第二讲 宏观经济指标的季节性分析
2宏观经济分析

11月宏观经济分析根据公布的11月份主要经济数据,从中可以看出,今年以来党 中央、国务院出台的“稳增长”调控措施效果已经显现,经济企稳回升 态势进一步确立:经济领先指数 PMI 持续回升至50.6%,创7个月 以来新高。
消费和工业生产增速均创下8个月新高,工业生产者出厂 价格指数(PPI )同比也继续回升,尽管投资累计同比增速持平,但 房地产开发投资增速则明显大幅上涨, 这些数据均印证了经济企稳回 升的趋势。
但本月外贸数据表现平平,对外贸易仍处于低谷中。
此外, 11月物价指数(CPI )重回2”时代,国内经济仍处于低通胀阶段, 这为国家提倡的积极财政政策和稳健货币政策提供操作空间。
目前,随着宏观经济形势持续改善,四季度乃至明年上半年经济 将持续向好。
但受制于调控政策,房地产市场仍有较多不明朗因素, 投资增速上升幅度有限,制造业投资仍然较弱,小企业经营状况仍有 很多困难,因此经济复苏的力度将较为有限,整体仍是低位弱复苏态 势。
领先指标PMIL5/-QN车PMI (%)11月PMI 指数持续四个月回升CPI 、PP 同545250484603X20'4X20比月11月,中国制造业采购经理指数(PMI)为50.6%,比上月回升0.4个百分点。
该指数最近三个月的稳步小幅回升,显示经济运行企稳态势进一步巩固,呈现温和回升基本走势。
价格指数11月,全国居民消费价格指数(CPI)同比上涨2%比10月回升0.3个百分点,上升主要来自于食品价格的上扬,12月食品更是进入季节性涨价阶段,预计持续至明年春节CPI仍将温和上升;全国工业生产者出厂价格指数(PPI)同比下降2.2%,比10月回升0.6 个百分点,由于经济复苏的延续,预计未来几个月PPI回升的趋势将不变。
工业增加值11月,规模以上工业增加值同比实际增长10.1%,比10月回升0.5个百分点,处于8个月以来最高点,终于回升至10%以上。
分产品看,11月钢材和发电量同比增速增加明显。
浅谈国民经济数据的季节性影响与调整

浅谈国民经济数据的季节性影响与调整关于国民经济数据的季节性影响与调整1. 季节性核算在国民经济数据分析中的意义2. 季节性变动对国民经济数据的影响3. 季节性调整方法的分类与实践4. 分析季节性调整方法的优缺点5. 经验案例:季节性调整对国民经济数据的影响与解读1. 季节性核算在国民经济数据分析中的意义季节性指随着自然和社会活动的变化,某些经济指标会呈现出周期性的波动,导致对季节性因素敏感性的统计指标难以得到真实准确的结果。
季节性核算是研究季节性因素对经济变量统计结果的影响过程,以及可采用的技术方法与评价标准。
季节性核算在国民经济数据分析中的意义体现在以下三个方面:第一方面,季节性核算可帮助准确分析经济发展状况。
国民经济数据往往基于季度或年度发布,但在一年中的不同季节,各个行业、企业和产业部门都会经历不同的生产和销售状况。
季节性核算能帮助经济分析和决策人员预测和评估市场和经济行业在特定的季度发展状况。
第二方面,季节性核算可帮助持续建立可靠的经济模型。
经济模型是用来模拟影响宏观经济发展的因素,季节性变动是其中一个重要因素。
季节性核算可确保季节效应被合理地纳入宏观经济模型中,从而提高模型预测的准确性。
第三方面,季节性核算可帮助改进经济指标的制宪与修订。
在民生服务、生产效率等方面,需衡量不同季节的变化,以便更好地反映发展趋势和准确让政策制定人员作出正确决策。
2. 季节性变动对国民经济数据的影响季节性变动对国民经济数据的影响包括以下几个方面:第一方面,季节性变动影响了经济数据的长、短期变化趋势。
采用统计方法对不同的季节进行拆卸,可以更准确地对经济变化进行分析。
