材料基础第五章固体材料的凝固与结晶
材料科学基础之材料的凝固

材料科学基础之材料的凝固引言材料的凝固过程是材料科学中的重要基础知识之一。
凝固是将液态物质转变为固态物质的过程,在材料制备和性能控制中起着至关重要的作用。
本文将介绍材料的凝固过程及其在实际应用中的影响。
1. 凝固的概念凝固是物质从液态向固态转变的过程。
在凝固过程中,原子、分子或离子进入有序排列的结构,形成固态晶体。
凝固过程通常伴随着能量的释放,因为凝固过程降低了分子之间的自由度。
2. 凝固的类型材料的凝固可以分为两类:晶体凝固和非晶体凝固。
2.1 晶体凝固晶体凝固是指原子、分子或离子按照一定的方式排列,形成有序的凝固体。
晶体凝固过程中,物质的结构和性质与晶体的结构密切相关。
晶体凝固常见的类型包括共晶凝固、细小晶粒凝固和晶体生长等。
2.2 非晶体凝固非晶体凝固是指物质形成无序而没有周期性的凝固体。
非晶体凝固的材料通常具有高度的无定形性和非晶性。
非晶体凝固过程中,由于缺乏有序结构,凝固速率较高。
3. 凝固过程的影响因素凝固过程受许多因素的影响,包括温度、压力、成分和凝固速率等。
3.1 温度温度是影响材料凝固的重要因素之一。
温度的改变会导致凝固过程的快慢和凝固体的结构特征的变化。
通常情况下,较高的温度会加快凝固过程,而较低的温度则会延缓凝固。
3.2 压力在一定温度下,增加压力可以使凝固过程的速率加快。
这是因为增加压力可以提高原子、分子或离子之间的相互作用力,促进有序凝固结构的形成。
3.3 成分凝固过程的成分也对凝固行为产生重要影响。
不同成分的物质由于其分子结构和相互作用的差异,会表现出不同的凝固特点。
例如,共晶物质的凝固温度会比单一组分物质的凝固温度低一些。
3.4 凝固速率凝固速率是指物质由液态向固态转变的速度。
凝固速率受到温度、成分和凝固体的结构特征等因素的影响。
通常情况下,快速冷却会增加凝固速率,而慢速冷却则会降低凝固速率。
4. 凝固在实际应用中的重要性材料的凝固在实际应用中具有重要作用。
凝固过程直接影响材料的结构和性能。
第五章 纯金属的凝固

r*
体积自由能
r
2 16 2Tm A* 4 (r*)2 2 Lm T 2
1 G * A * 3
2 16 3Tm 1 G* A 2 3( Lm T ) 3
说明:
① 形核功△G*与(△T )2成反比,△T↑,△G*↓; ② 形成临界晶核时自由能仍是增高的(△G*>0),其增 值相当于其表面能的1/3,即L→S体积自由能差值只补 偿形成临界晶核表面所需的能量的2/3,而不足的1/3则 另需他法;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
undulation
液态的结构特征:原子排列长程无序,动态短程有序。
5.1.2 纯金属结晶的过冷现象
过冷:
(Supercooling或 Undercooling )
液态材料在理论结晶温度以下仍保持液 态的现象。
理论凝固温度Tm与实际开始凝固温度Tn 之差,即ΔT= Tm - Tn 。
过冷度 ΔT:
5.3.1 均匀形核(homogeneous nucleation)
《材料科学基础》复习大纲(08级)

《材料科学基础》总结及重点第一章 材料的结构与键合1、金属键、离子键、共价键、分子键(范德华力)、氢键的特点,并解释材料的一些性能特点。
2、原子间的结合键对材料性能的影响。
用金属键的特征解释金属材料的性能—①良好的延展性;②良好的导电、导热性;③具有金属光泽。
3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
本章重要知识点: 1. 金属键、离子键、共价键、分子键、氢键的特点。
第二章 固体结构1、晶体与非晶体(在原子排列上的区别)2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,布拉菲点阵(14种) 、晶格常数、晶胞原子数。
