导数应用八个专题汇总

导数应用八个专题汇总
导数应用八个专题汇总

1.导数应用之函数单调性

题组1:

1.求函数32()3912f x x x x =--+的单调区间.

2.求函数2()3ln f x x x x =-+的单调区间.

3.求函数2()3ln f x x x x =+-的单调区间.

4.求函数1

()ln f x x x

=的单调区间.

5.求函数ln ()ln ln(1)1x

f x x x x

=-+++的单调区间. 题组2:

1.讨论函数43

22411()(0)43

f x x ax a x a a =+-+>的单调区间.

2.讨论函数3

2

()3912f x x ax x =+--的单调区间.

3.求函数321()(2)4132

m

f x mx x x =-+++(0)m >的单调递增区间.

4.讨论函数1ln )1()(2

+++=ax x a x f 的单调性.

5.讨论函数1()ln 1a

f x x ax x

-=-+-的单调性. 题组3:

1.设函数3

2

()1f x x ax x =+++. (1)讨论函数()f x 的单调区间;

(2)设函数()f x 在区间21()33

--,

内是减函数,求a 的取值范围.

2.(1)已知函数2

()ln f x ax x x =++在区间(1,3)上单调递增,求实数a 的取值范围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,求实数a 的取值范围.

3.已知函数3

2

()(3)x

f x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间;

(2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x)=(x +3x -3x-3)e ,故

=

………………………………3分?当x<-3或0

>

0; 当-33时,<0,

从而f (x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+

)上单调递减………. 6分

(2)

…..7分

…………….……………8分 ?

……..…..…………….10分?

………………………………………………..11分?.?由此可得a<-6,于是

>

……………… 12分

4.设函数3

2

2

()1f x x ax a x =+-+,2

()21g x ax x =-+, (1)若0a >,求函数()f x 的单调区间;

(2)若()f x 与()g x 在区间(,2)a a +内均为增函数,求a 的取值范围.

2.导数应用之极值与最值

1.设函数21

32()x f x x e

ax bx -=++,且2x =-和1x =均为()f x 的极值点.

(1)求a ,b 的值,并讨论()f x 的单调性; (2)设3

22()3

g x x x =

-,试比较()f x 与()g x 的大小.

2.设函数2

()()f x x x a =-.

(1)若'(1)3f =,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()y f x =在区间[]2,0上的最大值.

3.设函数2

3

3)(x ax x f -=.

(1)若2=x 是函数)(x f y =的极值点,求a 的值;

(2)若函数()()()g x f x f x '=+,[02]x ∈,

,在0=x 处取得最大值,求a 的取值范围.

4.已知函数3

21()23

f x x x =

+-. (1)设n S 是正项数列{}n a 的前n 项和,13a =,且点2

11(,2)n n n a a a ++-在函数'()y f x =的图象上,求证:点

(,)n n S 也在'()y f x =的图象上;

(2)求函数()f x 在区间(1,)a a -内的极值.

5.设函数322

()31f x ax bx a x =+-+在1x x =,2x x =处取得极值,且122x x -=.

(1)若1a =,求b 的值,及函数()f x 的单调区间; (2)若0a >,求实数b 的取值范围.

6.设函数3

21()(2)13

f x ax bx b x =

-+-+在1x 处取得极大值,

在2x 处取得极小值,且12012x x <<<<.证明:0a >,并求2a b +的取值范围.

7.已知1x =是函数32

13()(1)532

f x ax x a x =

-+++的一个极值点, (1)求函数()f x 的解析式;

(2)若()y f x =的图像与直线2y x m =+有三个不同的交点,求实数m 的取值范围.

8.已知3x =是函数2

()ln(1)10f x a x x x =++-的一个极值点.

(1)求()f x 的解析式及其单调区间;

(2)若直线y b =与曲线()y f x =有三个交点,求b 的取值范围.

9.设函数4

3

2

()2()f x x ax x b x =+++∈R .

(1)若函数()f x 仅在0x =处有极值,求a 的取值范围;

(2)若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围.

10.设3x =是函数2

3()()x

f x x ax b e

-=++的一个极值点.

(1)求a 与b 的关系式(用a 表示b ),并求函数()f x 的单调区间; (2)设0a >,2

25()()4

x

g x a e =+

.若存在..[]12,0,4x x ∈,使12()()1f x g x -<总成立,

求a 的取值范围.

11.已知函数21

()kx f x x c

+=

+(0c >且1c ≠)恰有一个极大值点和一个极小值点,其中一个是x c =-. (1)求函数()f x 的另一个极值点;

(2)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围.

12.设函数3

2

()f x ax bx cx d =+++的图像∏上有两个极值点,P Q ,其中P 为坐标原点, (1)当点Q 的坐标为(1,2)时,求()f x 的解析式;

(2)当点Q 在线段50x y +-=(13)x ≤≤上时,求曲线∏的切线斜率的最大值.

3.导数应用之函数的零点

题组1:

1.函数2

()3x

f x x =-在区间[1,0]-内有没有零点?为什么? 2.函数()23x f x x =+的零点所在的一个区间是【 】.

A .(2,1)-- B.(1,0)- C.(0,1) D.(1,2) 3.函数()f x 的零点与()422x

g x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是【 】.

