山东师范大学附属中学八年级数学下册第三单元《平行四边形》检测题(答案解析)
八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
八年级数学下-平行四边形-单元测试(带答案)

平行四边形一、选择题:1 •下面几组条件中,能判定一个四边形是平行四边形的是( )•A •一组对边相等;B •两条对角线互相平分C •一组对边平行;D •两条对角线互相垂直 2.下列命题中正确的是( ).A .对角线互相垂直的四边形是菱形;B.对角线相等的四边形是矩形C .对角线相等且互相垂直的四边形是菱形 ;D .对角线相等的平行四边形是矩形A . 12xyB . 10xyC . 8xyD . 6xy二、填空题:1 .用正三角形和正方形组合能够铺满地面,每个顶点周围有 _____ ?个正三角形和_____ 个正方形. 2.平行四边形的一组对角和为 _________________ 300。
,3.如图所示,四边形 ABCD 和CEFG 都是平行四边形, 下 面等式中错误的是().A . Z 1 + Z 8=180°;B . Z 2+ / 8=180 ° ;C. Z 4+Z 6=180 ° ; D . Z 1 + Z 5=180 °4 .在正方形 ABCD 所在的平面上,到正方形三边所在直线 距离相等的点有().A . 3 个B . 4 个C 5.菱形的两条对角线长分别为 积为(平方单位)(). A . 12 B . 6 C6 .矩形两条对角线的夹角为 为()A . 4cmB . 2cm C7.下列结论中正确的有( .5个 D . 6个3和4,那么这个菱形的面 5 D . 760 °,一条对角线与短边的和为 .3cm D . 5cm① 等边三角形既是中心对称图形,又是轴对称图形,且有三 条对称轴;② 矩形既是中心对称,又是轴对称图形,且有四条对称轴;③ 对角线相等的梯形是等腰梯形; A .①③;B .①②③;C .②③④; D .③④8.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少要买()m 的木地板15cm ,则矩形较短边长:肿+ 2y卫生间「房橱r2X亠厅 客------ 4y则另一组对角的度数分别为.3. __________________________________________ 已知P 为口ABCD的边AB 上一点,贝U S A PCD= ____________________________ S Y ABCD .4. __________________________________________________________ 已知□ ABCD 中,/ A比/ B小20°,那么/ C的度数是_____________________________5•在口ABCD中,若一条对角线平分一个内角,则四边形ABCD为形.6. ______________________________________ —个正方形要绕它的中心至少旋转,才能和原来的图形重合;若绕它的一个顶点至少旋转_____________ ,才能和原来的图形重合.7. 如图所示,在等腰梯形ABCD中,共有对相等的线段.8. 梯形的上底长为acm,下底长为bcm (a<b),?它的一条对角线把它分成的两部分的面积比为___________ .三、解答题.1. 在四边形ABCD中, AB// CD / D=2Z B,AD与CD的长度分别为a和b.(1 )求AB的长.(2)若AD丄AB于点A,求梯形的面积.2. 梯形ABCD中, DC// AB, DC<AB过D点作DE// AB,交AB于点E, ?若梯形周长为30cm, CD=4cm则厶ADE的周长比梯形的周长少多少厘米?3 .如图所示,已知四边形ABCD为正方形,M为BC边中点,将正方形折起,使点M?2与A重合,设折痕为EF,则ME^AB,求厶AEM的面积与正方形ABCD面积的比.3D F C4•如图所示,已知□ ABCD中,AC的平行线MN分别交DA DC的延长线于M N,交AB, BC于P,Q,求证:QM=NP△ D5. 已知AD>△ ABC中/ A的平分线,DE// AC交AB于E点,DF// AB交AC于F点.求证:E, F关于直线AD对称.6. (1)证明:在直角三角形中,若一条直角边等于斜边的一半,那么这条直角边所对的角为30°.(2)利用这个结论解决下列问题:如图所示,在梯形ABCD中,AB// CDAD丄AC, AD=AC DB=DC AC, BD交于点E, ?试问CE与CB相等吗,为什么?A BD C2.解析:如答图所示.v DC// AB, DE// CB,•四边形DEBC M 平行四边形,一、1 . B 2 . D3. A4. C 5 . B 6 . D7. D 8. A— 、1. 3 22. 30°3. 124. 80°5. 菱6. 90° 360 °7. 48. 解析:如答图所示,对角 线 AC 将梯形ABCD 分成厶ACD 与△ ABC• S A ACD: S A ABC =a : b .答案:a : b 1.解析:如答图所示. (1 )过 C 点作 CE// DA••• AB// CD,•••四边形AECD 是平行四边形(两组对边分别平行的四边形是平行四边形)•••/ AEC=Z D. vZ D=2Z B , •••/ AEC=2/ B=Z 1 + Z •••/ 1 = Z B ,A EC=EBDC=b AD=a, - - AE=b, CE=EB=aAB=a+b. (2) S 梯形 ABCD =DC AB2X AB=B,a 2 2ab 2参考答案S △ ACD- ah 2S A ABC =bh2bX a=••• DC=EB DE=CBL 梯形ABCD-L △ ADE= (DC+AD+AB+B)- ( AD+AE+DE =DC+EB=2DC v CD=4cm △ ADE的周长比梯形的周长少8cm.3 •解析:依题意可知EM=EA2 2v EM=2AB, EA=2AB.3 31v M是BC边中点,二MB=丄BC . 2v正方形ABCD B=90°, AB=BC=CD=DA...AEM: S 正方形ABCD=2 1AB -AB32: A B"=1 : 6.24.解析:v四边形ABCD是平行四边形,.AD// BC, AB// ND.v AC// MN.四边形ACQM APNC是平行四边形(两组对边分别平行的四边形是平行四边形).AC=PN=MQ平行四边形对边相等).5.如答图所示,v DE// AC, DF// AB,.四边形AEDF是平行四边形.v AD是厶ABC中/ A的平分线,•••/ 仁/ 2,.□ AEDF是菱形(对角线平分一组对角的平菱形)..EF关于直线AD对称.6 .如答图所示,过A点,B点分别作v AB// DC, . AM=BN1v AD=AC . DM=MC= DC.2v AD丄AC,. / ACD=45 ,1AM=MC=MD=1CD.2 AM L DC于M 点,BN! DC于N点行四边形是1v DB=DC. BN=AM』DB,2BDC=30 ,CEB=Z ACD/ DCB=45 +30°=751 1/ DCB/ DBC—( 180° - / BDC =-2 2(180° -30 ° ) =75•••/ DBCK CEB 二CE=CB。
青岛市八年级数学下册第三单元《平行四边形》检测卷(答案解析)