3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。
各向同性与各向异性、实际晶体的伪各向异性、同素异构转变(重结晶、多晶型性转变) 。
(1)指数相同的晶向.和晶面必然垂直。
如[111]⊥(111)(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h ·w+k ·v+l ·w =04、能绘出三维的体心、面心立方和密排六方晶胞,根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。
三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等);即:bcc 、fcc 、hcp 的晶格特征及变形能力(结合塑性变形一章的内容你必须知道常用金属材料的滑移面与滑移系的指数)。
给画出晶胞指出滑移面和滑移方向。
能标注和会求上述三种晶胞的晶向和晶面指数。
晶向和晶面指数的一些规律。
求晶面间距d (hkl )、晶面夹角。
5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++= (2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3)六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk h d hkl (4)四方晶系:2222)()/(/)(1c l a k h d hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。
材料科学基础重点知识

材料科学基础重点知识第5章纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交错重合在一起展开2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据rk?1?t所述当四氟肼度?t=0时临界晶核半径r*为无穷大,临界形核功(?g?1?t2)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、光滑形核和非光滑形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非光滑形核:液态金属原子依附于固态杂质颗粒上灶性的方式。
临界晶核半径:δg达至最大值时的晶核半径r*=-2γ/δgv物理意义:r0,晶核不能自动形成。
r>rc时,δgv占优,故δg<0,晶核可以自动构成,并可以平衡生长。
临界形核功:δgv*=16πγ3/3δgv3形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
正数的温度梯度:四氟肼度随其距界面距离的减少而减少。
氢铵金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
坚硬界面即非小平面界面:固液两相间界面微观来看高低不平,存有很厚的过渡阶段层,故从宏观来看界面反而弯曲,不发生坎坷小平面的界面。
材料科学基础--凝固ppt课件

能量条件
形成临界晶核时,表面能增量
3 16 2 A * 4 ( r ) k 2 G V
1 G * k A 3
形核功是过冷液体开始形核时的主要障碍 形核功来自何方?在没有外部供给能量的条件 下,依靠液体本身存在的“能量起伏”来供给 液体中客观存在的结构起伏和能量起伏是促成 形核的必要因素。
等压时 G-T曲线均为负斜率,但是L 相由于S较大,斜率更大。 在适当温度-熔点,二者相交
dG S 0 dT
结晶的驱动力
在一定温度下 G H T S 因为H=HS-HL -LM; S-LM/TM
T G LM V TM
△T>0, △Gv<0 过冷度越大, 一般越有利于凝固。 △G的绝对值为凝固过程的驱动力。 适度过冷是凝固的必要条件
材料科学基础-凝固
炼钢
浇注
