第七章 季节性时间序列分析方法
季节性时间序列分析方法

第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=∇=)1(。
季节性时间序列分析方法

季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。
因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。
第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。
二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。
因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。
所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。
季节性时间序列模型

季节性时间序列模型季节性时间序列模型通常包括四个主要组成部分:趋势、周期、季节和残差。
趋势表示数据的长期增长或下降趋势,可以是线性或非线性的。
周期表示数据中的循环模式,例如月度或年度循环。
季节表示数据在特定季节中的重复模式,例如每年夏季销售增长。
残差表示无法通过趋势、周期和季节解释的部分,即剩余误差。
为了建立季节性时间序列模型,首先需要对数据进行季节性分解,以提取趋势、周期和季节成分。
常用的方法包括移动平均法和指数平滑法。
移动平均法通过计算一系列连续时间段内的平均值来平滑数据,并提取趋势和周期成分。
指数平滑法则通过加权计算最近一段时间内的数据,赋予更高的权重,以反映近期数据的影响力,进而提取趋势成分。
一旦趋势、周期和季节成分被提取,可以使用这些成分来预测未来的值。
最常用的方法是加法模型和乘法模型。
加法模型中,趋势、周期和季节成分相加得到预测值。
乘法模型中,趋势、周期和季节成分相乘得到预测值。
具体选择哪种模型取决于数据的性质。
季节性时间序列模型还可以通过调整模型参数和增加复杂度来提高预测性能。
常用的技术包括自回归(AR)模型、移动平均(MA)模型和自回归移动平均(ARMA)模型。
这些模型通过考虑多个时间点的数据来提高预测的准确性。
季节性时间序列模型在实际应用中具有广泛的价值。
例如,在销售领域,可以使用季节性时间序列模型预测未来几个月的销售量,以制定合理的库存管理策略。
在经济学中,可以使用该模型预测未来几个季度的经济增长率,以指导政府的宏观调控政策。
然而,季节性时间序列模型也面临一些挑战和限制。
首先,它依赖于数据中的季节性模式,如果季节性模式发生变化,则模型的准确性可能会下降。
其次,模型的复杂度和参数调整可能会带来计算上的困难。
此外,模型所能提供的准确度也取决于数据的质量和可用性。
总的来说,季节性时间序列模型是一种强大的工具,可以用于分析和预测数据中的季节性变化。
通过合理的调整和选择模型参数,可以提高预测的准确性。
机器学习技术如何处理时间序列数据中的季节性和周期性

机器学习技术如何处理时间序列数据中的季节性和周期性时间序列数据中的季节性和周期性是机器学习技术中的常见挑战之一。
随着大数据和人工智能的快速发展,处理这些特殊模式的能力变得越来越重要。
在本文中,我们将探讨机器学习技术如何处理时间序列数据中的季节性和周期性,并介绍一些常用的方法和技术。
时间序列数据是按照时间顺序排列的数据集合,它们通常具有一定的内在模式,包括季节性和周期性。
季节性是指数据在特定的时间段内呈现出重复的模式,例如每年相同的季节都会出现相似的模式。
周期性是指数据在一定的时间间隔内发生重复的模式,例如每个月或每个周都会出现相似的模式。
处理时间序列数据中的季节性和周期性的首要任务是识别和理解这些模式。
一种常用的方法是使用时间序列分析技术,例如自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性分解方法(Seasonal Decompositionof Time Series)。
这些方法可以通过拟合数据的特定模型来捕捉季节性和周期性的特征,并将其从原始数据中分离出来。
除了传统的时间序列分析方法,机器学习技术也提供了一些有效的处理时间序列数据中季节性和周期性的方法。
其中一个流行的方法是使用循环神经网络(Recurrent Neural Networks,RNNs)。
RNNs 是一类特殊的神经网络,能够处理具有时间依赖性的数据。
通过将过去的输入和当前的输入结合起来,RNNs 可以学习到时间序列数据中的长期依赖关系,并预测未来的值。
针对季节性和周期性,一种常见的 RNNs 模型是长短期记忆网络(Long Short-Term Memory,LSTM)。
LSTM 模型能够对时间序列数据中的长期依赖关系进行建模,并且还能处理输入和输出之间的时间延迟。
另外,随机森林(Random Forest)也是一种常用的机器学习方法,可用于处理时间序列数据中的季节性和周期性。
随机森林是一种基于决策树的集成学习算法,它能够处理高维度的数据,并且对异常值具有较好的鲁棒性。
季节性分析方法