一、选择题1.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等.A .1B .2C .3D .42.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣22B .32﹣4C .1D .24.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B 2240064-C .2240064-D .40064+ 5.如图,M 是ABC 的边BC 的中点AN 平分BAC ∠.且BN AN ⊥,垂足为N 且6AB =,10BC =.2MN =,则ABC 的周长是( )A .24B .25C .26D .28 6.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形 7.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .3048.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠ 9.如图,点E 为矩形ABCD 的边BC 上的点,DF AE ⊥于点F ,且DF AB =,下列结论不正确的是( )A .DE 平分AEC ∠B .ADE ∆为等腰三角形C .AF AB =D .AE BE EF =+10.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行11.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A .18°B .36°C .72°D .144° 12.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案二、填空题13.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为______cm 2.14.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.15.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm .16.如图,矩形纸片ABCD 的长AD =6cm ,宽AB =2cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长______cm .17.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.18.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.20.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.三、解答题21.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.22.如图所示,在平行四边形ABCD 中,AE ,AF 分别为BC ,CD 上的高,且40EAF ∠=︒.求平行四边形ABCD 各内角的度数.23.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.但人们可以通过折纸把一个角三等分,今天我们就通过折纸把一个直角三等分.操作如下:第一步:如图①,对折长方形纸片ABCD ,使AD 与BC 重合,沿EF 对折后,得到折痕EF ,把纸片展平;第二步:如图②,再一次折叠纸片,使点A 落在EF 上(标记为点O ),并使折痕经过点B ;第三步:如图③,再展开纸片,得到折痕BR ,同时连接BO RO 、.这时就可以得到BR BO 、把直角ABC 三等分.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是由BAR ∆沿BR 折叠后得到的三角形 ,求证:24.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.25.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.26.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先把每一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:“全等三角形的对应角相等”的逆命题是“三组角分别对应相等的两个三角形全等”,逆命题是假命题,故①不符合题意;“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,逆命题是真命题,故②符合题意;“等腰三角形的两个底角相等”的逆命题是“在一个三角形中,有两个角相等的三角形是等腰三角形”,逆命题是真命题,故③符合题意;“正方形的四个角相等”的逆命题是“四个角相等的四边形是正方形”,逆命题是假命题,故④不符合题意;综上:符合题意的有②③.故选:.B【点睛】本题考查的是命题与逆命题,命题真假的判断,正方形的判定方法,掌握由原命题得到逆命题,以及判断命题的真假是解题的关键.2.C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=6,AB=CD,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故选:C.【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.A解析:A【分析】根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于斜边的2倍计算即可得解. 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =∴BE =BD ﹣DE =﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =2BE =2×(﹣4)=4﹣. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.4.A解析:A【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b=-=-,故选:A.【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.5.C解析:C【分析】延长BN交AC于D,根据等腰三角形的性质得到AD=AB=6,BN=ND,根据三角形中位线定理得到DC=2MN=4,计算即可.【详解】解:延长BN交AC于D,∵AN平分∠BAC,BN⊥AN,∴AD=AB=6,BN=ND,又M是△ABC的边BC的中点,∴DC=2MN=4,∴AC=AD+DC=10,则△ABC的周长=AB+AC+BC=6+10+10=26,故选C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE ,∴四边形EFGH 是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.7.B解析:B【分析】由题意可证四边形AECF 是平行四边形,可得AO =CO ,EO =FO =12EF =6,由勾股定理可求AO =10,可得AC =20,由阴影分的面积=S 正方形ABCD -S ▱AECF 可求解.