炼铜
凝固:物质从液态到固态的转变过程。 若凝固后的物质为晶体,则称之为结晶。 多数材料都要经过凝固过程。 凝固过程影响材料组织、后续工艺性能、 使用性能和寿命。 了解凝固过程,对控制铸件的质量,提 高金属制品的质量十分有益。 凝固可为其它相变的研究提供基础。
4.1 液态金属的性质
(1) 形核时的能量变化
假定晶胚为球形,半径为r,当过冷液体 中出现一个晶胚时,总的自由能变化
43 2 G V G A r G 4 r V V 3
V、A:晶胚的体积及表面面积, ΔGV :单位体积液、固两相自由能差, 由于体系冷却到熔点以下, ΔGV <0
过冷度越大,临界半径越小。形核要求一定的 过冷度。
(3)形核功
形成ቤተ መጻሕፍቲ ባይዱ界尺寸晶核,体系能量上升的幅 度称为形核功
复旦大学材料科学导论课后习题答案(搭配:石德珂《材料科学基础》教材)

资料科学导论课后习题谜底之巴公井开创作第二章资料科学概论1.氧化铝既牢固又坚硬且耐磨,但为什么不能用来制造榔头?答:氧化铝脆性较高,且抗震性欠安.2.将下列资料按金属、陶瓷、聚合物和复合资料进行分类:黄铜、环氧树脂、混泥土、镁合金、玻璃钢、沥青、碳化硅、铅锡焊料、橡胶、纸杯答:金属:黄铜、镁合金、铅锡焊料;陶瓷:碳化硅;聚合物:环氧树脂、沥青、橡胶、纸杯;复合资料:混泥土、玻璃钢3.下列用品选材时,哪些性能特别重要?答:汽车曲柄:强度,耐冲击韧度,耐磨性,抗疲劳强度;电灯胆灯丝:熔点高,耐高温,电阻年夜;剪刀:硬度和高耐磨性,足够的强度和冲击韧性;汽车挡风玻璃:透光性,硬度;电视机荧光屏:光学特性,足够的发光亮度.第三章资料结构的基础知识1.下列电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金属?(1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2(2) 1s2 2s2 2p6 3s2 3p6(3) 1s2 2s2 2p5(4) 1s2 2s2 2p6 3s2(5)1s2 2s2 2p6 3s2 3p6 3d2 4s2(6) 1s2 2s2 2p6 3s2 3p6 4s1答:惰性元素:(2);卤族元素:(3);碱族:(6);碱土族:(4);过渡金属:(1),(5)2.稀土族元素电子排列的特点是什么?为什么它们处于周期表的同一空格内?答:稀土族元素的电子在填满6s态后,先依次填入远离外壳层的4f、5d层,在此过程中,由于电子层最外层和次外层的电子分布没有变动,这些元素具有几乎相同的化学性质,故处于周期表的同一空格内.3.描述氢键的实质,什么情况下容易形成氢键?答:氢键实质上与范德华键一样,是靠分子间的偶极吸引力结合在一起.它是氢原子同时与两个电负性很强、原子半径较小的原子(或原子团)之间的结合所形成的物理键.当氢原子与一个电负性很强的原子(或原子团)X结合成份子时,氢原子的一个电子转移至该原子壳层上;分子的氢酿成一个裸露的质子,对另外一个电负性较年夜的原子Y暗示出较强的吸引力,与Y之间形成氢键.4.为什么金属键结合的固体资料的密度比离子键或共价键固体高?答:一是金属原子质量年夜;二是金属键的结合方式没有方向性,原子趋于紧密排列,获得简单的原子排列形态.离子键和共价键结合的原子,相邻原子的个数受到共价键数目的限制,离子键结合还要满足正、负离子间电荷的平衡,原子不成能紧密聚积,而且存在孔洞缺陷,故金属键结合的固体资料的密度比离子键或共价键固体高.5.应用公式计算Mg2+O2-离子对的结合键能,以及每摩尔MgO晶体的结合键能.假设离子半径为rMg2+=0.065nm;rO2-=0.140nm;n=7.答:在平衡时,F吸引=F排斥故,解得晶体的结合键能:转换为每摩尔MgO晶体的结合键能:6.原子序数为12的Mg有三种同位素:78.70%的Mg原子由12个中子,10.13%的Mg原子由13个中子,11.17%的Mg原子由14个中子,试计算Mg的原子量.答:7.试计算原子N壳层内的最年夜电子数.