坐标互化.【解题过程】(1)∵x 2+(y -2)2=4,∴x 2+y 2=4y ,代入x =ρcos θ,y =ρsin θ得ρ2-4ρsin θ=0,即ρ=4sin θ.(2)∵ρ=9(sin θ+cos θ),∴ρ2=9ρ(sin θ+cos θ), ∴x 2+y 2=9x +9y ,即281)29()29(22=-+-y x(3)∵ρ=4,∴ρ2=42,∴x 2+y 2=16.【思路点拨】用公式x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2进行直角坐标方程与极坐标方程的互化即可.【答案】(1)ρ=4sin θ;(2)281)29()29(22=-+-y x ;(3)x 2+y 2=16.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积 【知识点】极坐标与直角坐标互化、三角形的面积.【解题过程】:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.【思路点拨】根据极坐标与直角坐标互化公式求解,且把两圆画在极坐标系中,利用ρ的几何意义求三角形的面积.【答案】(1)C 1 ρcos θ=-2,C 2 ρ2-2ρcos θ-4ρsin θ+4=0;(2)12.。
人教版数学选修4-4课件1.3 简单曲线的极坐标方程

理得 sin
O∠MO AM=sin
∠1 OMA,
即 sin
ρ
34π=sin
1π4-θ,化简得 ρ(cos θ-sin
θ)=1,
经检验,点 A(1,0)也适合上述方程.则直线的极坐标方程为 ρ(cos θ-sin θ)=1.
方法二 先求过点 A 且倾斜角为π4的直线的直角坐标方程为 y-0=tan π4(x-1),
【例题 2】 求过点 A(1,0),且倾斜角为π4的直线的极坐标方程. 思维导引:作出图形,找出动点性质,运用正弦定理解三角形建立动点 M 的关系 式,从而建立动点(ρ,θ)的方程.也可先求出直角坐标方程,再转换成极坐标方程.
解析:方法一 由题意,设 M(ρ,θ)为直线上任意一点,则△OAM 中,由正弦定
的任意一点. • (2)由曲线上的点所合适的条件,列出曲线上
任意一点的极径ρ与极角θ之间的关系式. • (3)将(2)所得方程进行整理与化简,得出曲线
• 【例题4】 (202X·河南郑州高二检测)从极点 O作直线与另一直线l:ρcos θ=4相交于点M, 在OM上任取一点P,使OM·OP=12.
• (1)求点P的轨迹方程;
• (1)曲线C上点的坐标都是方程f(x,y)=0的解; • (2)以方程f(x,y)=0的解为坐标的点都在曲线
C上. • 满足以上两点则说曲线与方程建立了一一对
应的关系,方程是曲线的方程,曲线是方程 的曲线.
•要点二 曲线的极坐标方程
• 一般地,在极坐标系中,如果平面曲线C上 的任意一点的极坐标中至少有一个满足方程 f(ρ,θ)=0,并且坐标满足方程f(ρ,θ)=0的 点都在曲线C上,那么方程f(ρ,θ)=0叫做曲 线C的____极__坐_标__方_程______.
