浅谈不定积分的计算方法与技巧

浅谈不定积分的计算方法与技巧

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

不定积分的计算

不 定义:如果在区间I 上,可导函数F (x )的导函数为f (x ),即对任一x ∈I ,都有 ()()dF(x)=f(x)dx F x f x '=或 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上连续,那么在区间I 上存在可导函数F (x ),使对任一x I ∈都有 ()()F x f x '= 简单地说:连续函数一定有原函数。 一、换元积分法 1、第一类换元法 定理:设f (u )具有原函数,()u x ?=可导,则有换元公式:()[()]()[()]u x f x x dx f u ???='=?, 设要求()g x dx ?,如果函数g (x )可以化为g x [()]()x x ??'?()=的形式,那么 ()()[()]()[()]u x g x dx f x x dx f u du ???='==?? . 这样,函数g (x )的积分即化为函数f (u )的积分,如果能求得f (u )的原函数,那么也 就求出了g(x)的原函数。 例,求 ? 解:被积函数中,cos2x 是一个复合函数:cos2x=cosu ,u=2x ,常数因子恰好是中间变量u 的导数,因此,作变换u2x ,便有: 2cos 2cos 22cos 22()cos sin 22cos 2sin 2xdx x dx x x dx udu u c u x xdx x c =?=?= =+==+?????即 将代入得 2、第二类换元法 定理:设()x t ?=是单调的可导的函数,并且()0t ?'≠,又设[()]()f t t ??'具有原函数,则有换元公式:1 x ()[[()]()]t f x dx f t t dt ???-='=??() (2) 其中1 x ?-()是()x t ?=的反函数。 证明:设[()]()f t t ??'的原函数为()t Φ,记1 [()](x F x ?-Φ=),利用复合函数及反函数的 求导法则。得到:1 F ()[()]()[()]()() d dt x f t t f t f x dt dx t ????Φ''= ? =? ==' 即F(x)是f (x )的原函数,所以有:1 ()()[()]f x dx F x c x c ?-=+=Φ+? =1 () [[()]()]t x f t t dt ? ??-='?

浅谈复积分的计算方法

山东财经大学学士学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在论文中作了明确的说明并表示了谢意。本声明的法律结果由本人承担。 学位论文作者签名: 年月日 山东财经大学关于论文使用授权的说明 本人完全了解山东财经大学有关保留、使用学士学位论文的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文的全部或部分内容,可以采用影印或其他复制手段保存论文。 指导教师签名:论文作者签名: 年月日年月日 浅谈复积分的计算方法

摘要 复积分即是指复变函数积分.在复变函数的分析理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算中理论上处于关键地位, 因此,对复积分及其计算的研究显得尤为重要.复变函数中的积分不仅是研究解析函数的重要工具,也是它的后继课程积分变换的基础,所以就复变函数的积分计算方法进行总结和探讨是十分必要的.柯西积分公式、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.留数定理不仅可以用来计算复积分,而且可以用来计算实积分,它把实积分和复积分的相关知识有机的结合起来. 本文讨论了留数定理与复变函数积分之间的内在联系,并举例说明了留数定理、柯西积分定理、柯西积分公式和柯西高阶导数公式之间的密切关系.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式、留数定理等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.复变函数中积分分闭曲线和非闭曲线两类.本文就这两种积分的计算方法进行总结和探讨. 关键词:复积分;柯西积分定理;柯西积分公式;留数定理 Discussion on the computational methods of complex integration

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

浅谈几种积分计算方法

浅谈几种积分计算方法 作者:刘清贵 单位:湖南常德西洞庭一中 职称:中教一级 关键词:不定积分,定积分,被积函数,换元法,分部积分法 摘 要:对几种类型积分的计算方法进行介绍 在高等数学的学习中,积分的计算无疑是一个非常重要的内容。在进行积分计算时,我们常用的方法有:直接积分法,换元积分法,分部积分法等等。而对于一些特殊的积分,我们往往需要一些比较特殊的方法来进行计算。在本文中,我将谈谈几种特殊积分的计算方法: ㈠ 型的积分 这种类型的积分,如果直接使用一些常规方法,是很难计算出来的,即使能够计算出来,过程也十分繁琐。实际上,在该类积分计算中,灵活使用 的换元,计算将大大简化。 例1: 计算 解:原式= 考虑到 故原式= ?++±dx bx x x 1124 2