yt M
t
Tt S t I t Tt
St It
平均数趋势整理法
建立趋势预测模型
根据年的月平均数,建立年趋势直线模型:
ˆ T t = a + bt
其中t是以年为单位
用最小平方法估计参数a,b,幵取序列{ y }的中点年为时 间原点.再把此模型转变为月趋势直线模型
(t )
Tˆt = a 0 + b 0 t b a0 = a + 24 , b0 = b 12
时间序列分析模型
加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
Y T
T S I T
S I
时间序列的分解分析
分解步骤:
① 分析和测定现象变动的长期趋势,求趋势值T。 ② 对时间序列进行调整,即减去或除以T,得出丌包含趋势 变动的时间序列资料。 乘法模型:
Y T T S I T S I
同月平均数与季节指数对比
元/吨 1.04 1.02 1 0.98 0.96 1 2 3 4 5 6 7 8 9 10 11 12 季节指数 同月平均 3400 3350 3300 3250 3200 3150 3100 3050 3000
yt M
t
Tt S t I t Tt
St It
计算季节比率及其平均数
y Mt tBiblioteka Tt St
It
S
Tt
t
It
计算季节指数
yt M
t
Tt S t I t Tt
St It
移动平均趋势剔除法
移动平均季节指数
第七章 季节时间序列分析

② 阶数判定要点: ◇差分与季节差分阶数d、D的选取,可采 用试探的方法,一般宜较低阶(如1、2、 3阶).对于某一组d、D,计算差分后序列 的SACF与SPACF,若呈现较好的截尾或拖 尾性,则d、D适宜.此时若增大d、D,相 应SACF与SPACF会呈现离散增大及不稳定 状态; ◇通常D不会超过1阶,特别对S=12的月份 数据(B-J); ◇SARIMA模型应慎重使用,特别序列长度 不够理想时(B-J).
• 构造原理
– 短期相关性用低阶ARIMA(p,d,q)模型提取 – 季节相关性用以周期步长S为单位的 ARIMA(P,D,Q)模型提取 – 假设短期相关和季节效应之间具有乘积关系.
(一) 乘积季节模型的一般形式
1、 et 可能是平稳的,也可能是非平稳的,
不妨设一般情况,
et 适合ARIMA(p,d,q)
季节差分后序列ACF、PACF特征
(1)若季节差分后序列适合MA模型: S=12 Xt-Xt-12=(1- 12B12)et=(1- 1B)(1-12B12)at =at- 1at-1- 12at-12+ 112at-12-1 季节差分后,适应MA(13),其中i=0 (i=2,3,…,11),ACF截尾(k=1,11,12,13不 为零,其余显著为零),PACF拖尾. 1 0 12 0 11 13 1112
(2)D阶季节差分 s)X sXt=Xt-Xt-s=(1-B t
s D Xt=(1-Bs) dXt s 2 Xt =(1-Bs) 2Xt=(1-2 Bs+ B 2s)Xt Xt=Xt-Xt-1 sXt=Xt-Xt-s a D: a:相减的时期 D:差分的阶数
设s D Xt=Wt ,则s D Xt-s=Wt-s 若Wt适合AR(1) Wt 1Wt s t , (1 1Bs )Wt t
时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
时间序列数据分析的方法与应用