A.()1x

f x e =- B.()41f x x =- C.2

()(1)f x x =- D.1

()ln()2

f x x =-

4.若234a b <<<<,且函数()log a f x x x b =+-的零点0(,1)x n n ∈+()n Z ∈,则n =【 】.

A.1

B.2 C.3

D.4 题组2:

5.设函数)(x f y =的图像在[,]a b 上连续,若满足____________,则方程0)(=x f 在[,]a b 上有实根. 6.已知0x 是函数1

()21x

f x x

=+

-的一个零点.若10(1,)x x ∈,20(,)x x ∈+∞,则【 】. A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.1()0f x >,2()0f x < D.1()0f x >,2()0f x >

7.函数1

()f x x x

=+的零点个数为____________. 8.求证:函数2

3()21

f x x x =---在区间(0,2)内没有零点.

题组3:

9.函数2()log f x x x =+在区间(0,1)内是否有零点?为什么? 10.求证:函数4

()21f x x x =--在区间[1,2]-内至少有两个零点. 11.求证:函数()(3)(8)1f x x x =---有且只有两个零点. 12.求证:函数2

()ln 1f x x x x =-++有且只有两个零点.

13.设函数c bx ax x f ++=2

)(,若0)1(>f ,0)2(

A.至多有一个? B.有且只有一个 ? C .有一个或两个 D.一个也没有 14.设(1,)m ∈+∞,求证:函数()ln()f x x x m =-+有且只有两个零点.

15.判断函数2

()lg f x x x =-在区间(0,10)内的零点个数,并说明理由. 题组4:

16.设函数()1n n f x x x =+-*

(,2)n N n ∈≥.

(1)证明:()n f x 在区间)1,2

1(内存在唯一的零点; (2)设x 是()f x 在)1,1(内的零点,判断数列,,

,x x x 的增减性.

17.设函数2

()(2)ln f x x a x a x =---.

(2)若函数有两个零点,求满足条件的最小正整数a 的值; (3)若方程()f x c =有两个不等实根12,x x ,求证:12

()02

x x f +'>.

18.设函数2

ln 2)(x mx x x f -+=有两个零点21,x x ,求证:12

(

)02

x x f +'<.

19.设函数()ln f x x ax =-有两个零点1x ,2x ,求证:2

12x x e >.

20.记函数!

!2!11)(2n x x x x f n

n +++

+= ()n N +∈,求证:当n 为偶数时,方程0)(=x f n 没有实数根; 当n 为奇数时,方程0)(=x f n 有唯一实数根n x ,且n n x x <+2.

21.设函数23

2222()1123n

n x x x x f x n

=-++++

+(,)x R n N +∈∈, (1)证明:对每个n N +∈,存在唯一的2[,1]3

n x ∈,满足()0n n f x =; (2)证明:对任意p N +∈,由(1)中n x 构成的数列{}n x 满足10n n p x x n

+<-<.

4.导数应用之图像的切线

题组1:

1.求平行于直线910x y -+=,且与曲线3

2

31y x x =+-相切的直线方程.

2.求垂直于直线320x y -+=,且与曲线3

2

31y x x =+-相切的直线方程.

3.求与直线320x y -+=夹角为45?,且与抛物线2

2y x =相切的直线方程.

4.设函数()sin f x x =图像上动点P 处切线的倾斜角为θ,求θ的取值范围. 题组2:

5.求函数3

()2f x x =的图像C 在点(1,2)P 处的切线l 方程,以及曲线C 与切线l 的所有交点坐标.

6.求函数3()2f x x =的图像经过点(1,2)P 的切线方程.

7.求函数3()2f x x =的图像经过点(1,10)P 的切线方程.

8.求经过坐标原点,且与函数9

()5

x f x x +=+的图像相切的直线方程.

9.设函数()b

f x ax x

=-

,曲线C :()y f x =在点(2(2))f ,处的切线为74120x y --=. (1)求函数()f x 的解析式;

(2)求证:曲线C 上任意一点处的切线与直线y x =,以及y 轴所围成三角形的面积为定值.

10.已知直线23ln 20x y +-+=是函数()ln m

f x x x

=+的图像C 的一条切线. (1)求()f x 的解析式;

(2)若(,)P s t 是曲线C 上的动点,求曲线C 在点P 处的切线纵截距的最小值. 题组3:

11.已知直线y x =是函数32()31f x x x ax =-+-图像的一条切线,求实数a 的值.

12.已知0a >,且过点(,)P a b 可作函数3

()f x x x =-图像的三条切线,证明:()a b f a -<<.

13.设函数32

11()32

f x x ax bx c =

-++(0)a >的图像C 在点(0,(0))P f 处的切线为1y =. (1)确定,b c 的值;

(2)设曲线C 在1122(,()),(,())A x f x B x f x 处的切线都过(0,2)Q ,证明:若12x x ≠,则

12'()'()f x f x ≠;

(3)若过点(0,2)Q 可作曲线C 的三条不同切线,求a 的取值范围.

14.已知函数32

11()32

f x x ax bx =

++在区间[11)

-,,(13],内各有一个极值点. (1)求2

4a b -的最大值;

(2)当248a b -=时,设曲线C :()y f x =在点(1

(1))A f ,处的切线l 穿过曲线C (穿过是指:动点在点A 附近沿曲线C 运动,当经过点A 时,从l 的一侧进入另一侧),求()f x 的表达式.