若K,L,M和N壳层中所有能级都被填满,试确定该原子的原子数.答:N壳层内最年夜电子数:1s22s22p63s23p63d104s24p64d104f145s25p66s2该原子的原子数是708.试写出Al原子13个电子的每个电子的全部量子数.答:n l m ms10020021021121-13003109.资料的三级和四级结构可以通过加工工艺来改变,那么资料的二级结构可以改变吗?为什么?答:原子的结合键是资料的二级结构.对单一的资料来说,其价键结构是不成以通过加工工艺来改变的.可是实际工程应用中,通过一定的加工工艺来改变资料的二级结构,比如金刚石具有共价键,石墨具有共价键和物理键,而石墨等碳质原料和某些金属在高温高压下可以反应生成金刚石,即一定水平上改变了资料的二级结构.第四章固体资料的晶体学基础1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与,与[111],与[123],与[236].(2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数.(3)在立方晶系的一个晶胞中画出同时位于(101),(011),(112)晶面上的晶向.答:作图略.(2)两晶面交线的晶向指数为.2.有一正交点阵的a=b,c=a/2.某晶面在三个晶轴上的截距分别为6个,2个,4个原子间距,求该晶面的密勒指数.答:(263)3.写出六方晶系的晶面族中所有晶面的密勒指数,在六方晶胞中画出、晶向和晶面,并确定晶面与六方晶胞交线的晶向指数.答:晶面族中所有晶面的密勒指数为:作图略,()晶面与六方晶胞交线的晶向指数为:4.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径.(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数.答:体心立方面心立方密排六方原子半径 a a a四面体间隙 a a a八面体间隙 a a a原子数 2 4 6致密度0.68 0.74 0.74配位数8 12 125.用密勒指数暗示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度.答:体心立方面心立方密排六方原子密排面{110} {111} {0001}晶面的原子密度原子密排方向<111> <110> <>晶向的原子密度6.求下列晶面的晶面间距,并指出晶面间距最年夜的晶面.(1)已知室温下α-Fe的点阵常数为0.286nm,分别求出(100)、(110)、(123)的晶面间距.(2)已知916℃时γ-Fe的点阵常数为0.365nm,分别求出(100)、(111)、(112)的晶面间距.(3)已知室温下Mg的点阵常数为a=0.321nm,c=0.521nm,分别求出的晶面间距.答:(1)其中,晶面间距最年夜的晶面为(100)(2)其中,晶面间距最年夜的晶面为(110)(3)其中,晶面间距最年夜的晶面为7.已知Na+和Cl-的半径分别为0.097nm和0.181nm,请计算NaCl中钠离子中心到:(1)最近邻离子中心间的距离;(2)最近邻正离子中心间的距离;(3)第二个最近的氯离子中心间的距离;(4)第三个最近的氯离子中心间的距离;(5)它最近的同等位置间的距离.答:(1) r=r++r-=0.278nm (2) r=(3) r=(4) r= (5) r=8.根据NaCl的晶体结构及Na+和Cl-的原子量,计算氯化钠的密度.答:9.示意画出金刚石型结构的晶胞,说明其中包括有几个原子,并写出各个原子的坐标.答:作图略,其中包括原子数:极点坐标:(000),(100),(010),(001),(110),(101),(011),(111)(选填一个即可)面心坐标:(选填三个即可)晶胞内坐标:(),(),(),()10.何谓单体、聚合物和链节?它们相互之间有什么关系?请写出以下高分子链节的结构式:聚乙烯;聚氯乙烯;聚丙烯;聚苯乙烯;聚四氟乙烯.