【详解】解:连接AC ,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.8.D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.C解析:C【分析】根据矩形的性质及HL 定理证明Rt △DEF ≌Rt △DEC ,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD 中,∠C=90°,AB=CD∵DF AE ⊥于点F ,且DF AB =∴∠DFE=∠C=90°,DF=CD在Rt △DEF 和Rt △DEC 中DF DC DE DE =⎧⎨=⎩∴Rt △DEF ≌Rt △DEC∴∠FDE=∠CDE ,即DE 平分AEC ∠,故A 选项不符合题意;∵Rt△DEF≌Rt△DEC∴∠FED=∠CED又∵矩形ABCD中,AD∥BC∴∠ADE=∠CED∴∠FED=∠ADE为等腰三角形,故B选项不符合题意∴AD=AE,即ADE∵Rt△DEF≌Rt△DEC∴EF=EC在矩形ABCD中,AD=BC,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF,故D选项不符合题意由于AB=CD=DF,但在Rt△ADF中,无法证得AF=DF,故无法证得AB=AF,故C选项符合题意故选:C.【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键.10.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.11.B解析:B【分析】利用平行四边形的性质解决问题即可【详解】解:在平行四边形ABCD中,∵BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A ,∴∠A=36°,∴∠C=∠A=36°,故选:B .【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.24【分析】画出符合题意的图形利用菱形的对角线互相垂直平分求解另一条对角线的长再利用菱形的面积等于两条对角线的长之积的一半即可得到答案【详解】解:如图菱形的周长为20cm 一条对角线的长为8cm 故答案 解析:24【分析】画出符合题意的图形,利用菱形的对角线互相垂直平分,求解另一条对角线的长,再利用菱形的面积等于两条对角线的长之积的一半即可得到答案.【详解】解:如图,菱形ABCD 的周长为20cm ,一条对角线AC 的长为8cm ,5,4,,,AD AB BC CD cm OA OC cm OB OD AC BD ∴=======⊥2222543OD AD AO ∴=-=-=,26,BD OD cm ∴==2116824.22ABCD S AC BD cm ∴==⨯⨯=菱形故答案为:24.【点睛】本题考查的是菱形的性质,菱形的面积,掌握菱形的性质及菱形的面积的计算是解题的关键.14.【分析】过点M 作于N 则可得MN 是的中位线利用三角形中位线定理可得MN=AC=3BN=CN=BC=4设CF=x 则NF=4-x 由折叠的性质可得MF=CF 在中利用勾股定理即可求解【详解】解:过点M 作于N ∵ 解析:258 【分析】过点M 作MN BC ⊥于N ,则//MN AC ,可得MN 是Rt ABC △的中位线,利用三角形中位线定理可得MN=12AC=3,BN=CN=12BC=4,设CF=x ,则NF=4-x ,由折叠的性质可得MF=CF ,在Rt MNF △中,利用勾股定理即可求解.【详解】解:过点M 作MN BC ⊥于N ,∵90ACB ∠=︒,MN BC ⊥,∴//MN AC ,∵M 是AB 的中点,∴MN 是Rt ABC △的中位线,∴MN=12AC=3,BN=CN=12BC=4, 设CF=x ,则NF=4-x ,∵将CEF △沿EF 翻折,使C 与AB 的中点M 重合,∴MF=CF=x ,在Rt MNF △中,222MN NF MF +=,∴()22234x x +-=,解得258x =, ∴CF=258. 故答案为:258.【点睛】本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键.15.9【分析】根据梯形中位线的长等于上底与下底和的一半可求得其下底【详解】解:由已知得下底=2×7-5=9cm故答案为9【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半解析:9【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其下底.【详解】解:由已知得,下底=2×7-5=9cm.故答案为9.【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.【分析】由矩形的性质和折叠的性质以及勾股定理得出方程解方程即可【详解】由折叠的性质得:BE=DE设DE长为xcm则AE=(6−x)cmBE=xcm∵四边形ABCD是矩形∴∠A=90°根据勾股定理得:解析:10 3【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE=DE,设DE长为xcm,则AE=(6−x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(6−x)2+22=x2,解得:x=103,即DE长为103cm,故答案为:103.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.17.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,8∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键18.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC 交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.19.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.2或【分析】分两种情况:①过A′作MN∥CD交AD于M交BC于N则直线MN是矩形ABCD的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E即可;②过A′作PQ∥AD交解析:2【分析】分两种情况:①过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E即可;②过A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,再利用勾股定理求出A′E,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM=BN=12AD=2, ∵△ABE 沿BE 折叠得到△A′BE ,∴A′E=AE ,A′B=AB=2,∴A′N=22A B BN '-=0,即A′与N 重合,∴A′M=2= A′E ,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=233;综上所述:AE 的长为223, 故答案为:223. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的三、解答题21.对,见解析【分析】设长方形的长为x ,则宽为4222a x a x -=-,由长方形面积公式求得(2)S x a x =-长方形,2S a =正方形,由两者左侧22(2)()0S S a x a x a x -=--=->正方形长方形,即S S >正方形长方形即可.