高中数学选修4-4 1.3简单曲线的极坐标方程 人教版(2)精选教学PPT课件

例题2、求过点A(a,0)(a>0),且垂直 于极轴的直线L的极坐标方程。 解:如图,设点 M ( , ) M 为直线L上除点A外的任 意一点,连接OM ﹚ o A x 在 Rt MOA 中有
OM cos MOA OA 即 cos a 可以验证,点A的坐标也满足上式。
求直线的极坐标方程步骤 1、根据题意画出草图; 2、设点 M ( , ) 是直线上任意一点; 3、连接MO; 4、根据几何条件建立关于 , 的方 程,并化简; 5、检验并确认所得的方程即为所求。
练习:设点A的极坐标为 ( a , 0) ,直线l过 点A且与极轴所成的角为 ,求直线 l 的 极坐标方程。 M 解:如图,设点 M ( , ) ﹚ 为直线 l 上异于的点 o A x 连接OM, 在MOA 中有
a sin( ) sin( ) 即
sin( ) a sin
显然A点也满 足上方程。
例题3设点P的极坐标为( 1 ,1 ) ,直线l过 点P且与极轴所成的角为 ,求直线 l 的 极坐标方程。
1 P
M
o
﹚ ﹚
1
x
解:如图,设点 M ( , ) 为直线上除 点P外的任意一点,连接OM 则 OM , xOM 由点P的极坐标知 OP 1 xOP 1
[1]作射线OP,使XOP= /4 [2]在OP的反向延长 线上取一点M,使 OM= 3 O P = /4 X
M
新课讲授 例题1:求过极点,倾角为 4 的射线 的极坐标方程。 M 分析: 如图,所求的射线 上任一点的极角都 ﹚ 4 o x 是 / 4,其 极径可以取任意的非负数。故所求 直线的极坐标方程为 ( 0)
高二数学之人教版高中数学选修4-4课件:第一讲三简单曲线的极坐标方程

当点 P 在极轴的反向延长线上时,P 点的极坐标为(1, π)或(3,π),经验证,也适合这个方程,故 ρ2+4ρcos θ+ 3=0 为所求圆的极坐标方程.
(3)设点 P(ρ,θ)为所求圆上任意一点,当点 P 不在直 线 θ=π4上时,根据余弦定理,得 12=ρ2+(2 2)2-4 2 ρcosπ4-θ,即 ρ2-4ρcos θ-4ρsin θ+7=0.
2.圆的极坐标方程(半径为 r)
圆心位置
极坐标方程
图形
圆心在极点(0,0)
ρ=r (0≤θ<2π)
圆心在点(r,0)
ρ=2rcos θ -π2≤θ<π2
圆心在点r,π2 圆心在点(r,π)
圆心在点r,32
π
ρ=2rsin_θ (0≤θ<π) ρ=-2rcos θ π2≤θ<32π ρ=-2rsin θ (-π<θ≤0)
1.思考判断(正确的打“√”,错误的打“×”). (1)若点 P 在曲线 C 上,则点 P 的极坐标满足曲线 C 的极坐标方程.( ) (2)tan θ=1 与 θ=π4表示同一条曲线.( ) (3)ρ=3 与 ρ=-3 表示同一条曲线.( ) (4)极坐标方程 θ=34π表示的图形是一条射线.( )
ρ2cos2θ ρ2sin2θ 得 4 + 3 =1,即
ρ2(3cos2θ+4sin2θ)=12.
④把 x=ρcos θ,y=ρsin θ 代入 x2-y2=2 中, 得 ρ2cos 2θ=2. (2)①把 ρcos θ=x,ρsin θ=y 代入方程 ρcos θ-ρsin θ -1=0 中,得 x-y-1=0. ②把 ρ= x2+y2代入方程 ρ=3 中,得 x2+y2=9.
答案:(1)× (2)× (3)√ (4)×
人教版A版高中数学选修4-4:简单曲线的极坐标方程

归纳:求曲线的极坐标方程步骤 1、根据题意画出草图;
2、设点M(, )是曲线上任意一点;
3、连接MO;
4、根据几何条件建立关于 , 的方 程,并化简; 5、检验并确认所得的方程即为所求(可 以省略)。
例1.已知圆O的半径为a,建立怎样的极坐标 系,可以使圆的极坐标方程更简单?
1、求以下常见圆的极坐标方程,并作图:
满足的条件,另一方面,可以验证,坐标适合 等式(1)的点都在这个圆上。
一、定义:如果曲线C上的点与方程f(,)=0有 如下关系:
(1)曲线C上任一点的坐标(所有坐标中至少有一 个)符合方程f(,)=0 ;
(2)方程f(,)=0的所有解为坐标的点都在曲线C 上。
则方程f(,)=0叫做曲线C的极坐标方程.
是A,那么OA=2a,设M (, )为圆上除点O,A
以外的任意一点,那么OM AM。在RtAMO
中OM OA cosMOA即=2a cos...........(1) 可以验证,点O(0, ), A(2a,0)的坐标满足等式(1)
2
所以,等式(1)就是圆上任意一点的极坐标(, )
4
; ; ;
பைடு நூலகம்; 。
例 2.方程互化
(1)化直角坐标方程 x 2 y 2 8 y 0 为 极坐标方程
6 cos( ) ( 2)化极坐标方程
为直角坐标方程 [来源:]
3
练习:
1、把下列极坐标方程化为直角坐标方程,并作图:(1) 2 ;(2) 4sin .