第二方面,季节性变动导致季节缩小指标的波动。
季节缩小是统计分析工具,指为排除或减少季节性因素而采取的一种数据处理方法。
季节性缩小有助于更明确,更准确识别经济活动的剪切点,如大停止止工业生产的年休息日。
第三方面,季节性变动可导致偏差及误差。
国民经济数据中,例如季节性因素及调整偏差很容易产生。
宏观经济指标的解读与分析

宏观经济指标的解读与分析宏观经济指标是评估国家经济运行状况和预测未来经济发展趋势的重要工具。
它们是衡量国民经济总体状况的数据指标,包括国内生产总值(GDP)、通货膨胀率、失业率、消费者物价指数(CPI)等。
本文将从这些主要宏观经济指标的角度出发,对其进行解读与分析。
一、国内生产总值(GDP)国内生产总值是一个国家或地区一定时期内产生的全部最终产品和服务的市场价值总和。
它是衡量一个国家经济规模和增长速度的重要指标。
GDP增长率代表了经济的增长速度。
当GDP增长率高时,通常意味着经济繁荣,投资和消费增加;当GDP增长率低时,可能意味着经济衰退或增长放缓。
在解读GDP时,除了关注总量的增长率外,还需要分析其构成部分。
投资、消费和出口是推动经济增长的主要因素。
如果投资增长率高于消费增长率,可能意味着经济正处于投资驱动型增长阶段;如果消费增长率高于投资增长率,可能意味着经济正处于消费驱动型增长阶段。
二、通货膨胀率通货膨胀率是衡量物价水平总体上持续上涨的速度。
通货膨胀率的提高意味着货币购买力下降,人民币每单位所能购买的商品和服务减少。
通货膨胀率过高可能导致恶性通货膨胀,影响经济稳定。
解读通货膨胀率时可以从物价变动的原因和影响因素入手。
物价上涨可能与需求过旺盛、供应不足、成本上升等因素有关。
理解通货膨胀的结构性特点和所处阶段有助于分析其对经济的影响。
三、失业率失业率是指劳动力市场上正在寻找工作但找不到工作的人数与总劳动力人口(就业者和失业者)的比率。
失业率是衡量就业问题的重要指标,对于表征经济的闲置资源和劳动力市场状况有着重要的意义。
解读失业率要考虑结构性和季节性因素对失业率的影响。
结构性失业可能与产业结构调整、技术进步等因素有关;季节性失业则与一年中某些行业的劳动力需求存在关联。
四、消费者物价指数(CPI)消费者物价指数是衡量消费品价格总体持续上涨的速度。
CPI的涨跌直接影响着人们购买力的变化,对于居民生活有着重要的指导意义。
《宏观分析》课件

繁荣阶段
经济增长强劲,企业盈利增加,就业率上升,消 费和投资需求旺盛。
萧条阶段
经济活动显著减少,企业大量破产,失业率居高 不下,消费和投资需求低迷。
ABCD
衰退阶段
经济增长放缓,企业盈利下滑,失业率上升,消 费和投资需求疲软。
复苏阶段
经济开始恢复增长,企业盈利逐渐改善,就业率 开始回升,消费和投资需求逐渐恢复。
新兴市场的发展与挑战
新兴市场的发展
随着全球化和技术进步,新兴市 场国家经济快速发展,成为全球 经济的重要推动力。
挑战与机遇并存
新兴市场面临着经济结构调整、 资源环境压力、社会稳定等多重 挑战,同时也伴随着全球化、技 术创新等机遇。
政策建议
政府应加强宏观调控,优化营商 环境,促进产业升级和人才培养 ,以应对挑战并抓住机遇。
《宏观分析》课件
目录
• 宏观经济的定义与重要性 • 宏观经济的指标与政策 • 宏观经济的周期与预测 • 宏观经济的挑战与解决方案 • 宏观经济的未来展望
01
宏观经济的定义与重要性
宏观经济是什么
01
宏观经济是指整个国民经济或国民经济总体及其经济活动 和经济关系。
02
它包括国民经济的总供给与总需求,以及与它们相关的国 民经济运行与发展中的主要比例关系。
人口老龄化的影响
总结词
人口老龄化对宏观经济的挑战主要表现在劳 动力市场、社会保障和经济增长等方面。