15.由坐标原点(0,0)O 向曲线x x x y +-=2

3

3引切线,切于不同于点O 的点111(, )P x y ,再由1P 引切线切于不同于1P 的点222(,)P x y ,如此继续下去……,得到点(,)n n n P x y ,求1n x +与n x 的关系,及n x 的表达式.

巩固练习:

1.求函数3

()2f x x =的图像经过点(1,8)P -的切线方程. 2.求函数2

3()3

x f x x +=

+的图像经过点1(3,)2P 的切线方程. 3.如图,从点1(0, 0)P 作x 轴的垂线交于曲线x

y e =于点1(0, 1)Q ,

曲线在1Q 点处的切线与x 轴交与点2P ;再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系 列的点:1P ,1Q ,2P ,2Q ,…,n P ,n Q ,记点k P 的坐标为(, 0)k k P x (1,2,3,

,)k n =.

(1)求1k x +与k x 之间的等量关系; (2)求112233...n n PQ PQ PQ PQ ++++.

5.导数应用之存在与任意

1.已知函数()(0)a

f x x b x x

=+

+≠,其中,a b R ∈. (1)若曲线)(x f 在点))2(,2(f P 处的切线方程为13+=x y ,求函数()f x 的解析式; (2)若对于任意的1[,2]2a ∈,不等式10)(≤x f 在1[,1]4

x ∈恒成立,求b 的取值范围.

2.已知函数2()(1)2ln(1)f x x x =+-+.

(1)求()f x 的单调区间; (2)若()f x m <对1[1,1]x e e -∈--恒成立,求m 的取值范围;

3.设函数1

()ln f x x x

=

. (1)求()f x 的单调区间; (2)若12a

x

x >对(0,1)x ∈恒成立,求a 的取值范围.

4.已知函数2

2

()ln (1)1

x f x x x =+-+.

(1)求()f x 的单调区间; (2)若1(1)n e n

+≤对n N +∈都成立,求α的最大值.

5.设函数2

)1()(ax e x x f x

--=. (1)若2

1

=a ,求)(x f 的单调区间; (2)若当0≥x 时,0)(≥x f ,求a 的取值范围.

6.设函数x ax e x f x

--=2)(.

(1)若0=a ,求)(x f 的最小值; (2)若当0≥x 时,()1f x ≥恒成立,求a 的取值范围.

7.设函数()x

f x e ax =-的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-x 时,x

e x <2

;

(3)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,

0x x ,恒有x

ce x <2

. 8.设函数()cos f x ax x =+,

(1)讨论函数()f x 在区间[0,]π内的单调性;

(2)若()1sin f x x ≤+对[0,]x π∈恒成立,求实数a 的取值范围.

9.设函数()cos sin ,[0,

]f x x x x x π

=-∈.

(1)求证:()0f x ≤; (2)若sin x a b x <<对(0,)2

x π

∈恒成立,求a 的最大值与b 的最小值.

10.已知函数1ln )1()(2

+++=ax x a x f , (1)讨论函数)(x f 的单调性;

(2)设1-

11.已知3x =是函数2

3()()x

f x x ax b e

-=++的一个极值点.

(1)求a 与b 的关系式(用a 表示b ),并求函数()f x 的单调区间; (2)设0a >,225()()4

x

g x a e =+.若存在[]12,0,4x x ∈,使得12()()1f x g x -<成立,求a 的取值范围.

12.已知函数3

21()cos 22

f x ax x x c θ=+-+的图像过点37

(1,)6,且在[2,1]-上递减,在[1,)+∞上递增.

(1)求()f x 的解析式;

(2)若对任意的12,[,3]x x m m ∈+都有1245

()()2

f x f x -≤成立,求正实数m 的取值范围.

13.设函数5)(,14)2

2(31)(23+=+++-=

mx x g x x m

mx x f . (1)当0m >时,求函数)(x f 的递增区间;

(2)是否存在负实数m ,使得对任意的12,[1,2]x x ∈,都有1)()(21≤-x f x g ?若存在,求m 的范围;若不存在,请说明理由.

6.导数应用之极值点偏移

1.(1)设不同的两点1122(,),(,)A x y B x y 均在二次函数2

()f x ax bx c =++(0abc ≠)的图像上,记直线AB 的斜率为k ,求证:12

'(

)2

x x k f +=; (2)设不同的两点1122(,),(,)A x y B x y 均在“伪二次函数”2

()ln g x ax bx c x =++(0abc ≠)的图像上,记直线AB 的斜率为k ,试问:12

'(

)x x k g +=还成立吗?

2.设函数2()(12)ln ()f x ax a x x a =+--∈R . (1)当0a >时,求函数()f x 的单调递增区间;

(2)记函数()y f x =的图像为曲线C ,设11(,)A x y ,22(,)B x y 是曲线C 上不同的两点,M 为线段AB 的中点,过点M 作x 轴的垂线交曲线C 于点N .试问:曲线C 在点N 处的切线是否平行于直线AB ?

3.设函数2

()(2)ln f x x a x a x =---. (1)求函数()f x 的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数a 的值; (3)若方程()f x c =有两个不等实根12,x x ,求证:12

()02

x x f +'>.

4.设函数2

ln 2)(x mx x x f -+=.