【详解】解:小东同学的看法对,理由如下,设长方形的长为x ,则宽为4222a x a x -=-, 2x a x ≠-,x a ∴≠,长方形面积为:(2)S x a x =-长方形,若铁丝围成正方形,则其边长为a ,2S a =正方形,∴()()2222220S S a x a x a ax x a x -=--=-+=->正方形长方形, 即S S >正方形长方形,所以正方形的面积较大.小东同学认为围成一个正方形的面积较大.小东同学的看法对.【点睛】本题考查周长一定,围成的长方形中,正方形面积最大问题,掌握求长方形与正方形面积公式,作差后利用公式因式分解是解题关键.22.140°,40°,140°,40°【分析】由AE 、AF 分别为BC 、CD 上的高,且∠EAF=40°,即可求得∠C 的度数,又由平行四边形的性质,即可求得答案.【详解】解:∵AE 、AF 分别为BC 、CD 上的高,∴∠AEC=∠AFC=90°,∵∠EAF=40°,∴∠C=360°-∠EAF-∠AEC-∠AFC=140°,∵四边形ABCD 是平行四边形,∴∠BAD=∠C=140°,∠B=∠D=180°-∠C=40°.∴平行四边形ABCD 各内角的度数分别为:140°,40°,140°,40°.此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用. 23.点O 在折痕EF 上,BR BO 、把ABC ∠三等分,见解析【分析】如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上;连接AO , 根据折叠的性质可得△AOB 为等边三角形,然后结合矩形的性质即可求证所求问题.【详解】解:已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上.求证:BR BO 、把ABC ∠三等分证明:连接AO线段EF 是长方形ABCD 对折后的折痕∴EF 垂直平分AB 又点O 在对称轴EF 上AO BO ∴=BOR ∆是BAR ∆沿BR 折叠后得到的三角形,12BO AB ∴=∠=∠AO BO AB ∴==ABO ∴∆是等边三角形60ABO ︒∴∠=又12ABO ∠+∠=∠1230︒∴∠=∠=又90ABC ︒∠=330ABC ABO ︒∴∠=∠-∠=123∴∠=∠=∠BR BO ∴、把ABC ∠三等分.【点睛】本题主要考查矩形的性质及等边三角形的性质和判定,还考查了学生的观察力和动手能力,动手操作一下,问题更容易解决.24.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =,∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】 本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.25.(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH ,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH 为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.26.(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE = ∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-= ∴2214BC BO == ∴11214224722BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.。
新人教版初中数学八年级数学下册第三单元《平行四边形》检测(包含答案解析)

一、选择题1.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等.A .1B .2C .3D .4 2.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对3.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .44.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个5.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行6.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组.7.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .438.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 9.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形 10.如图,在Rt ABC 中,90C =∠,30A ∠=,D 是 AC 边的中点,DE AC ⊥于点D ,交AB 于点E ,若83AC =,则DE 的长是( )A .8B .6C .4D .211.如图所示,已知Rt ABC 中,90B ︒∠=,3AB =,4BC =,D F 、分别为AB AC 、的中点,E 是BC 上动点,则DEF 周长的最小值为( )A .240+B .213+C .13D .6 12.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案二、填空题13.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.14.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____. 15.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.16.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 17.如图,在平面直角坐标系中,点A 、点B 分别在x 轴和y 轴的正半轴上运动,且AB =4,若AC =BC =5,△ABC 的形状始终保持不变,则在运动的过程中,点C 到原点O 的最小距离为____________.18.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm .19.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.20.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.三、解答题21.已知:如图,在梯形ABCD 中,DF 平分D ∠,若以点D 为圆心,DC 长为半径作弧,交边AD 于点E ,联结EF 、BE 、EC .(1)求证:四边形EDCF 是菱形;(2)若点F 是BC 的中点,请判断线段BE 和EC 的位置关系,并证明你的结论. 22.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.23.如图,在ABC 中,AB AC =,10BC =.