答:单体是合成聚合物的起始原料,是化合物自力存在的基本单位,是单个分子存在的稳定状态.聚合物是由一种或多种简单低分子化合物聚合而成的相对分子质量很年夜的化合物.链节是组成年夜分子链的特定结构单位.聚乙烯:[-CH2-CH2-]n; 聚氯乙烯:[-CHCl-CH2-]n; 聚丙烯:[-CHCH3-CH2-]n;聚苯乙烯:[-CHAr-CH2-]n; 聚四氟乙烯:[-CF2-CF2-]n第四章固体资料的晶体缺陷1.纯Cu的空位形成能为1.5aJ/atom,(1aJ=10-18J),将纯Cu加热至850℃后激冷至室温(20℃),若高温下的空位全部保管,试求过饱和空位浓度与室温平衡空位浓度的比值.答:2.空位对资料行为的主要影响是什么?答:首先,资料中原子(或分子)的扩散机制与空位的运动有关.其次,空位可以造成资料物理性能与力学性能的改变,如密度降低,体积膨胀,电阻增加,强度提高,脆性也更明显,晶体高温下发生蠕变等.3.某晶体中有一条柏氏矢量为a[001]的位错线,位错线的一端露头于晶体概况,另一端与两条位错线相连接,其中一条柏氏矢量为,求另一条位错线的柏氏矢量.答:a[001]=4.如附图a所示,试求某一晶格参数为2.5A0的立方金属刃型位错的burgers矢量的Miller指数及其长度.答:柏氏矢量垂直于(220),故其Miller指数为[110]5.如附图b所示,写出在FCC金属的滑移方向的晶向指数.答:第五章固体资料的凝固与结晶1.液体金属在凝固时必需过冷,而加热使其融化却毋需过热,即一旦加热到熔点就立即熔化,为什么?答:液体金属在凝固时必需克服概况能,形核时自由能变动年夜于零,故需要过冷.固态金属在熔化时,液相与气相接触,当有少量液体金属在固相概况形成时,就会很快覆盖在整个概况(因为液体金属总是润湿同一种固体金属).概况能变动决定过程能否自发进行.根据实验数据,在熔化过程中,概况自由能的变动小于零,即不存在概况能障碍,也就不用过热.2.金属凝固时的形核率常桉下式做简化计算,即试计算液体Cu在过冷度为180K、200K和220K时的均匀形核率.并将计算结果与书图6-4b比力.(已知)答:代入数据得,180K时N均=7.50;200K时N均=7.89;220K时N均=13.36与图6-4b相比,结果吻合,标明只有过冷度到达一定水平,使凝固温度接近有效成核温度时,形核率才会急剧增加.3.试解释凝固与结晶、晶胚与形核的相互关系.答:凝固是指物质从液态冷却成固态的一种转变过程,可以形成晶态或非晶态.若冷却后成为晶体,这种凝固成为结晶.根据热力学判断,在过冷液态金属中,短程规则排列的结构尺寸越年夜,就越稳定,只有尺寸较年夜的短程规则排列的结构,才华成为晶核.晶胚即是过冷液态金属中短程规则排列尺寸较年夜的原子有序排列部份.一定温度下,最年夜晶胚有一个极限值rmax;而液态金属的过冷度越年夜,实际可能呈现的最年夜晶胚尺寸也越年夜.当液态金属中形成的晶胚尺寸年夜于或即是一定临界尺寸时,成为晶核,其有两种形成方式:均匀成核(依靠液态金属自己能量的变动获得驱动力并由晶胚直接成核的过程)和非均匀成核(晶胚是依附在其他物质概况上形核的过程).4.金属结晶的热力学条件和结构条件是什么?答:过冷度是金属结晶的热力学条件;结构起伏和能量起伏是结构条件.5.哪些因素会影响金属结晶时的非均匀形核率?答:过冷度,固体杂质及其概况形貌,物理性能如液相宏观流动,外加电磁场,受机械作用等.第六章资料的扩散与迁移1. 把P原子扩散到单晶硅中的搀杂工艺是制备n型半导体的经常使用方法.若将原来的每107个Si原子中含有一个P原子的1mm厚的硅片,通过扩散搀杂处置后概况到达每107 Si原子中含有400个P原子,试分别按:(a) 原子百分数/cm, (b) 原子数/cm3.cm 的暗示方法计算浓度梯度.硅的晶格常数为5.4307A0.答:(a)(b) 硅的晶胞体积为:单位晶胞中有8个Si原子,则107Si所占体积为:2.试说明影响扩散的因素.答:温度,原子键力和晶体结构,固溶体类型和浓度,晶体缺陷,第三组元.3.试利用公式D=α2РГ,解释各因素对扩散的影响.