详细描述
随着人口老龄化的加剧,劳动力市场将面临 供不应求的局面,这可能导致劳动力成本上 升和经济增长放缓。此外,社会保障体系也 将面临压力,如何合理安排养老金和医疗保 障成为亟待解决的问题。
技术进步与创新
总结词
环境可持续性对宏观经济发展具有重要意义 ,能够促进经济可持续发展、提高人民生活 质量和保护生态环境。
有关GDP时间序列季节调整的一些说明

有关GDP时间序列季节调整的一些说明GDP(国内生产总值)是一个非常重要的经济指标,用于衡量一个国家或地区一定时期内所生产的所有最终商品和服务的总价值。
然而,由于季节因素的影响,GDP数据可能会出现季节性的波动。
为了更准确地反映经济的发展趋势,需要对GDP进行季节调整。
本文将对GDP时间序列季节调整的一些说明进行探讨。
1. 季节调整的背景季节调整指的是对经济数据进行去除季节性成分的处理,以便更好地捕捉出经济的长期趋势。
季节性因素包括一年中某个特定季节的自然事件、传统节假日和周期性的销售促销活动等。
忽略这些季节性因素,可以让我们更好地理解经济数据的趋势和变动。
2. 季节调整方法在季节调整中,有两种常见的方法:移动平均法和X-12-ARIMA法。
移动平均法是一种简单而常用的方法,通过计算每一特定季节的平均值,然后将该季节的值调整为其平均值,从而去除季节性波动。
而X-12-ARIMA法则是一种基于时间序列分析的复杂模型,可以更准确地确定季节性成分的波动。
3. 季节调整的意义季节调整可以帮助我们更好地识别经济趋势。
通过去除季节性影响,我们可以更准确地判断经济的长期表现,从而有效地进行政策制定和经济决策。
季节调整后的GDP数据更具有可比性和稳定性,能够提供更准确的经济分析和预测。
4. 季节调整与其他调整方式的区别除了季节调整,还有一些其他常见的调整方式,如通胀调整和实际GDP调整。
通胀调整是为了排除价格上涨对GDP数据的影响,计算出真实的购买力。
实际GDP调整则是针对GDP中包含的价格变动进行调整,以反映产出的真实增长。
这些调整方式与季节调整不同,但它们共同的目标都是更准确地反映经济的实际情况。
5. 季节调整的局限性尽管季节调整在经济数据分析中很有用,但它也存在一些局限性。
首先,季节调整无法完全消除季节性变动的影响,因为某些季节性因素一直存在,如圣诞节和春节等。
其次,季节调整可能会导致数据失真,特别是在数据样本较小或长期趋势发生变化的情况下。
经济统计数据的季节性调整方法

经济统计数据的季节性调整方法随着经济的不断发展和变化,统计数据的准确性对于政府决策和企业经营至关重要。
然而,由于季节性因素的影响,原始统计数据可能存在波动和不稳定的现象。
因此,进行季节性调整是保证数据准确性的重要步骤之一。
本文将介绍几种常见的经济统计数据的季节性调整方法。
首先,我们来了解一下什么是季节性调整。
简而言之,季节性调整是一种通过消除季节性变动对数据的影响,以便更好地观察长期趋势和周期性变化的方法。
季节性因素是指经济数据在特定季节内出现的周期性变化,例如节假日购物季节、农业季节等。
这些季节性因素会导致原始数据的波动,使得我们很难观察到真实的经济趋势。
一种常见的季节性调整方法是移动平均法。
这种方法通过计算一定时间范围内的平均值来消除季节性变动。
具体来说,移动平均法将每个季节性周期内的数据加总,然后除以季节性周期的长度,得到一个平均值。
这样一来,我们就能够得到消除季节性影响的数据,更好地观察长期趋势。
另一种常见的季节性调整方法是季节性指数法。
这种方法通过计算每个季节性周期内的相对指数来消除季节性变动。
具体来说,季节性指数法将每个季节性周期内的数据除以整个数据集的平均值,得到一个相对指数。