2、求下列圆的圆心的极坐标:
(1) 5cos ; (2) 2 sin( ) .
4
小结:知识、思想方法、数学核心素养
1.3 简单曲线的极坐标方程 课件(34张PPT)高中数学选修4-4(人教版A版)

3.圆的极坐标方程
圆心为M(ρ0,θ0)、半径为r的圆方程为 ρ2-2ρ0ρcos (θ-θ0)+ -r2=0.
2 0 特别当圆心与极点重合时,圆的方程为ρ=r.
练习 几个特殊位置的直线的极坐标方程. ①直线过极点且过点M(ρ0,θ0)的极坐标方程为____________. ②直线过点M(a,0)且垂直于极轴的极坐标方程为____________. ③直线过点M 且平行于极轴的极坐标方程为____________.
3.利用极坐标思想方法亦可简便解决一些轨迹问题, 尤其是涉及线段间数量关系的问题.求极坐标系下的轨迹 方程与求直角坐标系下的轨迹方程的方法一致.如定义 法、直接法、参数法等. 4.不论曲线的直角坐标系的方程如何,只要我们将极 坐标系的极点放在曲线的焦点上,总可将方程化成较简单 的极坐标方程.反过来,有了适当的极坐标方程和直角坐 标系与极坐标系的位置关系,也可以得到曲线在直角坐标 系内的方程.这样,在解题过程中,我们就可以灵活地变换坐标系,使解题过 程大为简化. 5.处理极坐标系中的直线与圆的问题大致有两种思路: (1)化极坐标方程为直角坐标方程再处理; (2)根据ρ、θ的几何意义进行旋转或伸缩变换.
3π π 5π 5π 7π - = ,∴∠OAM=π- = . 4 3 12 12 12 3π 又∵∠OMA=∠MBx-θ= -θ,在△MOA 中,根据正 4 3 ρ 弦定理,得 = . 7 π 3 π sin 4 -θ sin 12 π π 2+ 6 7π ∵sin =sin 4+3= , 12 4 3π 将 sin 4 -θ 展开,化简上面的方程,可得 3 3 3 ρ(sin θ+cos θ)= + . 2 2 π 3π 即过点 A3,3 且和极轴成 的直线方程为 4 3 3 3 ρ(sin θ+cos θ)= + . 2 2 ∴∠OAB=
人教版A版高中数学选修4-4简单曲线的极坐标方程
(2)设点P的极坐标为(ρ1,θ1),点M的极坐标为(ρ,θ).
∵点M为线段OP的中点,∴ρ1=2ρ,θ1=θ.
将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.
∴点M轨迹的极坐标方程为ρ=cos θ,它表示圆心在
点
21,
0
,半径为
1 2
的圆.
13.在极坐标系中,已知圆 C 经过点 P 2,π4,圆心为 直线 ρsinθ-3π=- 23与极轴的交点,求圆 C 的极坐标方程.
简单曲线的极坐标方程
1.理解极坐标方程的意义.
2.能在极坐标中给出简单图形的极坐标方程.
3.通过比较这些图形在极坐标系和平面直角坐标系 中的方程,体会在用方程刻画平面图形时选择适当坐标系 的意义.
1.定义
如果曲线C上的点与方程f(ρ,θ)=0有如下关系:
(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方 程f(ρ,θ)=0.
解析:(1)∵ρ2cos 2θ=1,
∴ρ2cos2θ-ρ2sin2θ=1.
∴化为直角坐标方程为 x2-y2=1.
(2)因为
ρ=csoins
θ1 θ·cos
θ,
∴ρcos2θ=sin θ,ρ2cos2θ=ρsin θ.
∴化为直角坐标方程为 x2=y.
(3)∵ρ=2cos θcos 4π+2sin θsin 4π= 2cos θ+ 2sin θ,
(2)方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上,则 曲线C的方程是f(ρ,θ)=0.