答:D与α2,Р,Г成正比.其中,α为最邻近的间隙原子距离,与晶体结构有关;Р为跃迁几率,,跟温度,畸变能等有关;为跃迁频率,,与温度、晶体结构、畸变能、扩散机制等因素有关.4. 自扩散与空位扩散有何关系?为什么自扩散系数公式要比空位扩散系数Dv小很多?(Dv=D/nv,nv为空位的平衡浓度)答:对纯金属或间隙固溶体合金,原子都处于正常的晶格结点位置.若晶格结点某处的原子空缺时,相邻原子可能跃迁到此空缺位置,之后又留下新的空位,原子的这种扩散方式叫空位扩散.当晶体内完全是同类原子时,原子在纯资料中的扩散为自扩散.自扩散是空位扩散的一种特殊形式.对置换固溶体合金和纯金属,溶质原子与溶剂原子的尺寸和化学性质分歧,与空位交换位置的几率也分歧,D=D0exp(-Q/RT),自扩散的扩散激活能要比空位扩散的扩散激活能年夜.空位扩散系数Dv=D/nv,由于空位平衡浓度nv远小于1,Dv比D年夜很多.第七章热力学与相图1.分析共晶反应,包晶反应和共析反应的异同点.答:(1)分歧点:共晶反应是一定成份的液体合金,在一定温度下,同时结晶形成另外一种固相的反应过程;包晶反应是一定成份的固相与一定成份的液相作用,形成另外一种固相的反应过程;共析反应是由特定成份的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应过程.(2)相同点:均是在恒温下发生,处于三相平衡的状态.2.试分析图7-6中合金IV的结晶过程(wsn=70%),计算室温下组元成份的含量及显微组织.答:结晶过程为匀晶反应+共晶反应+二次析出,冷却过程如下图所示,室温下组元成份:αII+ β+(α+β)共晶室温下组元成份的含量:3.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,wBi=50%的合金在520时开始结晶处成份为wSb=87%的固相.wBi=80%的合金在400℃时开始结晶出成份为wSb=64%的固相.根据上述条件,(1)绘出Bi-Sb相图,并标出各线和各相区的名称.(2)从相图上确定含锑量为wSb=40%合金的开始结晶和结晶终了温度,并求出它在400℃时的平衡相成份及相对量.答:(1)(2)根据相图,含锑量为40%合金开始结晶温度年夜约为490℃,终了温度为350℃,液相含量54.5%,固相含量45.5%.4. (1)应用相律时需考虑哪些限制条件?(2)试指出图5-115中的毛病之处,并用相律说明理由,且加以改正.答:(1)A.相律只适用于热力学平衡状态.平衡状态下各相的温度应相等;各相的压力应相等;每一阻元在各相中的化学位必需相同.B.相律只能暗示体系中组元和相的数目,不能指明组元或相的类型和含量.C.相律不能预告反应动力学.D.自由度的值不得小于零.(2)A.二元体系两相平衡,自由度为1,故不成为直线.B.单一体系两相平衡,自由度为0,故应为一点.C.二元体系最多只能三相平衡,此处含四相.D.二元体系三相平衡,自由度为0,故应为水平线.5.分析wc=0.2%的铁-碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图,说明各阶段的组织,并分别计算室温下的相组织物及组织组成物的相对量.答:合金在t1~t2之间发生匀晶反应析出δ固溶体,冷却至t2(1495℃)时,液相L与δ固溶体发生包晶转变生成γ.包晶转变完成后,剩余的液相L在t2~t3之间不竭结晶出奥氏体,冷却至t3,合金全部为奥氏体.单相奥氏体在t4开始析出铁素体.当温度达t5(727℃)时,剩余的奥氏体发生共析反应转酿成珠光体,此时合金组织为铁素体加珠光体.727℃以下,铁素体中会析出少量三次渗碳体.该合金室温时的组织为铁素体与珠光体,相组成为α与Fe3C.冷却至室温的转变过程如图所示.相组成物的相对量:组织组成物的相对量:时间:二O二一年七月二十九日。
材料科学基础A习题答案第5章[1]解析