然后,将所有的相对指数进行加权平均,得到一个季节性指数。
最后,将原始数据除以季节性指数,即可得到消除季节性影响的数据。
除了以上两种方法,还有一种常见的季节性调整方法是回归模型法。
这种方法通过建立一个回归模型来消除季节性变动。
具体来说,回归模型法将季节性因素作为一个变量引入回归方程中,通过拟合回归模型来估计季节性因素对原始数据的影响。
然后,将估计得到的季节性因素从原始数据中减去,即可得到消除季节性影响的数据。
需要注意的是,不同的季节性调整方法适用于不同的数据类型和情况。
在选择合适的方法时,我们需要考虑数据的特点和目标,以及方法的适用性和可行性。
此外,季节性调整并不是完美无缺的,它可能会引入一些误差和不确定性。
因此,在使用季节性调整数据时,我们需要谨慎分析和解读,结合其他指标和数据进行综合判断。
季度分析宏观经济经济研究报告

季度分析宏观经济经济研究报告近几个季度以来,全球宏观经济形势发生了较大变化。
本文将对最近三个季度的宏观经济数据进行分析和研究,以了解经济趋势,预测未来发展方向,为相关部门和企业提供参考。
第一季度分析第一季度,全球宏观经济呈现出较为疲弱的态势,主要原因是新冠疫情的爆发和全球经济衰退。
各国政府采取了各种措施来应对疫情,包括封锁措施、限制交通和关闭非关键行业。
这些措施导致供应链中断、企业倒闭和失业率上升。
据统计数据显示,第一季度全球经济增长率下滑,投资和消费需求受到明显冲击。
尤其是在旅游、零售和航空等行业,受疫情限制导致营业额大幅下降。
此外,国际贸易也受到负面影响。
很多国家出口大幅减少,特别是对疫情重点地区的贸易额下降较为明显。
这导致了全球贸易格局的重构,国家之间的经济合作受到了冲击。
第二季度分析第二季度,全球经济逐渐从疫情的冲击中恢复,各国经济逐渐开放。
随着疫苗的研发和分发,疫情得到了一定程度的控制,减少了限制和封锁措施。
在这一季度,全球经济开始出现回升的迹象。
已有的经济数据显示,国内生产总值开始增长,投资需求有所回升,不少企业纷纷复工复产。
然而,第二季度依然充满不确定性,这主要是因为疫苗接种进度和疫情变异的风险。
全球各国在疫苗分发和接种上存在差异,而新的病毒变种增加了进一步控制疫情的难度。
第三季度展望虽然第二季度有所恢复,但第三季度的宏观经济发展仍然存在挑战。
疫情在一些地区出现反复,限制和封锁措施的重新实施可能对经济造成冲击。
此外,全球通胀压力也是一个需要关注的问题。
由于各国政府对疫情提供了大量的财政刺激,通胀压力可能随之而来。
这可能导致货币政策的调整,进一步影响全球经济的走势。
不过,全球经济也存在一些积极的因素。
首先,疫苗接种进度的加快可以有效控制疫情的蔓延,推动经济的复苏。
其次,各国采取的财政刺激措施和货币政策的宽松仍将继续支持经济的增长。
综上所述,2021年上半年的宏观经济形势总体上呈现出逐渐恢复的趋势,但仍面临挑战。
季度宏观经济分析报告

季度宏观经济分析报告1. 引言本文是针对当前季度的宏观经济情况进行分析的报告。
我们将从国内生产总值(GDP)、就业状况、通货膨胀率、货币政策和国际贸易等多个方面深入剖析当前宏观经济的表现和趋势,以此为基础给出未来的预测和建议。
2. 国内生产总值(GDP)本季度,我国国内生产总值达到XXX万亿元,同比增长X.X%。
我国经济增速仍然保持在合理区间内,显示出韧性和稳定性。
受全球经济放缓和贸易摩擦冲击的影响,我国出口增速略有放缓,但消费和投资对经济增长的贡献明显增加。
其中,消费者信心指数上升,个人消费支出稳步增长,拉动了内需的增长。
此外,国家加大基础设施建设力度,投资增速较上季度有所提升,为经济提供了有力支撑。
3. 就业状况在就业方面,本季度我国就业形势总体平稳。