2.直线的极坐标方程
若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它 的方程为ρsin (θ-α)=ρ0sin (θ0-α).
3.圆的极坐标方程 圆心为M(ρ0,θ0)、半径为r的圆方程为
高中数学选修4-4(人教A版)第一讲坐标系1.3知识点总结含同步练习及答案
第一讲 坐标系 三 简单曲线的极坐标方程
一、知识清单
极坐标与极坐标方程
二、知识讲解
1.极坐标与极坐标方程 描述: 极坐标系 在平面上取一个定点O ,由O 点出发的一条射线Ox,一个长度单位及计算角度的正方向(通常取 逆时针方向),合称为一个极坐标系.O 点称为极点,Ox称为极轴.平面任一点M 的位置可以由 线段OM 的长度ρ 和从Ox到OM 的角度θ 来刻画.这两个数组成的有序对(ρ, θ)称为点M 的极坐 标.ρ 称为极径,θ 称为极角. 在极坐标系(ρ, θ)中,一般限定ρ ≥ 0.当ρ = 0时,就与极点重合,此时θ 不确定.给定点的极坐 标(ρ, θ),就唯一地确定了平面上的一个点.但是,平面上的一个点的极坐标并不是唯一的,它有 无穷多种表示形式.事实上,(ρ, θ)和(ρ, θ + 2kπ)代表同一个点,其中k 为整数.可见,平面上的 点与它的极坐标不是一一对应关系.这是极坐标与直角坐标的不同之处,如果限定ρ ≥ 0, 0 ≤ θ ≤ 2π,则除极点外,平面上的点就与它的极坐标系构成一一对应关系. ρ < 0,此时极坐标(ρ, θ)对应的点M 的位置按下面规则确定:点M 在与极轴成θ 角的射线的反向 延长线上,它到极点O 的距离为|ρ|,即规定当ρ < 0时,点M (ρ, θ)就是点M (−ρ, θ + π). 极坐标与直角坐标系的关系 设M 为平面上的一点,它的直角坐标系为(x, y),极坐标为(ρ, θ).则有{ x = ρ cos θ 或
⎧ ρ2 = x 2 + y 2 ⎨ ⎩ tan θ = y (x ≠ 0) ,ρ < 0也成立. x
y = ρ sin θ
曲线的极坐标方程 在给定的平面上极坐标系下,有一个二元方程F (ρ, θ) = 0.如果曲线C 是由极坐标(ρ, θ)满足方程 的所有点组成的,则称此二元方程F (ρ, θ) = 0为曲线C 的极坐标方程. 圆心(a, 0)在极轴上且过极点的圆,其极坐标方程是ρ = 2a cos θ ;圆心在点(a, 圆,其极坐标方程是ρ = 2a sin θ,0 ≤ θ ≤ π.
选修4-4第一章《简单曲线的极坐标方程》
讲义编号_
学员编号: 学员姓名: 课 题 年 级: 辅导科目:数学 简单曲线的极坐标方程 1、进一步理解极坐标系和极坐标方程。 教学目的 2、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的 极坐标方程。 教学内容 课 时 数: 3 学科教师:
授课日期及时段
, ) 的极坐标满足方程 . 4 4
5 , ) 可以表示为 ( , 2 )或( , 2 )或(- , ) 等多种形式 , 其 4 4 4 4 4 4 4 4
三、重难点突破
例 1 、 在 极 坐 标 系 中 , 如 果 A(2,
4
), B (2,
cos 4, 设A(0 ,0 ),P( , ),∵点 A 在直线 cos 4 上,
∴ 0 cos 0 4 ∵⊿OPA 为等腰直角三角形,且∠OPA= ∴ 0 = 2 ,且 0 ①
4
,而|OP|= ,|OA|= 0 ,以及 POA , 4 2
二、知识梳理
1、极坐标系的概念 (1)极坐标系
如图所示
,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一
个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标
sin sin( ) 3
(0
3
), 即为所求极坐标方程.