![材料科学基础A习题答案第5章[1]解析](https://img.taocdn.com/s3/m/5ef3bfa0d0d233d4b14e698a.png)
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
材料的凝固与结晶组织

§3.2 纯金属的结晶
固态金属在不同温度和压力下呈不同类型的晶体结构的现象,称为同素异构转变。 Fe、Co、Sn、Mn等元素都具有同素异构性。
882.5C 912C 1394C Ti Fe Fe Fe Ti
bcc
fcc
bcc
第三章
作业
一、选择题( 1~15 )
二、判断题
学号尾数为0、1的同学做(1~10)题; 学号尾数为2、3的同学做(11~20)题; 学号尾数为4、5的同学做(21~30)题; 学号尾数为6、7的同学做(31~40)题; 学号尾数为8的同学做(41~50)题; 学号尾数为9的同学做(51~60)题。
(1)控制过冷度
V冷↑→△T↑→N↑→晶粒细小
G
(2)变质处理 (3)振动处理 过冷度ΔT
三、结晶晶粒大小及控制
§3.2 纯金属的结晶
Al-Si合金
缓冷 快冷
未变质
变质
三、结晶晶粒大小及控制
§3.2 纯金属的结晶
铸铁
变质处理前
变质处理使组织细化。 变质剂为硅铁或硅钙合金。
变质处理后
四、晶体的同素异构
柱状晶粒区 (1)分枝少,晶质细密; (2)晶粒粗大,各向异性,横向性能差; (3)柱状晶交界处有夹杂和气体,热加工时易开裂。 获得:大的温度梯度,单向散热,定向凝固。
等轴晶粒区 (1)晶界面积大,杂质分布分散; (2)各晶粒位向不同,性能均匀,没有方向性; (3)枝晶彼此嵌入,没有脆弱面。 (4)缺点是枝晶发达,树枝晶间液相凝固收缩留下很多 分散孔洞(显微缩松),因此凝固后金属组织不够致密。 获得:较低的浇注温度;孕育处理;机械振动、电磁搅拌。
二、结晶过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 Δ GV =- Lm(1-T/ Tm)
=- Lm / Tm Δ T
(5-7)
其中,Δ T = Tm - T 是熔点与实际温度之
差,称为过冷度。
由此可见,Δ GV 随过冷度Δ T的增大而呈 直线增加。当Δ T =0时,Δ GV 也等于零。
由于Lm > 0,若使Δ GV < 0,必须 T < Tm 即有一定量的过冷度Δ T。
金属开始结晶时的温度总是低于理论结晶 温度,这种现象称为 过冷度ΔT。
过冷度越大,形核数目就越多,结晶后颗 粒就越细小,铸件的机械性能也就越高。
过冷度的控制,将成为生产上控制铸件晶 粒大小的最重要的工艺。
5.3 纯金属结晶的基本条件
1.热力学条件
金属结晶为什么必须在过冷条件下进行, 这是由热力学条件所决定的。
液态向固态转变时,其单位体积自由能 的变化Δ GV与过冷度存在着密切的关系。
由于 Δ GV = GL -GS
由 (5-1) 式可知,
Δ GV =Δ H- TΔ S=(Hs-HL)- T(Ss-SL) 令 -Lm= (HS -HL) (Lm为熔化潜热)。 当 T= Tm时, Δ GV =0 故( SS -SL )= - Lm / Tm, 当 T < Tm时, 由于(SL -SS)的变化很小, 可视作常数,
来,这是与液态金属结构有关的问题。
一般认为,金属的液态结构介于固态和气态 之间,既不像晶体中的原子那样作规则排列,也 不像气体原子那样任意分布。
X射线研究表明,液态金属结构与固态金属 相似在配位数及原子间距方面相差无几,如表51所示。结果发现:
1)液态原子之间的平均距离比固态中略大;
2)配位数比密排结构的固体配位数减少;
金属制品在成型的最初阶段,先熔炼、铸 造,冷却后成为铸锭; 再通过冷、热加工工艺, 使之成为具有一定形状的制品。
把金属及合金从液态转变为固体晶态的过 程,叫一次结晶。
金属从一种固体晶态转变成另一种固体晶 态,叫二次结晶或重结晶。
铸锭或焊接件的组织结构和性能与冷却凝 固过程密切相关。因而, 研究材料的结晶过程, 掌握其规律,是控制铸件质量、提高固体材料 性能的关键,尤其控制凝固过程中显微组织形 态甚为重要。这是研究固态材料相变的基础。