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作BAC ∠的平分线交BC 于点D ;②作边AC 的中点E ,连接DE ;(2)在(1)所作的图中,若12AD =,则DE 的长为__________.24.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.25.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.26.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先把每一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:“全等三角形的对应角相等”的逆命题是“三组角分别对应相等的两个三角形全等”,逆命题是假命题,故①不符合题意;“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,逆命题是真命题,故②符合题意;“等腰三角形的两个底角相等”的逆命题是“在一个三角形中,有两个角相等的三角形是等腰三角形”,逆命题是真命题,故③符合题意;“正方形的四个角相等”的逆命题是“四个角相等的四边形是正方形”,逆命题是假命题,故④不符合题意;综上:符合题意的有②③.故选:.B【点睛】本题考查的是命题与逆命题,命题真假的判断,正方形的判定方法,掌握由原命题得到逆命题,以及判断命题的真假是解题的关键.2.C解析:C【分析】因为图形对折,所以首先△CDB≌△ABD,由于四边形是长方形,进而可得△ABE≌△CDE,如此答案可得.【详解】解:∵△BDC是将长方形纸片ABCD沿BD折叠得到的,∴CD=AB,AD=BC,∵BD=BD,∴△CDB≌△ABD(SSS),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.3.B解析:B【分析】根据菱形的性质证明△ABD是等边三角形,求得BD=4,再证明EF是△ABD的中位线即可得到结论.【详解】解:连接AC,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 4.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 5.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A 、能用两组对角相等的四边形是平行四边形判定平行四边形;B 、不能判定平行四边形,如等腰梯形;C 、能用两组对边相等的四边形是平行四边形判定平行四边形;D 、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B .【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.6.C解析:C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】解:①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键. 7.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==, ∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.8.A解析:A【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】解:作PM ⊥AD 于M ,交BC 于N ,∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形, ∵ADC ABC S S =△△,AMP AEP SS =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM=AE=1,PF=NC=3,∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】 本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 9.B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.10.C解析:C【分析】根据直角三角形的性质得到AB=2BC ,利用勾股定理求出BC ,再根据三角形中位线定理求出DE .【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴AB=2BC ,设BC=x ,则AB=2x ,∴(2224x x =+, 解得:x=8或-8(舍),∴BC=8,∵D 是 AC 边的中点,DE AC ⊥,∴DE=12BC=4, 故选C .【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.11.B解析:B【分析】先根据三角形的中位线定理可求得DF 的长为2,然后作出点F 关于BC 的对称点F′,连接DF′交BC 于点E ,此时DEF 周长的最小,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,再证明四边形DBMF 为矩形,得出FF′=3,然后在Rt △DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF 周长的最小值.【详解】解:如图,作点F 关于BC 的对称点F′,连接DF′交BC 于点E .此时DE+EF 最小∵点D 、F 分别是AB 和AC 的中点,BC=4,3AB =,∴DF=12BC=2,DF//BC ,BD=1.5, ∵点F 与点F′关于BC 对称,∴EF=EF′,FF′⊥BC ,FM= F′M , ∴DE+EF 最小值为DE+ EF′=DF′,90DFF ∠'=︒,∵DF//BC ,90B ∠=︒,∴90B BDF FMB ∠=∠=∠=︒,∴四边形DBMF 为矩形,∴BD=FM=1.5,∴FF′=3,在Rt △DFF′中,2'2222313DF DF FF +=+='∴△DEF 周长的最小值=DF+DE+EF=DF+13故选:B【点睛】本题主要考查的是轴对称路径最短问题,以及勾股定理,矩形的判定,作出点F 关于BC 的对称点,将DE+EF 转化为DF′的长是解题的关键.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.【分析】先判定△ADF≌△ECF即可得到AF=EF依据平行线的性质以及角平分线的定义即可得出AF⊥DM;再根据等腰三角形的性质即可得到DN=MN=3最后依据勾股定理即可得到AN与NE的长进而得出DE解析:【分析】先判定△ADF≌△ECF,即可得到AF=EF,依据平行线的性质以及角平分线的定义,即可得出AF⊥DM;再根据等腰三角形的性质,即可得到DN=MN=3,最后依据勾股定理即可得到AN与NE的长,进而得出DE的长.【详解】解:∵点F为边DC的中点,∴DF=CF=12CD=12AB=5,∵AD∥BC,∴∠ADF=∠ECF,∵∠AFD=∠EFC,∴△ADF≌△ECF(ASA),∴AF=EF,∵CD∥AB,∴∠ADC+∠DAB=180°,又∵AF平分∠BAD,DM平分∠ADC,∴∠ADN+∠DAN=90°,∴AF⊥DM,∵AF平分∠BAD,∴∠BAF=∠DAF,又∵DC∥AB,∴∠BAF=∠DFA,∴∠DAF=∠DFA,∴AD=DF=5,同理可得,AM=AD=5,又∵AN平分∠BAD,∴DN=MN=3,∴Rt△ADN中,AN=224-=,AD DN∴AF=2AN=8,EF=8,∴NE=AE-AN=12,∴Rt△DEN中,DE=22317+=,DN EN故答案为:317.