全国城镇新增就业人数达到X.X万人,就业率稳定在较高水平。
尽管外部不确定因素增加,企业招聘意愿略有下降,但随着国内市场需求的增加,新兴产业的发展为就业创造了新的机会。
4. 通货膨胀率本季度,我国通货膨胀率保持在合理区间内。
CPI(居民消费价格指数)同比增长X.X%,处于温和增长水平,并未出现明显上升的趋势。
通货膨胀主要受到食品价格和能源价格等因素的影响。
本季度,食品价格上涨压力相对较小,原油价格相对稳定,因此通货膨胀率整体仍然保持较低的水平。
然而,我们也需要密切关注可能对通胀产生压力的因素,比如劳动力成本的上升和国际油价的变化等。
5. 货币政策货币政策是宏观经济调控的重要手段之一。
本季度,央行继续实施稳健的货币政策,保持流动性合理稳定。
同时,央行通过定向降准和公开市场操作等手段,维护市场利率在合理水平,促进金融资源的有效配置。
未来,我们预计货币政策将继续保持稳健,同时注重结构性调控。
央行将注重疏导资金流向实体经济,推动支持新兴产业发展,提高金融服务实体经济的能力。
6. 国际贸易国际贸易对于我国经济的影响依然显著。
本季度,由于全球经济增长放缓和贸易保护主义抬头,我国出口面临一定的压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲宏观经济指标的季节性分析对外经济贸易大学金融学院金融工程系黄晓薇xwhuang@本讲参考教材《时间序列X12-ARIMA季节调整——原理与方法》《时间序列X12ARIMA季节调整原理与方法》¾中国人民银行调查统计司,中国金融出版社,2006《计量经济分析方法与建模——Eviews应用及实例》高铁梅(主编)清华大学出版社2006¾高铁梅(主编),清华大学出版社,2006《时间序列分析及应用R语言》《时间序列分析及应用——R语言》¾Jonathan D. Cryer Kung-Sik Chan,机械工业出版社,2011时间序列的构成(Long term trend),长期趋势(Long term trend),T。
¾描述序列中长期运动趋势(Cyclical component)循环分量(Cyclical component),C。
¾描述序列中不同幅度的扩张与收缩,且时间间隔不同的循环变动。
经济问题中常指一年以上的起伏变化。
经济问题中常指一年以上的起伏变化¾实际测算难度较大,因此将循环和趋势放在一起不加区分。
(S l t)季节分量(Seasonal component),S。
¾描述序列中一定周期的重复变动,周期常为一年,一季,一周等。
不规则分量(Irregular component),I。
¾描述随机因素引起的变动,常带有偶然性由于各种因素引起变化相互抑制抵消,变动幅度常较小。
1800TREND Y 1.10时间序列的构成时间序列的构成趋势X t循环或者季节性随机time经典的确定性时间序列模型这四种因素对时间序列变化的影响有二种模型加法模型Y = T + S + C + I T *S*C*I乘法模型Y = T *S* C* I 对于一个时间序列,采用哪种模型分析,取决于各成分之对于个时间序列,采用哪种模型分析,取决于各成分之间关系。
一般来讲,若4种成分是相互独立的用加法模型,若相互有关联用乘法模型,对于社会经济问题主要使用乘法模型。
季节调整的特点为了克服季节性的传统方法是采用“同比”来反映经济增 为了克服季节性的传统方法是采用同比来反映经济增长变化。
缺点在于无法及时反映经济变化转折点,可能产生错误的结论。
经验表明,采用同比增长反映经济拐点平均滞后6个月。
季节调整的数据可以更及时地反映经济的瞬间变化季节调整的数据可以更及时地反映经济的瞬间变化。
季节调整的数据可以进行年化率的测算。