热力学第二定律表明,在等温等压条件下,
系统总是自发地从自由能高的状态向自由能低 的状态转变。也就是说,只有伴随着自由能降 低的过程, 才能自发地进行下去。
金属材料各相的状态都有相应的自由能。 相态的自由能G 可表示为:
G = H-TS
(5-1)
式中,H为热焓, T为绝对温度, S为系统的熵。
微分(5-1)式,
这是金属凝固结晶时的热力学必要条件。
两相的自由能差值是发生相转变的驱动力, 没有自由能差值,就没有相变驱动力,两相的 相变就不可能发生。
所以,凝固必须在低于熔点温度下才能进 行。过冷度越大,液态和固态的自由能差值就 越大,相变驱动力越大,凝固速度就越快,这 是为什么液态金属凝固时一定要有过冷度。
2. 纯金属材料结晶的结构条件 金属结晶是成核和长大的过程。晶核从何而
6+6
00..323808
12
0.309 3+3
目前流行的液态金属结构模型是微晶无序 模型和拓扑无序模型,如图5-3所示。
微晶无序模型认为液态金属结构具有近程 有序、远程原子排列无序。有序部分与晶态相 似,类似微晶。微晶之间的原子基本上是完全 无序排列,见图5-3a。
3)原子排列混乱程度要大。
表5-1 X射线衍射法测定的液态金属结构与 固态金属结构的数据比较
金属
Al Zn Cd Au Bi
液态
原子间距 配位数
/nm
0.296
10-11
0.294
11
0.306
8
0.286
11
0.332
7-8
固
态
原子间 配 位
距/nm 数 0.286 12
0.265 6+6
00..229947
(1) (2) (3) (4) (5) 图5-1 金属晶粒结晶过程示意图
上述液态金属结晶的核心过程,是成核和 长大,且二者交替重叠。
由于各个晶粒随机生成,所以晶粒的位向 就各不相同。如果在结晶过程中能控制只有一 个晶核长大,则就成为单晶体材料。
2. 金属结晶的宏观现象
虽然无法直接观察到金属结晶的微观过程, 但可以测定结晶过程中伴随的某些热力学性质 的变化,如结晶潜热释放的自由焓ΔH、熔化 熵ΔS等的变化。这些热力学参数成为研究金属 结晶过程的重要手段。
5.2 金属结晶的基本规律
1. 金属结晶的微观现象 金属是一种多晶体,是由不同位向的晶粒
所组成。晶粒结晶的形成过程如下(图5-1): (1) 将 液 态 金 属 冷 却 到 熔 点 以 下 的 某 个 温 度 , 并等温停留; (2) 经过孕育期后, 从液态中生长出第一批晶核; (3) 晶核不断长大, 同时有新的晶核形成和长大; (4) 液态不断成核和长大, 使液态金属越来越少; (5) 长大的晶粒彼此相遇而停止; 当所有晶粒相 遇时,液态便金属耗尽,结晶完成变成固态。
(5-4)
把式(5-3)、(5-4)代入(5-2)式,可得
dG =-S dT + Vdp
(5-5)
在液态金属凝固时,压力视为常数,即 dp=0。所以,(5-5)式变为: (dG / dT)p = -S
熵是表征系统中原子排列有序程度的参数, 恒为正值。
相的自由能随温度的上升而降低。图5-2 为液固态金属的自由能随温度而变化的曲线。
由于液态原子的有序程度远比固态要低, 故液态的熵值远大于固态,且随温度的变化也 较大,所以两根曲线必相交。在交点温度Tm时, 液固两相的自由能相等。
图5-2 液态和固态的金属自由能-温度曲线
当 T=Tm 时 GL =GS
(5-6)
所以,两相平衡共存是金属材料凝固时 的平衡温度。
当温度高于Tm时,液态的自由能低于固态 的自由能,固态将自动熔化成液态,只有这 样才能保证自由能下降。
dG = d H -S dT -TdS
(5-2)
由热焓的定义 H= U + pV , 可得
dH = d U +pdV +Vdp
(5-3)
式中,U为内能,p为压力,V为体积。
由热力学第一定理可知,
U= Q-W
其中,Q为体系的热量,W为外力作的功。
dS = Q/T
W= pdV
则 dU= TdS - pdV