(1)若曲线)(x f y =在点))1(,1(f 处的切线方程为n x y +=2,求实数n m ,的值; (2)若4->m ,求证:当0>>b a 时,有

2)

()(2

2->--b

a b f a f ; (3)若函数()f x 有两个零点21,x x )(21x x <,且0x 是21,x x 的等差中项,求证:0)('0

5.设函数()ln f x x ax =-有两个零点1x ,2x ,求证:2

12x x e >.

6.设函数()x

f x e ax a =-+的两个零点为1x ,2x ,求证:2121x x x x +<.

7.设函数()x f x e ax =-,其中a e >,

(1)求证:函数()f x 有且仅有两个零点1x ,2x ,且1201x x <<<; (2)对于(1)中的1x ,2x ,求证:12'()'()0f x f x +>.

8.设函数()x f x e mx =+的图像在点(0,(0))P f 处的切线方程为210x y -+=,求证:对满足a b c <<的实数,,a b c ,都有()()()()

f b f a f c f b b a c b

--<

--成立.

7.导数应用之不等式证明(1)

1.证明:对任意的n N +∈,都有321

1)11ln(n

n n ->+.

2.已知,m n N +∈,且1m n <<,求证:(1)(1)n

m

m n +>+.

3.设函数1

()ln(1),1)

n

f x a x x =

+--( (1)当2n =时,求函数()f x 的极值;

(2)当1a =时,证明:对任意的n N +∈,当2x ≥时,都有() 1.f x x ≤-

4.已知函数()ln(1)1x

f x e a x =-+-在点(0,(0))P f 处的切线垂直于y 轴, (1)求函数()f x 的单调区间; (2)当0m n >>时,求证:1ln(1)ln(1)m n

e m n -->+-+.

5.设函数x e

x

x f =

)(,且)(')(1x f x f =,)(')(1x f x f n n =+()n N +∈. (1)求)(1x f ,)(2x f ,)(3x f ,)(x f n 的解析式;

(2)求证:对任意的实数b a ,,以及任意的正整数n ,都有)()()(122n f b f a f n n <--.

6.设函数x x mx x f ln )(-=在1=x 处取得极值,数列}{n a 满足111

<<-a e ,1()n n a f a +=()n N +∈.

(1)求函数()f x 的单调区间;

(2)求证:对任意的*

N n ∈,都有11<<-n a e ;

(3)求证:对任意的*

N n ∈,都有122++<+n n n a a a .

7.记函数!

!2!11)(2n x x x x f n

n +++

+= ()n N +∈,求证:当n 为偶数时,方程0)(=x f n 没有实数根;当n 为奇数时,方程0)(=x f n 有唯一实数根n x ,且n n x x <+2.

8.设函数23

2222()1123n

n x x x x f x n

=-++++

+(,)x R n N +∈∈, (1)证明:对每个n N +∈,存在唯一的2[,1]3

n x ∈,满足()0n n f x =; (2)证明:对任意p N +∈,由(1)中n x 构成的数列{}n x 满足10n n p x x n

+<-<.

8.导数应用之不等式证明(2)

1.设函数1()ln x

f x x ax

-=

+. (1)若函数()f x 在),1[+∞上为增函数,求正实数a 的取值范围;

(2)当1a =时,求证:对大于1的任意正整数n ,都有1111ln 234n n

>+++???+.

2.设函数()ln()f x x x a =-+的最小值为0,其中>0a .

(1)若对任意的[0,+)x ∈∞,有2

()f x kx ≤成立,求实数k 的最小值; (2)证明:对大于1的任意正整数n ,都有)12ln(2

1

1215131+<-+++n n .

3.设函数2

()f x kx =,()ln g x x =,

(1)讨论关于x 的方程()()f x g x =在区间1

[,]e e -内的实数根的个数; (2)求证:对任意的正整数n ,都有44444ln1ln 2ln 3ln 4ln 1

1234

2n n e

+++++

<.

4.设函数2

()ln(1)f x x a x =-+,

(1)若函数()f x 在区间12(,)33

上递增,求实数a 的取值范围; (2)证明:当0x >时,2ln(1)x x +<; (3)证明:对大于1的任意正整数n ,都有444

4

1111

(1)(1)(1)(1)2123e n ++++

<.

5.设函数2()x

f x ax b

=

+,其中(1)1f =,12()23f =.在数列{}n x 中,112x =,且1()n n x f x +=.

(1)求数列{}n x 的通项n x .

(2)求证:对任意的正整数n ,都有12312n x x x x e

>

6.设函数()1x

f x e ax =--,

(1)若()0f x ≥对x R ∈均成立,求正实数a 的取值集合; (2)求证:对任意的正整数n ,都有123()()()()1

n

n

n

n n e

n

n

n

n e ++++<

-.

7.设函数()1x

f x e x =--,

(1)求证:函数()f x 有且只有一个零点;

(2)求证:对任意的正整数n ,都有135

21()()()(

)22221

n n n n n n n n

n e -++++<-.

8.(1)设函数r x rx x f r

-+-=1)()0(>x ,其中10<

(2)用(1)的结果证明命题:设01≥a ,02≥a ,21,b b 为正实数,若121=+b b ,则22112121b a b a a a b

b

+≤; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.

