组合数学4章作业答案

合集下载

高中数学第4章计数原理4-3组合第2课时组合在实际问题中的应用分层作业湘教版选择性必修第一册

高中数学第4章计数原理4-3组合第2课时组合在实际问题中的应用分层作业湘教版选择性必修第一册

对于D,这5名毕业生分配到该山区的A,B,C三所小学,每所学校至少分配1
人,共有(C53AC2122C11
+
C 52
C
2 3
C 11
A
2 2
)A33
=150
种分配方案,故
D
错误.故选
AB.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
14.(2023全国甲,理9)有五名志愿者参加社区服务,共服务星期六、星期天
同的位置的排列方法数有A44种,根据分步乘法计数原理,完成这件事共有 C52A44=240 种不同的分配方案.故选 C.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
4.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,
其中一个路口3人,且甲、乙在同一路口的分配方案共有( A )
A 必备知识基础练
1.要将甲、乙、丙、丁4名同学分到A,B,C三个班中,要求每个班至少分到 一人,则甲被分到A班的分法种数为( B )
A.6
B.12
C.24
D.36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
解析 (方法 1)根据题意分 2 步进行分析:第一步,将甲、乙、丙、丁 4 名同学 分为 3 组,有C42=6 种分组方法;第二步,将甲所在的组分到 A 班,剩下 2 组安排 到 B,C 班,有A22=2 种情况.则由分步乘法计数原理可知共有 6×2=12 种分法. 故选 B. (方法 2)依题意,若 A 班只有 1 名同学,则这名同学一定是甲,然后将乙、丙、 丁 3 人分到 B,C 两个班,则有C32A22=6 种不同的分法;若 A 班有 2 名同学,则问 题转化为乙、丙、丁 3 位同学分到 A,B,C 三个班中,共有A33=6 种不同的分法, 由分类加法计数原理可知共有 6+6=12 种不同的分法,故选 B.

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。

即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。

证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。

由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。

所以21{,,,,}m C e x x x -= 是G 的一个子群。

4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。

证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。

4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。

a n 的元素a 的数目。

证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。

所以就有一个这样的a ,即就有一个母元素。

4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。

所以其子群页应该是循环群。

4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。

组合数学第四版答案

组合数学第四版答案

组合数学第四版答案组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a- b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4 或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a- b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a 和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

组合数学课后答案

组合数学课后答案

作业习题答案习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。

证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。

证明:方法一:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。

由鸽巢原理知,至少有2个坐标的情况相同。

又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。

因为奇数+奇数= 偶数;偶数+偶数=偶数。

因此只需找以上2个情况相同的点。

而已证明:存在至少2个坐标的情况相同。

证明成立。

方法二:对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。

2.9将一个矩形分成(m+1)行112mm+⎛⎫+⎪⎝⎭列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。

证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。

(2)每列中两个单元格的不同位置组合有12m+⎛⎫⎪⎝⎭种,这样一列中两个同色单元格的位置组合共有12mm+⎛⎫⎪⎝⎭种情况(3)现在有112m m +⎛⎫+⎪⎝⎭列,根据鸽巢原理,必有两列相同。

组合数学第4章答案

组合数学第4章答案

组合数学第4章答案4.1证明所有的循环群是ABEL 群 证明:nn ,,**×x ,x m nm na b G G a b b a x xa b b a ++∈==∴=mmm 循环群也是群,所以群的定义不用再证,只需证明对于任意是循环群,有成立,因为循环群中的元素可写成a=x 形式所以等式左边x 等式右边x =,,即所有的循环群都是ABEL 群。

4.2x 是群G 的一个元素,存在一最小的正整数m ,使x m =e ,则称m 为x的阶,试证:C={e,x,x 2, …,x m-1} 证:x 是G 的元素,G 满足封闭性所以,xk 是G 中的元素 C ∈G再证C 是群:1、x i , x j ∈C , x i ·x j = x i+j 若i+j<=m-1,则x i+j ∈C若i+j>m,那么x i+j =x m+k =x m ·x k =x k ∈C 所以C 满足封闭性。