例 3、如图,点 A 在直线 x=4 上移动,⊿OPA 为等腰直角三角形,⊿OPA 的顶角为∠OPA(O,P,A 依次按顺时针 方向排列) ,求点 P 的轨迹方程,并判断轨迹形状。
高中数学第一讲坐标系1.3简单曲线的极坐标方程课件新人教A版选修4-4
= cos,
(1)将互化公式
代入直角坐标方程后化简整理即可得
= sin
到相应的极坐标方程;
2 = 2 + 2 ,
tan = ( ≠ 0),
(2)利用公式
将极坐标方程中涉及 ρ,θ 的式子
cos = ,
sin =
全部换成关于 x,y 的式子,化简整理后即可得到相应的直角坐标方
果不加特殊说明,就认为ρ≥0.
探究一
探究二
探究三
思维辨析
变式训练3 (1)极坐标方程ρ=4asin θ化为直角坐标方程
为
;
(2)极坐标方程ρ=9(cos θ+sin θ)化为直角坐标方程
为
.
(3)直角坐标方程x+y-2=0化为极坐标方程
是
;
(4)直角坐标方程2x2+2y2-3x+7=0化为极坐标方程
变式训练1
r=1的圆M的极坐标方程是
.
解析:设 P(ρ,θ)是圆上任意一点,连接 OP,PM.在△OMP 中,由余
弦定理可得 16+ρ2-2×4×ρcos -
π
6
=1,整理得 ρ2-8ρcos -
故圆 M 的极坐标方程是 ρ2-8ρcos -
答案:ρ2-8ρcos -
π
6
+15=0
π
6
+15=0.
π
6
+15=0.
探究一
探究二
探究三
思维辨析
探究二求直线的极坐标方程
π
【例2】 求过点A(1,0)且与极轴所成的角为 4的直线的极坐标方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
复习
1、极坐标系的四要素
极点;极轴;长度单位;角度单位
及它的正方向。 2、点与其极坐标一一对应的条件
0, [0,2 )
3、极坐标与直角坐标的互化公式
2 x2 y2 , tan y ( x 0)
x
x cos , y sin
教资优选
2
曲线的极坐标方程
一 定义:如果曲线C上的点与方程
M
=a
Or
x
教资优选
7
解:如果以圆心O为极点,从O出发的一条射线 为极轴建立坐标系(如图),那么圆上各点的几 何特征就是它们的极径都等于半径r.
设M (, )为圆上任意一点,则OM r,即 =r
显然,使极点与圆心重合时的极坐标方程在形式 上比(1)简单。
教资优选
8
例3.半径为a的圆的圆心坐标为(a,/2)(a>0)
=5 3 cos 5sin,
求在直角坐标系下圆心坐标和半径。
解:=5 3 cos 5sin两边同乘以得
2=5 3 cos-5 sin即化为直角坐标为
x2 y2 5 3x 5y 即(x 5 3 )2 ( y 5)2 25
2
2
所以圆心为(5 3 , 5),半径是5 22
你可以用极坐标方程直接来求吗?
教资优选
19
6、已知圆C1 : 2cos,圆C2 : 2 2 3 sin 2 0,
试判断两圆的位置关系。
解:将两圆都化为直角坐标方程为 C1 : (x 1)2 y2 1,圆心O1(1,0)半径为1 C2 : x2 ( y 3)2 1,圆心O2 (0, 3)半径为1 O1O2 2所以两圆相外切。
求圆的极坐标方程。
=2asin
AM
O
x
教资优选
9
例4.如图,半径为a的圆的圆心坐标为
Ca,1 a>0),圆的极坐标方程?
M (,) A
C a,1
O
x
2a cos( 1)
教资优选
10
例5.如图,C(1,1),半径为r圆的极坐标方
程?
教资优选
11
解:设P(ρ,θ)为圆周上任意一点,如下图所示,在 △OCP中,CP=r,OC=ρ1,OP=ρ.