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,判定AF⊥DM,利用勾股定理进行计算是解决问题的关键.14.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.15.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=, ∴12BC =,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.16.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x 和4x 由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x 和4x ,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.17.【分析】如图过作于证明求解结合三角形的三边的关系可得:>当三点共线时可得从而可得答案【详解】解:如图过作于由三角形三边的关系可得:>当三点共线时的最小值是:点C 到原点O 的最小距离为故答案为:【点睛】2【分析】如图,过C 作CG AB ⊥于,G 4AB =,证明2,GB GA ==求解2,CG OG == 结合三角形的三边的关系可得:OC >,CG OG - 当,,C O G 三点共线时,,OC CG OG =-可得2,CO CG OG ≥-=从而可得答案.【详解】解:如图,过C 作CG AB ⊥于,G 4AB =, 5,CB CA ==2,GB GA ∴==22225221CG CA GA ∴=-=-=,90AOB ∠=︒,122OG AB ∴==, 由三角形三边的关系可得:OC >,CG OG -当,,C O G 三点共线时,,OC CG OG =-212,CO CG OG ∴≥-=-∴ CO 的最小值是:21 2.-∴ 点C 到原点O 的最小距离为21 2.-21 2.【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,三角形三边之间的关系,掌握以上知识是解题的关键.18.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题) 解析:2552x - 【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M 与点A 的距离为:2552x -, 故答案为:2552x -. 【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键. 19.①②③【分析】根据SSS 即可判定△ABF ≌△CFB 根据全等三角形的性质以及等式性质即可得到EC =EA 根据∠EBF =∠EFB =∠EAC =∠ECA 即可得出BF ∥AC 根据E 不一定是BC 的中点可得BE =CE解析:①②③【分析】根据SSS 即可判定△ABF ≌△CFB ,根据全等三角形的性质以及等式性质,即可得到EC =EA ,根据∠EBF =∠EFB =∠EAC =∠ECA ,即可得出BF ∥AC .根据E 不一定是BC 的中点,可得BE =CE 不一定成立.【详解】解:由折叠可得,AD =AF ,DC =FC ,又∵平行四边形ABCD 中,AD =BC ,AB =CD ,∴AF =BC ,AB =CF ,在△ABF 和△CFB 中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E 不一定是BC 的中点,∴BE =CE 不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于1【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.三、解答题21.(1)见解析;(2)线段BE 和EC 的位置关系是垂直.证明见解析.【分析】(1)根据题意可得ED=DC ,根据SAS 证明△EDF ≌△CDF ,可得EF=CF ,根据梯形的性质和平行线的性质,由等角对等边可得CF=CD ,再根据菱形的判定即可求解;(2)先根据平行四边形的判定可证四边形BEDF 是平行四边形,再根据菱形的性质即可求解.【详解】(1)∵DF 平分EDC ∠,∴EDF CDF ∠=∠.由题意,ED DC =.在△EDF 与△CDF 中,ED DC EDF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩.∴△EDF ≌△CDF .∴EF CF =.∵四边形ABCD 为梯形.∴AD ∥BC .∴EDF DFC ∠=∠.∴DFC CDF ∠=∠.∴CF CD =.∴ED CD CF EF ===.∴四边形ECDF 是菱形.(2)线段BE 和EC 的位置关系是垂直. 理由如下:∵点F 是BC 的中点,∴BF CF =.∴BF ED =.∵ED ∥BF ,∴四边形BEDF 是平行四边形.∴BE ∥DF .∵四边形EDCF 是菱形,∴EC ⊥DF .∴BE ⊥EC .【点睛】考查了梯形的性质、全等三角形的判定与性质、平行四边形的判定和性质及菱形的判定和性质,熟悉相关定理进行正确推理是关键.22.(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD∥BC,∴∠QDM=∠PCM,∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,DM=CM,∠QDM=∠PCM,∴△PCM≌△QDM(ASA).∴DQ=PC,∵AD∥BC,∴四边形PCQD是平行四边形,∴不管点P在何位置,四边形PCQD始终是平行四边形;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC-CP=AD+QD,∴9-CP=5+CP,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.23.(1)①见解析;②见解析;(2)6.5【分析】(1)①以A为圆心,小于AB的长度为半径画圆,交AB、AC于两个点,再分别以这两个点为圆心,一样的半径画弧,交于一点,连接这个点与点A,即可得到BAC∠的平分线,再画出它与BC的交点D;②作线段AC的垂直平分线,即可找到线段AC的中点E,连接DE;(2)由等腰三角形“三线合一”的性质得152BD BC==,AD BC⊥,用勾股定理求出AB的长,再根据中位线的性质得到DE的长.【详解】解:(1)①如图所示:②如图所示:(2)∵AB AC =,AD 平分BAC ∠, ∴152BD BC ==,AD BC ⊥, 在Rt ABD △中,2213AB AD BD =+=, ∵E 、D 分别是AC 和BC 的中点, ∴1 6.52DE AB ==, 故答案是:6.5.【点睛】 本题考查等腰三角形的性质,中位线的定理,以及角平分线和垂直平分线的作法,解题的关键是熟练掌握这些几何的性质定理以及作图方法.24.(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC =,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD =,1CD ∴=, ∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 25.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =, ∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.26.(1)见解析;(2)CE=CF ,理由见解析;(3)52或122【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,在R t △DFK 中,根据勾股定理可得,DF 22122DK FK +=综上所述,DF 的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