9.(1)求函数1ln )(+-=x x x f 的最大值; (2)设,k k a b 均为正实数,证明:若112212n n n a b a b a b b b b +++≤++

+,则12121n b b b n a a a ≤;

(3)设,k k a b 均为正实数,证明:若121n b b b ++

+=,则

1222212121

n b b b n n b b b b b b n

≤≤+++.

导数在经济学中的应用

引言 近年来,随着市场经济的不断发展、经济的不断繁荣,经济活动中的实际问题也愈加复杂,简单的分析已经不足以满足企业管理者对经济分析的需求。因此,有必要将高等数学应用于简单的数学函数所不能解决的实际经济问题中,对其进行定量分析,这使得高等数学在解决经济问题中占据重要地位。而导数作为高等数学中的重要概念,同样也是解决经济问题的一个有力工具。在高等数学中,导数通常被用于判断函数的单调性,求函数的最值、极值等。在实际经济问题中,导数可作为经济分析的工具,广泛地应用到经济研究和企业管理之中,促进经济理论朝着更加精确的方向发展。本文从边际分析,弹性分析,优化分析三个方面论述导数在经济分析方面的应用。 1、导数的概念 2、经济分析中常用的函数 由于导数主要应用于探究经济领域中出现的一些函数关系问题,所以,我们必需对经济分析中的一些常用的函数具有一定的了解,以便更好的理解和使用它们。经济分析中常用的函数主要有以下四类: 2.1需求函数 需求函数指在特定的时间内,各种可能的价格条件下,消费者愿意并且能够购买该商品的数量。(出处?)为了使问题简单化,我们一般假设需求函数的诸

多自变量中除价格外其他均为常量,则函数表示为()P f Q d =,其中,P 为商品的价格,Q d 为商品的需求量。这个函数表示一种商品的需求量与价格之间存在 一一对应的关系,并且通过观察可以知道商品(除某些抵挡商品、某些炫耀性商品、某些投资性商品除外)的需求量与价格成反方向变动关系,即商品本身价格上升,需求量随之减少,反之亦然。 例1:服装店销售某种衬衫的件数Q 与价格P 是线性关系,当价格为100元一件时,可销售120件,当价格为80元时,可销售200件,求需求函数。 解:设衬衫的件数与价格的函数关系为:b aP Q += 则b a +=100120;b a +=80200 解得4-=a ;520=b 所以需求函数为5204+-=P Q 。 2.2供给函数 一种商品的供给函数,是指单个生产者在一定时期内在各种可能的价格下,愿意且能够提供出售的该种商品数量。[3]我们通常通过将除价格外的其他因素看成常量以达到化简问题的目的。所以,供给函数可以用()P f Q s =表示,其中,P 为商品的价格,Q S 为商品的供给量。可以看出,商品(除单个劳动力商品、古董商品、某些投资性商品外)的价格与供给量之间成同方向变动的关系。 例2:已知大蒜的收购价为每千克4元,每星期能收购2000千克,若收购价每千克提高0.5元,每星期可收购2500千克,求大蒜的供给函数。 解:设大蒜的线性供给函数为:b aP Q += 则b a +=42000;b a +=5.42500 得1000=a ;2000-=b 所以供给函数为为:20001000-=P Q 2.3成本函数 产品成本一般情况下是用货币的形式来表现的企业生产和出售产品的所用度支出。成本函数所表示的是企业成本总额与产出总量之间关系的公式。产品成

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

导数的综合应用教学设计(正式版)

导数的综合应用 一、教材分析 我们在复习过程中,发现学生对于导数能够运用,但在具体运用过程中,问题比较多的是如何运用导数去解决问题的手段或解决问题的途径不够宽,或解法不是很灵活。因此,我通过本堂课进一步巩固这部分内容,利于学生进一步地掌握导数知识的运用:确定单调性、求极值、求最值、求切线的斜率从而解决恒成立与不等式问题应用。二、学情分析 根据教材结构与内容分析,结合高考考纲要求,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 知识与技能: 通过高考中涉及到导数的常见题型,在学生掌握求曲线斜率,判断函数单调性,及如何求极值,最值的基础上,总结出两种常见题型。 过程与方法: 通过动手计算培养学生观察、分析、比较和归纳能力。 通过问题的探究体会数形结合,分离变量,构造函数的数学思想。 情感、态度与价值观: 通过常见题型的常见解决方法,是学生认识到解决有关导数的综合问题并不复杂,从而激发学生的学习兴趣。 四、教学重点、难点 教学重点:利用导数判断函数单调性,极值,最值。 教学难点:以导数为工具处理恒成立问题,及证明不等式。 教学过程 本节课教学过程主要分为:知识回顾,典例示范,知识小结,考点测评,高考赏析五个板块 【知识回顾】(重在对知识的进一步理解和掌握。有利于构建知识网络,回归教材而高于教材) 1.导数定义,判断函数单调性,求极值,最值的方法。 【注】由学生自己来归纳,目的是加强学生的印象。