¾调整后的绝对数(季度)*4=年度数据季节调整后数据不是实际的统计数据,不同的方法可能产生不同的季节调整数据。
第二讲宏观经济指标的季节性分析时间序列的平滑方法2.1 时间序列的平滑方法2.1时间序列的平滑方法平滑(Smoothing)是研究时间序列的一个基本方法,用它g 来平抑或削弱时间序列中的波动变化,从而获得序列变化趋势的信息。
平滑技术是消除或者至少减少时间序列短期波动的一个手段的个手段。
在实际情况下,某经济数据不具有明显的季节波动和趋势波动。
我们可以刻采用指数平滑方法进行拟合及预测。
主要的平滑方法移动平均方法¾简单移动平均¾中心化移动平均¾加权移动平均指数平滑方法¾单指数平滑¾双指数平滑¾Holt-Winters乘法模型Holt Winters加法模型¾Holt-Winters加法模型¾Holt-Winters无季节性模型移动平均法移动平均是使未调整的序列在t时刻被一个加权平均值替代 移动平均是使未调整的序列在t时刻被个加权平均值替代。
q+mt pm m t y y M +−=∑=θ)(记k=p+q+1,上式亦称为k期移动平均。
当p=f,并且对于任意的m都有θ-m =θ-m, 我们称为中心化的移动平均。
∑+q 为了保留趋势项,我们要求1=−=p m m θ移动平均法k的选择:从上图可以看出,k值越大平滑的效果越好。
但损失的项数(k-1)¾从上图可以看出,k值越大平滑的效果越好。
但损失的项数(k也越大,所以要在保持足够的数据与消除波动之间做出选择,一般取k与循环波动周期相一致,这样可有效地抑制循环变化。
复合移动平均法复合移动平均是连续使用两次移动平均,其中P×Q移动平复合移动平均假设考虑加法模型Y t=(T t+C t)+S t+I t=TC t+S t+I t消除季节项保留趋势项循环项可以采用 为了消除季节项、保留趋势项-循环项,可以采用对季度数据采用2 ×4移动平均:M2×4={1,2,2,2,1}/8对月度数据采用2 12移动平均对月度数据采用2×12移动平均M2×12={1,2,2,2,2,2,2,2,2,2,2,2,1}/24复合移动平均复合移动平均可以从季节-不规则成分中提取季节成分复合移动平均可以从季节不规则成分中提取季节成分¾季节-不规则成分为SI t=Yt-(T t+C t)=¾提取季节成分为SI t S t+I t这里仅仅是平滑的问题,经常采用的是={1221}/9¾3×3移动平均:M3×3={1,2,3,2,1}/9¾3×5移动平均:M3×5= {1,2,3,3,3,2,1}/15={12333333321}/27¾3×9移动平均:M3×9= {1,2,3,3,3,3,3,3,3,2,1}/27这几种移动平均可以很好保留年度季节性特征,具体分析见《时间序列X12-ARIMA》71页。
见《时间序列X12ARIMA》71页Henderson移动平均由于上述提到的k期移动平均的系数曲线都是非平滑的,因单指数平滑法我们通常认为的近期值比早期值更重要,近期值在移动平均时应有更大的权重。
实现这一思想的一个简单的方法是指数加权移动平均法(单指数平滑法)。
注意到权数和为1注意到权数和为1平滑系数的选择确定指数平滑系数a:¾a较大则最近的数据赋予的权重大,相当于选择较小的k;¾a较小,权重逐渐减小,过去很久的数据仍然对未来有影响,相当于选择较大的k;¾简单滑动平均期数k和指数平滑系数的关系¾a=2/(k+1)双指数平滑法时间序列}的双指数平滑以递归形式定义为{ytHolt-Winters 乘法模型ˆt t yy 为的平滑序列节性变化。
有线性趋势性和乘法季这种方法适用于序列具Holt-Winters 加法模型t t yy ˆ为的平滑序列节性变化。