八年级数学下册《平行四边形》单元综合复习(含答案)

一.选择题(共20小题)1.(2018•长安区一模)一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变【解答】D.2.(2018•宜兴市模拟)若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【解答】C.3.(2018•建湖县一模)正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.8【解答】D.4.(2018•昭阳区模拟)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD 的周长是()A.16 B.14 C.26 D.24【解答】C.5.(2018•河南模拟)把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9 B.10 C.11 D.以上都有可能【解答】D.6.(2018•湛江模拟)已知正n边形的一个内角为144°,则边数n的值是()A.7 B.8 C.9 D.10【解答】D.7.(2018•吉林模拟)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【解答】C.8.(2017秋•姑苏区期末)如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335° B.255° C.155° D.150°【解答】B.9.(2018•沈丘县一模)如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4 B.5 C.5.5 D.6【解答】A.10.(2018•山西模拟)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC 于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【解答】B.11.(2018•莒县模拟)如图,在△ABC中,D、E分别是AB、AC的中点,点F在BC 上,DE是∠AEF的角平分线,若∠C=80°,则∠EFB的度数是()A.100°B.110°C.115° D.120°【解答】A.12.(2018•金水区校级模拟)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【解答】B.13.(2018•利州区一模)如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A.1 B.﹣1 C.D.2﹣【解答】C.14.(2018•邯郸一模)已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE【解答】C.15.(2018•松北区一模)如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边的中点,若△ADC的周长为l6,则△COE的周长是()A.4 B.6 C.8 D.10【解答】C.16.(2018春•蚌埠期中)如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD 于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4 B.3 C.2 D.1【解答】B.17.(2017•遵义)如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【解答】A.18.(2017•威海)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE【解答】D.19.(2017•常州)如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()A.12 B.13 C.D.【解答】B.20.(2017•章丘市二模)如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.5【解答】A.二.填空题(共10小题)21.(2018•青岛模拟)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE 上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为18.22.(2018•长丰县二模)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M 是BC上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C 出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t,则当以A、M、E、F为顶点的四边形是平行四边形时,t=或23.(2017秋•新宾县期末)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为95°.24.(2017•宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC 于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为8.25.(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.26.(2017•连云港)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=56°.27.(2017•长春模拟)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带来了两块碎玻璃,其编号应该是②③.28.(2017•准格尔旗二模)如图,已知平行四边形ABCD,AD=5,A(﹣3,0),B(6,0),点D在y轴的正半轴上,动点P从点A出发,沿A﹣D﹣O的折线以每秒1个单位的速度匀速运动,动点Q同时从点C出发,沿C﹣D以每秒1个单位的速度匀速运动,过动点Q的直线L始终与x轴垂直且与折线CBO交于点M,点P、Q中有一个点到达终点,另一个点运动随即而停止.当△PMQ为等腰三角形时,t(t≥5)的值为5s或7s或(9﹣2)s.