2.课前热身: (1)已知直线 ax-by-2=0 与曲线 在点(1,1)处的切线互相垂直,则 = , (2)函数 , 在 上的最大值和最小值分别为 【注】(1)学生阅读并回顾知识要点,巩固基础。 (2)导数的几何意义,考察函数的单调区间、极值、最值等性质。这是导数运用过程中最常用的。 (3)注意极值不一定是最值,要考虑函数区间的开闭及单调性。 【典例示范】 例一:已知函数 (1)求f(x)的最小值。 (2)若对所有x 1都有 ,求实数a 的取值范围。 解析:需先求出定义域 【注】在求最值之前须讨论函数的定义域,利用分离变量的方法解决恒成立问题。这也是本节课的重点。 【注】当某区间只有一个极大(小)值时,该值就是最大(小)值 例二:已知向量 若函数在区间 上是增函数,求t 的取值范围。 解析: 由f(x)在(-1,1)上单调递增,可知 恒成立,即 移项有 令 只须求g(x)在 的最大值 . 3 y x =a b 32 23125y x x x =--+[]0,3()ln f x x x =≥()1f x ax ≥-'''min 10110,11()()()()()e e e x f e e f x f x f x f ><==- 且=lnx+1,令,则x>,则00,可知g(x)在1,+单调递增,所以g(x)(1)=1,得a 1g

导数的综合应用题型及解法修订稿

导数的综合应用题型及 解法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 1.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 3.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 4.已知三次函数 32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值; 5.设函数()()()f x x x a x b =--. (1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值; (2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点. 题型四:利用导数研究函数的图象 6.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D ) (A ) (B ) (C ) (D ) 7.函数的图像为14313+-=x x y ( A ) x y o 4 -2 4 -2 - -x y o 4 -2 4 -2 --x y y 4 -2 4 -2 --6 6 6 6 y x -4 -2 o 4 2 2 4

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷 专题五 导数及其应用 考点13:导数的概念及运算(1,2题) 考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。) 1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( ) A.2sin x B.22sin x C.2cos x D.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4 f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3.【2017课标II ,理11】 考点14 易 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2e a b + +的取值范围是( ) A.2,2e e ??++∞ ??? B.[),e +∞ C.[)2,+∞ D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难 已知函数2x y =的图象在点),(2 00x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象 相切,则0x 必满足( )

导数综合应用复习题经典

导数综合应用复习题经典 RUSER redacted on the night of December 17,2020

导数综合应用复习题 一、知识回顾: 1.导数与函数单调性的关系 设函数()f x 在某个区间内可导,则在此区间内: (1)0)(>'x f ?)(x f ↗,)(x f ↗?()0f x '≥; (2)0)(≠'x f 时,0)(>'x f ?)(x f ↗ (单调递减也类似的结论) 2.单调区间的求解过程:已知)(x f y = (1)分析)(x f y =的定义域; (2)求导数)(x f y '='; (3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式0)(<'x f ,解集在定义域内的部分为减区间 3.函数极值的求解步骤: (1)分析)(x f y =的定义域; (2)求导数)(x f y '='并解方程()0f x '=; (3)判断出函数的单调性; (4)在定义域内导数为零且由增变减的地方取极大值; 在定义域内导数为零且由减变增的地方取极小值。 4.函数在区间内的最值的求解步骤: 利用单调性或者在求得极值的基础上再考虑端点值比较即可。 二、例题解析: 例1、已知函数321()13 f x x ax ax =+++ (1)若在R 上单调,求a 的取值范围。 (2)问是否存在a 值,使得()f x 在[]1,1-上单调递减, 若存在,请求a 的取值范围。 解:先求导得2()2f x x ax a '=++ (1 )()f x 在R 上单调且()f x '是开口向上的二次函数 ∴()0f x '≥恒成立,即0?≤ ∴2 440a a -≤,解得01a ≤≤ (2)要使得()f x 在[]1,1-上单调递减 且()f x '是开口向上的二次函数 ∴()0f x '≤对[]1,1x ∈-恒成立, 即()() 11201120f a a f a a '-=-+≤???'=++≤?? 解得a ∈? ∴不存在a 值,使得()f x 在[]1,1-上单调递减。 例2、已知函数321()313 f x x x x =+-+, 2()2 g x x x a =-++ (1)讨论方程()f x k =(k 为常数)的实根的个数。 (2)若对[]0,2x ∈,恒有()f x a ≥成立,求a 的取值范围。 (3)若对[]0,2x ∈,恒有()()f x g x ≥成立,求a 的取值范围。 (4)若对[]10,2x ∈,[]20,2x ∈,恒有()12()f x g x ≥成立,

导数在经济学的应用

第七节 导数在经济学中的应用 本节讨论导数概念在经济学中的两个应用——边际分析和弹性分析. 内容分布图示 ★ 引言 ★ 边际函数 ★ 边际成本 ★ 例1 ★ 边际收入与边际利润 ★ 例2 ★ 例3 ★ 例4 ★ 函数的弹性 ★ 需求弹性 ★ 例5 ★ 用需求弹性分析总收益的变化 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题3-7 ★ 返回 内容要点: 一、边际分析 在经济学中,习惯上用平均和边际这两个概念来描述一个经济变量y 对于另一个经济变量x 的变化. 平均概念表示在x 在某一范围内取值y 的变化. 边际概念表示当x 的改变量x ?趋于0时,y 的相应改变量y ?与x ?的比值的变化,即当x 在某一给定值附近有微小变化时,y 的瞬时变化. 边际函数: 根据导数的定义, 导数)(0x f '表示)(x f 在点0x x =处的变化率, 在经济学中, 称其为)(x f 在点0x x =处的边际函数值. 边际成本:成本函数)(x C C =(x 是产量)的导数)(x C '称为边际成本函数. 边际收入与边际利润:在估计产品销售量x 时, 给产品所定的价格)(x P 称为价格函数, 可以期望)(x P 应是x 的递减函数. 于是, 收入函数 )()(x xP x R = 利润函数 )()()(x C x R x L -=()(x C 是成本函数) 收入函数的导数)(x R '称为边际收入函数; 利润函数的导数)(x L '称为边际利润函数. 二、 函数弹性 函数弹性的概念:在边际分析中所研究的是函数的绝对改变量与绝对变化率, 经济学中常需研究一个变量对另一个变量的相对变化情况, 为此引入下面定义. 定义1 设函数)(x f y =可导, 函数的相对改变量