有线性趋势性和加法季这种方法适用于序列具k t t t k t Ts s t S k b a y ++++=++=,...,2,1,)(ˆk t t t s S k b a ++的递推公式如下数斜率的初值,这三个系节因子、趋势项截距和另外,需要事先给定季表示季节周期长度。
,为乘法模型的季节因子表示趋势项,其中t t s t t t b a S y a −−−+−+−=))(1()(11ααst t t t t t t t S a y S b a a b −−−−+−=−+−=)1()()1()(11γγββs k T T T k T S k b a y−++++=)(ˆ预测值为第二讲宏观经济指标的季节性分析2.2 X11季节季节调整法调整法2.2 X1122X11季节X11移动平均法————移动平均法X11方法的演变过程1954年,美国普查局Shiskin研发了普查局模型I普查局模型II,X0,X1,X2,X31965年,美国普查局Shiskin,Young和Musgrave研发X111975年1988年,加拿大统计局Dagum研发X11ARIMA1975年-1988年,加拿大统计局Dagum研发X11-ARIMA1998年美国普查局Fi dl M ll B ll Ott Ch共同 1998年美国普查局Findley,Monsell,Bell,Otto,Chen共同研发了X12-ARIMAX11季节调整的原理X11季节调整法本质是使用移动平均法(非参数方法)分理出序列的趋势-循环项和季节项。
假设考虑加法模型Y t=(T t+C t)+S t+I t=TC t+S t+I t这里假设考虑月度数据X11——第一阶段季节调整法第阶段)1(−)1()1(t 122.2)(122.1TC Y SI Y M TC tt t t −==××估计季节不规则成分:循环成分:移动平均估计趋势使用33.3×成分:移动平均估计预备季节对每个月份应用()1(t 33)1(ˆˆ)(ˆSI M S t =×)1(122)1()1t .4)(S M S S t t −=×估计季节调整后序列然后标准化)1(t)1()1()(S Y I TC A t t t −=+=估计季节序X11——第二阶段季节调整法第阶段)1()2(-)2()2(13-)(.5TC Y SI A H TC Henderson t t t t t −==不规则成分估计季节循环成分移动平均估计趋势使用53.6×成分移动平均估计最终季节对每个月份应用()2(53)2(t ˆˆ)(ˆSI M S t =×)2(t 122)2(t )2t .7)(-S M S S =×然后标准化)2(t )2()2()(S Y I TC A t t t −=+=估计季节调整后序列X11——第三阶段季节调整法第阶段)2(t 12)3(t )()12(.8A H TC H Henderson H =++:移动平均估计最终趋势使用.9估计最终不规则成分:)3(t)2(t )3(t -TC A I =第二讲宏观经济指标的季节性分析X11季节季节调整法调整法2.3 X112.323X11移动平均法和趋势性模型————移动平均法和趋势性模型X11季节调整法X11方法就是一种把一个时间序列分解为趋势分量、循环分 X11方法就是种把个时间序列分解为趋势分量、循环分量、不规则分量的连续计算方法。
目的:通过求时间序列的各个分量,达到对时间序列短期预测的目的。
预测的目的时间序列的分解:求其各个分量¾趋势分量¾循环分量¾季节分量¾不规则分量趋势分量()趋势分量(T)求出移动平均序列,即TC,下一步确定趋势分量T(trend)。
求出移动平均序列,即TC,下步确定趋势分量T(trend)。
¾在求趋势T之前,首先要观察趋势特征。