2、存在单位元e.3、显然满足结合性。

4、存在逆元, 设x a ·x b =e=x m x b =x m-ax a ∈C, (x a )-1= x b =x m-a4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n.证明:设G 是阶为n 的有限群,a 是G 中的任意元素,a 的阶素为k , 则此题要证n k ≤首先考察下列n+1个元素a a a a a n 1432,....,,,+由群的运算的封闭性可知,这n+1个元素都属于G ,,而G 中仅有n 个元素,所以由鸽巢原理可知,这n+1个元素中至少有两个元素是相同的,不妨设为aaji i+=(n j ≤≤1)aa ajii*=由群的性质3可知,a j是单位元,即a j=e ,又由元素的阶数的定义可知,当a 为k 阶元素时a k=e ,且k 是满足上诉等式的最小正整数,由此可证n j k ≤≤4.4 若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂:a,a2……..an解:设n=p 1a1…….p k ak ,共n 个素数的乘积,所以群G 中每个元素都以用这k 个素数来表示,而这些素数,根据欧拉定理,一共有 Φ(n)=n(1-1/p 1)………(1-1/p k )所以群G 中母元素的数目为n(1-1/p 1)………(1-1/p k )个. 4.5证明循环群的子群也是循环群证明:设H 是G=<a>的子群,若H=<e>,显然H 是循环群,否则取H 中最小的正方幂元m a ,下面证明m a 是H 的生成元,易见m a ⊆H ,只要证明H 中的任何元素都可以表成m a 的整数次方,由除法可知存在q 和r,使得l=qm+r,其中0≤r ≤m-1,因此有r a =qm l a -,因为m a 是H 中最小的正方幂元,必有r=0,这就证明出la=mq a }{m a ∈证明完毕。

最新组合数学习题答案(1-4章全)

最新组合数学习题答案(1-4章全)

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

(完整word版)组合数学第四版卢开澄标准答案-第四章

(完整word版)组合数学第四版卢开澄标准答案-第四章

习题四4。

1。

若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群.若群的元素交换律成立,即a , b G满足a b = b a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。

[证].设循环群(G,)的生成元是x0ÎG。

于是,对任何元素a ,b G,m,nÎN,使得a= x0m , b= x0n,从而a b = x0m x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n x0m(指数律)= b a故运算满足交换律;即(G, )是交换群.4.2。

若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ,x m—1}是G的一个子群。

[证].(1)非空性C :因为eÎG;(2)包含性C G:因为xÎG,根据群G的封闭性,可知x2, ,x m—1,(x m=)eÎG,故C G;(3)封闭性 a , b C a b C: a , b C,k,lÎN (0k〈m,0l〈m),使a = x k,b = x l,从而a b = x k x l = x(k+l)mod m C(因为0 (k+l) mod m〈m) ;(4)有逆元 a C a —1C: a C,kÎN (0k<m),使a = x k, 从而a -1= x m—k C(因为0 m-k < m)。

综合(1) (2)(3) (4),可知(C, )是(G, )的一个子群.4.3。

若G是阶为n的有限群,则G的所有元素的阶都不超过n。

[证]。

对任一元素xÎG,设其阶为m,并令C={e,x,x2,,x m-1},则由习题4.2.可知(C, )是(G, )的一个子群,故具有包含性C G。

因此有m = |C|£|G|= n所以群G的所有元素的阶都不超过n。

组合数学(第4章4.3)

组合数学(第4章4.3)
一个偏序可以扩张为一个全序。
2021/4/9
23
定理4.5.2 令(X, )是一个有限偏序集, 则 存在X上的线性序, 使得(X, )是(X, ) 的一个扩展.
证明:偏序的线性扩展算法,对集合
X={x1,x2,…,xn}的排序问题,满足:若xi xj, 则排序xi先于 xj 。
2021/4/9
2021/4/9
26
例4:X={1,2,3,4,5,6,7,8}, “”定义为整除 关系, 确定(X, )的一个线性扩展.
8
4
6
2
35
7
1
2021/4/9
27
等价关系与划分
定义6: 对于X中每一个元素a, a的等价类 定义为所有与a等价的元素构成的集合.记 为[a]={x x∈X , x~a }.
2021/4/9
2
4.4 生成r-组合
集合{1,2,3,4}的2-组合: {1,2}; {1,3}; {2,3}; {1,4}; {2, 4}; { 3,4}
字典序:令S={1,2,…,n}, 设A,B是S的两个r组合,若AB\AB中的最小整数属于A,则称 A先于B。
2021/4/9
3
S的r-组合可写成如下形式:
2021/4/9
8
字典序r-组合生成算法
初始: a1a2…ar=12…r 当a1a2…ar (nr+1) (nr+2)…n时,Do
1)确定最大整数k, 使得ak+1 n,且ak+1ai (i=1,2,…,r)
2) 用a1a2…ak-1 (ak+1)…(ak+rk+1)替换a1a2…ar.
2021/4/9