导数及其应用专题训练

导数及其应用专题训练 (时间:100分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数y=e x+mx有极值,则实数m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1 2.函数f(x)=x2+x-ln x的零点的个数是() A.0 B.1 C.2 D.3 3.函数f(x)=-的图象大致为() 4.已知函数f(x)=a x+x2-x ln a,对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2恒 成立,则a的取值范围为() A.[e2,+∞) B.[e,+∞) C.[2,e] D.[e,e2] 5.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)-f(x)<-3,f(0)=4,则不等式f(x)>e x+3的解集是() A.(-∞,1) B.(1,+∞) C.(0,+∞) D.(-∞,0) 6.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处 的切线方程是() A.y=-2x+3 B.y=x C.y=3x-2 D.y=2x-1 7.若正项递增等比数列{a n}满足1+(a2-a4)+λ(a3-a5)=0(λ∈R),则a6+λa7的最小值为() A.-2 B.-4 C.2 D.4 8.已知函数f(x)为R内的奇函数,且当x≥0时,f(x)=-e x+1-m cos x,记a=-2f(- 2),b=-f(-1),c=3f(3),则a,b,c之间的大小关系是() A.b

导数在微观经济学中边际问题的应用

导数在微观经济学中边际问题的应用 云南农业大学 关键词:导数;变化率;边际;边际分析。 前言:导数在现代经济领域中的应用非常广泛,特别是在微观经济学中有着很多具体的例子。掌握和应用导数的基本概念和经济中常见函数的概念非常重要。把经济学中很多现象进行分析和归纳到数学领域中,用我们所学的数学知识进行解答对很多经营决策者起了非常重要的作用。 高等数学的主要内容是微积分,微分学则是微积分的重要组成部分,而导数又是微分学中的基本概念之一,所以学习导数的概念并熟练掌握导数的应用尤为重要。导数的应用范围非常广泛,比如在物理学中的应用,在工程技术上的应用,在经济学中的应用等等,今天我就导数在经济中边际问题的应用略做讨论。 一、导数的概念 从数量关系而言,导数反映函数的自变量在变化时,相应的函数值变化的快慢程度——变化率(瞬时变化率)。从数学表达式而言,研究的是函数的增量与自变量的增量比的极限问题。 二、经济学中常用的函数 导数在经济领域中的应用,主要是研究在这一领域中出现的一些函数关系,因此必须了解一些经济分析中常见的函数。 (一)价格函数 一般说来,价格是销售量的函数。生活中随处可见。例如:当购买的东西越多,消费者的消费额度就可以小些。 (二)成本函数 成本包括固定成本和变动成本两类. 固定成本是指厂房、设备等固定资产的折旧、管理者的固定工资等,记为X。变动成本是指原材料的费用、工人的工资等,记为Y。这两类成本的总和称为总成本,记为Z,即 Z=X+Y 假设固定成本不变(X为常数),变动成本Y是产量Q的函数(Y=C(Q)),则成本函数为Z=X+C(Q)。 (三)需求函数 作为市场上的一种商品,其需求量受到很多因素影响,如商品的市场价格、消费者的喜好等. 为了便于讨论,我们先不考虑其他因素,假设商品的需求量Q仅受市场价格x的影响。即

导数应用八个专题汇总

1.导数应用之函数单调性 题组1: 1.求函数32()3912f x x x x =--+的单调区间. 2.求函数2()3ln f x x x x =-+的单调区间. 3.求函数2()3ln f x x x x =+-的单调区间. 4.求函数1 ()ln f x x x =的单调区间. 5.求函数ln ()ln ln(1)1x f x x x x =-+++的单调区间. 题组2: 1.讨论函数43 22411()(0)43 f x x ax a x a a =+-+>的单调区间. 2.讨论函数3 2 ()3912f x x ax x =+--的单调区间. 3.求函数321()(2)4132 m f x mx x x =-+++(0)m >的单调递增区间.