时间序列数据分析的方法与应用时间序列数据是指按照时间顺序记录的一系列数据,根据时间序列数据可以分析出数据的趋势、周期和季节性等特征。
时间序列数据分析是一种重要的统计方法,广泛应用于经济学、金融学、气象学、交通运输等领域。
时间序列数据的特点是有时间的先后顺序,时间上的变化会对数据产生影响。
时间序列数据分析一般包括两个主要步骤:模型识别与模型估计。
模型识别是指根据时间序列数据的特点来选择适当的模型,而模型估计是指利用已有的时间序列数据对模型中的参数进行估计。
下面主要介绍时间序列数据分析的方法和应用。
一、时间序列数据分析的方法1.时间序列图时间序列图是最简单、直观的分析方法,通过画出时间序列数据随时间的变化趋势,可以直观地观察到数据的趋势、季节性和周期性等信息。
2.平稳性检验平稳性是时间序列数据分析的基本假设,平稳时间序列具有恒定的均值和方差,不随时间而变化。
平稳性检验是为了验证时间序列数据是否平稳,常用的平稳性检验方法有ADF检验和KPSS检验等。
3.拟合ARIMA模型在时间序列数据分析中,ARIMA模型是一种常用的预测模型,它是自回归移动平均模型的组合,用来描述时间序列数据的自相关和滞后相关关系。
通过对已有的时间序列数据进行拟合ARIMA模型,可以得到时间序列数据的参数估计,从而进行未来的预测。
4.季节性调整时间序列数据中常常存在季节性变动,为了剔除季节性影响,可以进行季节性调整。
常用的季节性调整方法有季节性指数法和X-11法等。
5.平滑法平滑法是一种常用的时间序列数据分析方法,通过计算移动平均值或指数平滑法对数据进行平滑处理,可以减小数据的波动性,更好地观察到数据的趋势和周期性。
二、时间序列数据分析的应用1.经济学领域时间序列数据在宏观经济学和微观经济学中有广泛的应用。
例如,对GDP、通胀率、失业率等经济指标进行时间序列数据分析,可以发现经济的周期性波动和长期趋势,为经济政策的制定提供参考。
2.金融学领域金融市场中的价格、交易量等数据都是时间序列数据,通过时间序列数据分析可以揭示金融市场的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=∇=)1(。
二、 随机季节模型1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。
AR (1):t t S t S t t e W B e W W =-⇔+=-)1(11ϕϕ,可以还原为:t t S S e X B =∇-)1(1ϕ。
MA (1):t S t S t t t e B W e e W )1(11θθ-=⇔-=-,可以还原为:t S t S e B X )1(1θ-=∇。
2.形式:广而言之,季节型模型的ARMA 表达形式为t S t S e B V W B U )()(= (1)这里,⎪⎩⎪⎨⎧----=----=∇=qSq S S S pS P S S S td S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。
注:(1)残差t e 的内容;(2)残差t e 的性质。
§2 乘积季节模型一、 乘积季节模型的一般形式由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有t t d a B e B )()(Θ=∇φ (2)式中,t a 为白噪声;n n B B B B ϕϕϕφ----= 22111)(;m m B B B B θθθ----=Θ 22111)(。
在(1)式两端同乘d B ∇)(φ,可得:t S t d S t DS d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=∇=∇∇=∇φφφ (3)注:(1)这里t DSS X B U ∇)(表示不同周期的同一周期点上的相关关系;t d X B ∇)(φ则表示同一周期内不同周期点上的相关关系。
二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫描。
(2)从结构上看,它是季节模型与ARIMA 模型的结合形式,称之为乘积季节模型,阶数用S q D p m d n ),,(),,(⨯来表示。
(3)将乘积季节模型展开便会得到一般的ARIMA 模型。
例如:t S t a B V B X B )1)(1()1(11--=-θ,可以展开为t S S t a B V B V B X B )1()1(11111++--=-θθ,此时也有)1,1,0(~+S ARIMA X t ,并且其中有许多系数为0。
但其参数并不独立。
所以尽管模型的阶数可能很高,然而真正独立的参数不多,我们称这类模型为疏系数模型(带有一定约束条件的疏系数模型)。
二、 常用的两个模型1.t t a B B X B B )1)(1()1)(1(1212112θθ--=-- 类型为:S )1,1,0()1,1,0(⨯ (4) 2.t t a B B X B )1)(1()1(1212112θθ--=- 类型为:S )1,1,0()1,0,0(⨯ (5)三、 乘积季节模型与ARIMA 模型的关系我们可以将乘积季节模型t S t d S t DS d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=∇=∇∇=∇φφφ (3)展成ARIMA 模型形式。