例2:计算: 解:略提示: ㈡型的积分 对于该类型的积分,如果分母可以因式分解成: (A1Sinx+B1Cosx)(A2Sinx+B2Cosx),则计算较简单。如果分母不能加上他因式分解时,可以通过待定系数法进行被积函的分解后再进行相应计算。 例3 计算: 解:∵2Sin2x﹣4Sinx·Cosx+5Cos2x =1+(Sinx﹣2Cosx)2 =6﹣(2Sinx+Cosx)2 故设:Sinx+Cosx=A(Cosx+2Sinx)+B(2Cosx﹣Sinx) 解之有:A= B= 故原式= 事实上,对于的计算也可以采用 如上的类似方法进行计算: 例4:计算: 解:令:Sinx+Cosx=S(2Sinx+3Cosx)+B(2Cosx-3Sinx)

解元有:A= B=- 故原式 ㈢巧化对称式,简化计算: 对于及型的积分与其与之类似的积分,除可以使用配方法结合换元法进行计算外还可以先化为对称式,再直接用公式进行直接计算: 例5:计算:(b>0) 解:令A=-B=- 则:(x-a)(b-x)=[(x+A)+B][B-(x+A)] 原式= ㈣定积分的回归解法: 有些定积分直接利用牛顿——莱布尼兹公式计算是不能计算的,其中一部分定积分可以恰当的换元或分部积分之后,再利用回归解法求解:例6:证明:若函数f(x)于闭区间[0,1]上连续 则:∫ 证明:令t=π﹣x,则f(Sinx)=f(Sin(π﹣t))=f(Sint) 当x=0时,t=π,当x=π时,t=0 代入原式,得:

计算不定积分应该注意的几个问题

arccos求导目录 摘要 1 关键词 1 Abstract 1 Keywords 1 引言 1 1 基本概念、定理及公式 2 2 直接积分法易犯错误举例剖析 3 2.1 运算中漏掉“”、“” 3 2.2 自创运算法则致误 3 2.3 对公式的错误运用 4 2.4 对公式的错误运用 4 3 第一换元积分法应注意问题 5 3.1 牢记凑微分公式 5 3.2 注意解的不同表示方法 6 4 第二换元积分法中易犯错误剖析 6 5 分部积分法应注意事项 8 6 计算某类特殊积分注意事项 9 6.1 有理函数的不定积分 9 6.2 分段函数的不定积分 10 参考文献 12 致谢 13

计算不定积分应该注意的几个问题 关键词不定积分直接积分法换元积分法分部积分法特殊积分法 Indefinite Integral Calculation Should Be Noted That Several Issues Abstract Indefinite integral is a concept which is basic and important,we shoud use various techniques flexibily and the type of product function and features to calculate the indefinite integral, Integration becomes into an area of mathematics teaching which is rich in paper collates and analyzes the error-prone issues which we use various methods to calculate the indefinite integral, these issues are analyzed and as: direct integration method, integration by first substitution, integration by second substitution,division integral method,and special integral method. Key words Indefinite integral Direct integral method Integration by substitution 引言不定积分是求导的逆运算,对不定积分的理解和掌握不仅涉及到微积分本身的学习,而且影响到学习线积分、面积分及重积分等后继内容学习,我们在初学这些内容时容易出现一些普遍的错误,下面我们将对这些错误进行剖析,以便更好的掌握这部分知识. 定义1 设函数与在区间上有定义.若 则称为在区间上的一个原函数. 定义2 函数在区间上的全体原函数称为在上的不定积分,记作 其中称为积分号,为被积函数,为被积表达式,为积分变量. 注意函数不定积分是一个函数族,求函数的不定积分或原函数时,注意被积函数的定义域是很重要的因素,要引起足够的重视. 定理2 设是在区间上的一个原函数,则 也是在上的原函数,其中为任意常量函数; 在上的任意两个原函数之间,只可能相差一个常数. 定理3 若函数与在区间上都存在原函数,、为两个任意常数,则 上也存在原函数,且

积分运算法则

不定积分的运算法则,包含如下两个性质(注意性质适用条件):1、设函数f(x)的原函数存在(即f(x)可积,下同),k是常数,则:(1) (k≠0) (2) (k=0) 2、设f(x),g(x)两个函数存在原函数,则: 3、常见积分几种运算法 换元积分法: ①设f(u)具有原函数F(u) ,如果u是中间变量:u= (x),且 (x)可微,那么,根据复合函数微分法,有 dF=[ (x)]=f[ (x)] '(x)dx,从而根据不定积分的定义就得: 若要求 ,若 可化为