4.讨论函数1ln )1()(2 +++=ax x a x f 的单调性. 5.讨论函数1()ln 1a f x x ax x -=-+-的单调性. 题组3: 1.设函数3 2 ()1f x x ax x =+++. (1)讨论函数()f x 的单调区间; (2)设函数()f x 在区间21()33 --, 是减函数,求a 的取值围. 2.(1)已知函数2 ()ln f x ax x x =++在区间(1,3)上单调递增,数a 的取值围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,数a 的取值围. 3.已知函数3 2 ()(3)x f x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间; (2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x )=(x+3x-3x-3)e ,故 = (3) 分 当x<-3或00; 当-33时,<0, 从而f(x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+)上单调递减………. 6分 (2) …..7分

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

导数的应用(单调性)专题

导数第2节 导数的应用(1)单调性 1.(优质专题天津文20(1)) 已知函数4 ()4,,f x x x x =-∈R 求()f x 的单调性; 2.(优质专题广东文21)设函数32()()f x x kx x k =-+∈R . (1) 当1k =,求函数()f x 的单调区间; 3.(优质专题四川文21(1))已知函数()2 2 2ln 2f x x x x ax a =-+-+,其中0a >. 设()g x 为()f x 的导函数,讨论()g x 的单调性; 4.(优质专题全国2文21(1))设函数()() 21e x f x x =-. (1)讨论()f x 的单调性; 5.(优质专题重庆文19(1))已知函数()()32f x ax x a =+∈R 在4 3 x =-处取得极值. 若()()e x g x f x =,讨论()g x 的单调性. 6.(优质专题湖北文21) 设0a >,0b >,已知函数()1 ax b f x x += +. (1) 当a b ≠时,讨论函数()f x 的单调性;

7.(优质专题江苏19(1))已知函数()32f x x ax b =++(),a b ∈R .试讨论()f x 的单调性. 8.(优质专题山东文20(1))设()()2 ln 21f x x x ax a x =-+-,a ∈R . (1)令()()g x f x '=,求()g x 的单调区间; 9.(优质专题新课标2卷文21(1))已知函数()()=ln +1f x x a x -.讨论()f x 的单调性. 10.(优质专题全国1文21*(1))已知函数()() 2 e e x x f x a a x =--. (1)讨论()f x 的单调性;

导数综合应用答案

11.导数的综合应用(含答案)(高二) 1.(15理科)已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈, 时,()323x f x x ?? >+ ?? ?; (Ⅲ)设实数k 使得()33x f x k x ?? >+ ??? 对()01x ∈, 恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=, (Ⅱ)证明见解析,(Ⅲ)k 的最大值为2. 试题解析:(Ⅰ) 2 12 ()ln ,(1,1),(),(0)2,(0)011x f x x f x f f x x +''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y - =; (Ⅱ)当()01x ∈, 时,()323x f x x ?? >+ ??? ,即不等式3 ()2()03x f x x -+>,对(0,1)x ?∈成立,设 33 1()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则 4 2 2()1x F x x '=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ?∈,

3 ()2()3 x f x x >+ 成立; (Ⅲ)使()33x f x k x ?? >+ ??? 成立,()01x ∈, ,等价于3 1()ln ()013x x F x k x x +=-+>-,()01x ∈, ; 42 22 22()(1)11kx k F x k x x x +-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意; 当2k >时,令4 02 ()0,(0,1)k F x x k -' == ∈, ()(0)F x F <,显然不成立, 综上所述可知:k 的最大值为2. 考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论. 2.(15年理科)设函数2 ()f x x ax b =-+. (1)讨论函数(sin )22 f x ππ 在(-,)的单调性并判断有无极值,有极值时求出极值; (2)记2 0000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22 ππ (-,)上的最大值D ; (3)在(2)中,取2 000,D 14 a a b z b ===- ≤求满足时的最大值。 【答案】(Ⅰ)极小值为2 4 a b -;(Ⅱ)00||||D a a b b =-+-;(Ⅲ)1.

导数的应用(1)专题

(1)当aHb 时,讨论函数f (X)的单调性; 全国名校高中数学二轮专题提分优质专题汇编(附详解) 导数第2节 导数的应用(1)单调性 1.(优质专题天津文 20( 1))已知函数f(x) =4X -X 4 ,X 迂R ,求f(x)的单调性; 4.(优质专题全国2文21(1))设函数f (x ) = (1 —x 2 )eX . (1)讨论f ( X )的单调性; 2.(2013 广东文 21)设函数 f(x) = x 3-kx 2+x (k 迂 R ). (1)当k =1,求函数f (x)的单调区间; 3 2 4 5.(优质专题重庆文19 (1))已知函数f ( x )= ax 3 +x 2 ( a W R )在x = -—处取得极值. 3 若g (X ) = f ( X )eX ,讨论g (X )的单 调性. 3.(优质专题四川文21 (1))已知函数f(x)=-2xlnx + x 2 -2ax+a 2 ,其中a>0. 6. ( 2013湖北文21) 设a^O ,b^O ,已知函数 ax+ b 设g (X )为f (X )的导函数,讨论g (X )的单调性; 心x+1

全国名校高中数学二轮专题提分优质专题汇编(附详解) 7.(优质专题江苏19( 1))已知函数f (x)= x' + ax2 +b(a,b壬R).试讨论f(x)的单调性. 9.(优质专题新课标2卷文21(1))已知函数f ( X)=lnx+a 1- X).讨论f ( X)的单调性. 8.(优质专题山东文20( 1))设f(x)=xlnx-ax2+(2a-1)x,a迂R . 10.(优质专题全国1文21*( 1))已知函数f( x)= e x(e x-a)—a2x. (1)令g(x )= f '(X ),求g(x )的单调区间; (1)讨论f(X)的单调性;

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

相关文档
最新文档