例如,t S t a B V B y B )1)(1()1(11--=-θ是)1,0,0()1,1,0(⨯季节模型,将式子的右边展成:t S j jj t S S t a B a BV B V B y B )1()1()1(11*11111∑+=+-=+--=-θθθ (6)这是一个)1,1,0(+S 阶ARIMA 模型,但是其参数不是独立的,有下面的约束关系11*11**1*21*1,,0,V V S S S θθθθθθθ-======+- (7)尽管模型的阶数很高,然而真正独立的参数并不多,有许多参数取值为零§3 季节性时间序列模型的建立季节性时间序列模型的建立也包含这样几个过程:模型的识别、模型的定阶、参数估计、诊断检验等。
基本上采用的是BOX-JENKINS 方法,也就是立足于考察数据序列的样本自相关、偏自相关函数。
如果样本自相关、偏自相关函数既不截也不拖尾,而且也不呈线性衰减趋势,相反地,在相应于周期S 的整数倍点上,自相关(或偏自相关)函数出现绝对值相当大的峰值并呈现振荡变化,我们就可以判明原数据序列适合于乘积季节模型。
一、 季节性MA 模型的自相关函数{}t X 是一个季节性时间序列,如果S t MA X )1(~,则t S S t e B X )1(θ-= (6)t e 不平稳,设)1(~MA e t ,则t t a B e )1(1θ-= (7)我们就能得到一个乘积季节模型t S S t a B X )1)(1(1θθ--= (8)1111----+--=S t S S t S t t t a a a a X θθθθ (9)当S=12时,有)13(~131********MA a a a a X t t t t t ---+--=θθθθ (10)可以计算出:2212210)1)(1(σθθγ++= 2212111)(σθθθγ--=01032====γγγ 12113θθγ=01514=== γγ因此有:012111≠+-=θθρ 01032====ρρρ0)]1)(1[(2122112111≠++=θθθθρ012121212≠+-=θθρ 0)]1)(1[(2122112111≠++=θθθθρ01514=== ρρ注:(1)1ρ为t t a B e )1(1θ-=的一阶自相关系数,12ρ为t S S t e B X )1(θ-=的一阶自相关系数; (2)1θ与12θ比较容易求解; (3)可以推广到更一般的形式。
二、 季节性AR 模型的偏自相关函数 {}t X 是一个季节性时间序列,如果S t AR X )1(~,则t t S S e X B =-)1(ϕ (11)t e 不平稳,设)1(~AR e t ,则t t a e B =-)1(1ϕ (12)我们就能得到一个乘积季节模型t t S S a X B B =--)1)(1(1ϕϕ (13) t t S S S S a X B B B =+--+)1(111ϕϕϕϕ (14)当S=12时,有)13(~131********AR a X X X X t t t t t =+-----ϕϕϕϕ (15)可以根据YULE-WORK 方程求出偏自相关函数。
注:(1)根据它在周期点上的偏自相关函数的截尾性和拖尾性识别模型的类型和定阶; (2)可以推广到更一般的形式。
三、 季节性时间序列模型的建模方法利用B-J 建模方法:判别周期性,即S 的取值;根据SACF 和SPACF 提供的信息识别模型类型和阶数,最后进行估计和诊断检验。
具体做法:第一步:对时间序列{}t X 进行普通差分∆和季节差分S ∆,以得到平稳的序列{}t W ,t D S d t X W ∆∆=;第二步:计算差分后序列的SACF 和SPACF ,选择一个暂定的模型;第三步:由SACF 和SPACF 函数的值,利用矩估计法得到的值作为初始值,对模型参数作最小二乘估计;第四步:模型的诊断与检验。
注:(1)关于差分阶数d和季节差分阶数D的选取可采用试探的方法1;也可使用差分后序列均方差的大小挑选;(2)季节差分算子的阶数不宜过高。
四、应用实例【例6-1】试用1987年到1996年甲地某商品各月销售量资料为例建立季节性时间序列模型2。
建模型过程:1.时间序列图明显存在着季节性变化,并且以12为周期。
2.SACF和SPACF函数图1详见备课笔记。
2资料来源王振龙:《时间序列分析》,中国统计出版社,P189。
再次证明,时间序列存在着以S=12为周期的季节性变动。
3.进行差分变换需要进行一阶普通差和以12为周期的季节差分,得到t t X B Y )1(-= (17) t t t t W X B B Y B X =--=-=)1)(1()1(1212 (16)计算其自相关系数。
一阶普通差分图一阶普通差分和一阶季节差分序列图4.模型的识别与定阶5.参数估计6.诊断检验7.模型应用预测结果【例6-2】表显示了我国1990年1月至1997年12月工业总产值的月度资料(1990年不变价格),记作IP t,共有96个观测值,对序列IP t建立ARMA模型3,在建模过程中将1997年12个月的观测值留出作为评价预测精度的参照对象。
1990年1月至1997年12月我国工业总产值单位:亿元1.时间序列图表明数据或者序列是非平稳的。