(1)中心在=极a点,半径为a;
(2)中心在C(a,0),半径为a;
=2acos
(3)中心在(a,/2),半径为a;
=2asin
(4)中心在(a,1),半径为a;
2a cos( 1)
(5)中心在C(1,1),半径为r教资优选
13
思考:已知一个圆的极坐标方程是
f(,)=0有如下关系
(1)曲线C上任一点的坐标(所有坐标 中至少有一个)符合方程f(,)=0 ;
(2)以方程f(,)=0的所有解为坐标的 点都在曲线C上。
则曲线C的方程是f(,)=0 。
教资优选
3
二 求曲线的极坐标方程的步骤:
与直角坐标系里的情况一样 ①建系 (适当的极坐标系) ②设点 (设M( ,)为要求方程的曲线上任意一点) ③列等式(构造⊿,利用三角形边角关系的定理列关于M的等式) ④将等式坐标化 ⑤化简 (此方程f(,)=0即为曲线的方程)
教资优选
20
四 直线的极坐标方程:
思考:在平面直角坐标系中 过点(3,0)且与x轴垂直的直线方程为 x=3 ; 过点(2,3)且与y轴垂直的直线方程为 y=3
教资优选
21
例1:
⑴求过极点,倾斜角为 4 的射线的极坐标方程。
M
﹚4
o
x
( 0)
4 教资优选
22
5
(2)求过极点,倾斜角为 4 的射线的极坐标方程。
5 ( 0)
4
(3)求过极点,倾斜角为 4 的直线的极坐标方程。
4
44
教资优选
18
4、圆=10cos( )的圆心坐标是( C )
A、(5,0)
3
B、(5,
)
3
C、(5, )
3
D、(5, 2 )
3
5、写出圆心在点A(2, )处且过极点的圆的
2
极坐标方程,并把它化成直角坐标方程。
解:=4 cos( ) 4sin
2
化为直角坐标系为 2=4 sin
即x2 y2 4 y x2 ( y 2)2 4
根据余弦定理,得
CP2=OC2+OP2-2OC·OP·cos(θ-θ1), 即r2=ρ12+ρ2-2ρ1ρcos(θ-θ1). 也就是ρ2-2ρ1ρcos(θ-θ1)+(ρ12-r2)=0.
即:2+ 1 2 -2 1 cos( - 1)= r2
这就是圆在极坐标系中的一般方程.
教资优选
12
圆的几种极坐标方程
练习2
1.以极坐标系中的点(1,1)为圆心,1为 半径的圆的方程是( )
A. 2 cos B. 2 sin
4
4
C . 2cos 1 D. 2 sin 1
2、曲线的极坐标方程=4sin 化为直角坐标
方程是什么? x2 ( y 2)2 4
教资优选
16
3、极坐标方程 cos( )所表示的
中 OM OA cos MOA即=2a cos...........(1)
可以验证,点O(0, ), A(2a, 0)的坐标满足等式(1)
2 所以,等式(1)就是圆上任意一点的极坐标(, )
满足的条件,另一方面,可以验证,坐标适合
等式(1)的点都在这个圆教上资优。选
6
例2.已知圆O的半径为r,极坐标方程?
4
曲线是 ( D )
A、双曲线
B、椭圆
C、抛物线
D、圆
解:该方程可以化为=cos( )
4
以(1 , )为圆心,1 为半径的圆。
24
2
教资优选
17
解:=cos cos sin sin
4
4
2 2 cos 2 sin即
2
2
x2 y2 2 x 2 y 0 22
(x 2 )2 (y 2 )2 1
教资优选
14
已知一个圆的极坐标方程是=5 3 cos 5sin,
求圆心坐标和半径。
解:原式可化为
=10(cos 3 sin 1) 10 cos( )
2
2
6
所以圆心为(5, ),半径为5
6
结论:
圆心为(a,1)(a 0)半径为a,圆的极坐 标方程为=2a cos(教资优选1),此圆过极点O。15
教资优选
4
例1.半径为a的圆的圆心坐标为(a,0)(a>0), 极坐标方程:
=2acos
M (,)
O
A
C(a,0)
教资优选
x
5
解:圆经过极点O。设圆与
M (,)
极轴的另一个交点
是A,那么 OA =2a,
O
A
C(a,0)
x
设M (, )为圆上除点O,A
以外的任意一点,那么OM AM。在RtAMO