—的形式,那么: 这种方法称为第一类换元法。 ②利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式x = φ(t)。此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。下面简单介绍第二类换元法中常用的方法: (1)根式代换:被积函数中带有根式 ,可直接令t = (2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:被积函数含根式 ,令 被积函数含根式 ,令 ;被积函数含根式 ,令 。 注:记住三角形示意图可为变量还原提供方便。 (3)倒代换(即令 ):设m,n 分别为被积函数的分子、分母关于x 的最高次数,当n-m>1时,用倒代换可望成功 (4)指数代换:适用于被积函数由指数

— 所构成的代数式; (5)万能代换(半角代换):被积函数是三角函数有理式,可令 ,则: 分部积分法: 设函数u=u(x)及v=v(x)具有连续导数,则其乘积的导数为: ,移项得: 对两边求不定积分,得: 也可写为: 如果求 有困难,而求 比较容易时,分部积分公式就可以发挥作用了。

不定积分基本公式和运算法则直接积分法

-复习1原函数的定义。2 不定积分的定义。3不定积分的性质。4 不定积分的几何意义。 ?引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算 问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ?讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以函数的的形式。 求函数的不定积分的方法叫积分法。 例1?求下列不定积分?(1)Adx (2)X I xdx .1 -2 + . 解:(1). 2dx =x'dx =兰C---亠C X -2 - 1 x 3 2 5 (2).x、xdx = x2dx =2x2 C ' 5 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为数的积分公式求积分。X〉的形式,然后应用幕函

不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 [f (x) — g (x)]dx 二 f (x)dx — g (x)dx 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 kf (x)dx = k f (x)dx ( k = 0) 3 x 例 2 求(2x 1 -e )dx 解 (2x 3 1-e" )d )=2 x 3dx + dx - e x dx 1 4 x =x x —e C 。 2 注 其中每一项的不定积分虽然都应当有一个积分常数, 但是这里并不需要在每一项后面加上 一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和 C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于(-x 4 ^e x C) = 2x 3 ? 1 - e x ,所以结果是正确的。 2 三直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被 积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结 果,这样的积分方法叫直接积分法。 例3 求下列不定积分 解: (1)首先把被积函数('XFX-1 化为和式,然后再逐项积分得 vx (、x 1)( x 1

求不定积分的几种方法

求不定积分的几种方法 摘要:求不定积分的方法有很多种,针对不同类型的函数采用最适合的方法往往会起到事半功倍的效果,本文就不定积分的求解方法进行了归类,结合实例讨论了这些方法在不定积分求解中的可行性,对快速正确求解不定积分有一定意义。 关键词:不定积分直接积分法分部积分法方程法 Abstract: There are many kinds of methods to solve the indefinite integral. For different types of function using the most suitable method often can play a multiplier effect. In this paper, indefinite integral solutions are divided into several different types and the feasibility of the method of indefinite integral is discussed by integrating the practical examples, which is of certain significance to rapidly, correctly solving indefinite integral. Key words: indefinite integral; direct integration method; integration by parts; equation method 不定积分是一元微积分中非常重要的内容之一,是积分学中最基本的问题之一,又是求定积分的基础,牢固掌握不定积分的理论和运算方法,不仅能使学生进一步巩固所学的导数和微分概念,而且也将为学习定积分,微分方程和多元函数的积分学以及其他课程打好基础,因此切实掌握求不定积分的方法非常重要。求不定积分的方法有很多,可用基本方法,如直接积分法求解、第一类换元积分法、第二类换元积分法、分部积分法;也可用特殊解法,如方程法、方程组法等方法求解。下面将介绍几种常见的基本方法和特殊解法。 一、基本方法 1 直接积分法 直接积分法是求不定积分的基本方法,是基本途径,也是其他积分方法的基础,这一方法是直接利用积分法则和公式得出结果,或将被积函数做恒等变形,使之符合基本法与公式,然后再利用积分法则与公式做出结果。 例1 求不定积分 解:把该式分子相乘得到 分项后得到-+dx-dx 然后,利用基本公式求得结果为x-ln|x|+-2 注:在分项积分后,每个不定积分的结果都含有任意常数。由于任意常数的代数和仍为任意常数,故只需在最后一个积分符号消失的同时,加上一个积分常数就可以了。 例2 求不定积分 解:因为此不定积分的被积函数是,由于分母是而=1,所以被积函数 +sec2x+csc2x从而= +=tanxcotx+c

定积分计算公式和性质~定积分计算公式大全

第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为 图 5-10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图5-11

另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例2 求曲线和直线x=0、x= 及y=0所围成图形面积A(5-12)

相关文档
最新文档