r)在始a,1a第2…r个ar后元面素存大在于an r1。ar 个组合,从a1a2…ar-1开
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15、对于 x7 , x6 ,, x1 , x0 的下列每一个组合,通过使用基为 2 的生成算法确定其直接后继组合: ⅰ) ⅲ)
x4 , x1 , x0 x7 , x5 , x4 , x3 , x2 , x1 , x0
ⅱ) ⅳ)
x7 , x5 , x3
x0
—第 1 页—
SY0721129 刘佳
第 4 章 生成排列和组合 4.6 练习题
6、确定 1,2,,8的下列排列的逆序列。 ⅰ) 35168274 ⅱ) 83476215
解:ⅰ)它的逆序列是 2,4,0,4,0,0,1,0 □ ⅱ)它的逆序列是 6,5,1,1,3,2,1,0 □
7、构造 1,2,,8的排列,其逆序列是 ⅰ) 2,5,5,0,2,1,1,0 ⅱ) 6,6,1,4,2,1,0,0
23、确定下列 9 阶反射 Gray 码中 9-元组的直接后继。 ⅰ) 010100110 ⅱ) 110001100 ⅲ) 111111111
解:ⅰ)∵ (010100110)=4 ∴010100110 的直接后继是 010100111 □ ⅱ)∵ (110001100)=4 ∴110001100 的直接后继是 110001101 □ ⅲ)∵ (111111111)=9 ∴111111111 的直接后继是 111111101 □
解:ⅰ)8 8 7 87 6 867 5 8657 4 48657 3 486573 2 4865723 1 48165723 因此,该逆序的排列是 48165723 □ ⅱ)1: 1 2: 1 2 3: 3 1 2 4: 3 4 1 2 5: 3 5 4 1 2 6: 3 6 5 4 1 2 7: 7 3 6 5 4 1 2 8: 7 3 6 5 8 4 1 2 1 2 3 4 5 6 7 8 因此,该逆序的排列是 73658412 □
—第 2 页—
SY0721129 刘佳
解:ⅰ) x4 , x1 , x0 对应的二进制数是 00010011。使用基为 2 的运算 00010011+1=00010100 所以 x4 , x1 , x0 的直接后继组合是 x4 , x2 □ ⅱ) x7 , x5 , x3 对应的二进制数是 10101000。使用基为 2 的运算 10101000+1=10101001 所以 x7 , x5 , x3 的直接后继组合是 x7 , x5 , x3 , x0 □ ⅲ) x7 , x5 , x4 , x3 , x2 , x1 , x0 对应的二进制数是 10111111。使用基为 2 的运算 10111111+1=11000000 所以 x7 , x5 , x4 , x3 , x2 , x1 , x0 的直接后继组合是 x7 , x6 □ ⅳ) x0 对应的二进制数是 00000001。使用基为 2 的运算 00000001+1=00000010 所以 x0 的直接后继组合是 x1 □
27、使用在 4.4 节中描述的算法,以字典序生成{1,2,3,4,5,6}的 3-组合。

解:它们是: {1,2,3}、{1,2,4}、{1,3,4}、{1,2,5}、{1,3,5}、{1,4,5}、{1,2,6}、{1,3,6}、{1,4,6}、{1,5,6}、 {2,3,4}、{2,3,5}、{2,4,5}、{2,3,6}、{2,4,6}、{2,5,6}、 {3,4,5}、{3,4,6}、{3,5,6}、 {4,5,6} □
相关文档
最新文档