【解答】解:在Rt△ADO中,OD===4,当t=5时,P与D重合,点M在AB上,DQ=9﹣5=4,QM=OD=4,∴此时PQ=QM,∴△PQM是等腰三角形,①当PQ=PM时,易知DP=PO=2,∴t=7时,△PQM是等腰三角形.②当PM=QM=4时,(9﹣t)=4,解得t=9﹣2.③当PQ=PM时,(9﹣t)2+(t﹣5)2=42,方程无解.综上所述,当t=5s或7s或(9﹣2)s时,△PMQ是等腰三角形.故答案为5s或7s或(9﹣2)s29.(2017春•高新区期中)在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为48.【解答】解:∵平行四边形ABCD的周长为40,∴BC+CD=20,=BC•AE=CD•AF,∴4x=(20﹣x)×6,设BC为x,∵S平行四边形ABCD解得x=12,∴平行四边形ABCD的面积为12×4=48.故答案为48.30.(2017春•宁江区期末)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为10.三.解答题(共10小题)31.(2018•渭滨区一模)如图,在平行四边形ABCD中,AE⊥BC,垂足为E,点F为边CD上一点,且DF=BE,过点F作FG⊥CD,交AD于点G.求证:DG=DC.【解答】证明:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,,∴△AEB≌△GFD,∴AB=DG,∴DG=DC.32.(2018•道外区一模)如图,在△ABC中,D是BC边的中点,分别过点B、C作射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)若AF=FD,在不添加辅助线的条件下,直接写出与△ABD面积相等的所有三角形.【解答】(1)证明:在△ABF与△DEC中∵D是AB中点,∴BD=CD∵BE⊥AE,CF⊥AE∴∠BED=∠CFD=90°,在△ABF与△DEC中,∴△BED≌△CFD(AAS)∴ED=FD,∵BD=CD∴四边形BFEC是平行四边形;(2)与△ABD面积相等的三角形有△ACD、△CEF、△BEF、△BEC、△BFC.33.(2018春•新罗区校级月考)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t,∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t=,所以BQ=BC﹣CQ=10﹣2×=;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10,解得:t=4或12∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12.34.(2017•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.35.(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.36.(2017•山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.37.(2017•镇江)如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.38.(2017•德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG≌△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,AD=CD,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=4,∴DG==.39.(2017•大庆)如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC 上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE、△BEF是等腰直角三角形,∴BF=BE=BD=,作FM⊥BD于M,连接DF,如图所示:则△BFM是等腰直角三角形,∴FM=BM=BF=1,∴DM=3,在Rt△DFM中,由勾股定理得:DF==,即D,F两点间的距离为.40.(2017•大石桥市校级一模)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.【解答】(1)证明:如图①,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;(2)EG=AG﹣BG.如图②,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG.∴EG=AG﹣BG.。
八年级数学下册《平行四边形》专题复习测试试卷及答案解析(精品)

专题18.1 平行四边形一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·厦门市湖里中学初二月考)一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°2.(2020·全国初二课时练习)下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等3.(2019·贵州初二期末)如图,EF为△ABC的中位线,若AB=6,则EF的长为()A.2B.3C.4D.54.(2019·福建师范大学附属中学初中部初三月考)将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能的是()A.B.C.D.5.(2020·陕西西北工业大学附属中学初三月考)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A .6B .12C .18D .246.(2020·全国初二课时练习)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .3种B .4种C .5种D .6种7.(2017·湖北初二期末)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.(2020·广东初三期末)如图,EF 过平行四边形ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB=4,BC=6,OE=3,那么四边形EFCD 的周长是( )A .16B .13C .11D .109.(2019·河南初二期中)在ABCD 中,已知76A C ∠+∠=︒,则下列正确的是( )A .28A ∠=︒B .142B ∠=︒C .48C ∠=︒D .152D ∠=︒10.(2019·河北初二期末)如图,在▱ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,且CF =1,则AB 的长是( )A .2B .1C D11.(2019·曲阜师范大学附属实验学校初二月考)如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为().A.7cm2B.8cm2C.9cm2D.10cm212.(2019·浙江初二期末)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁13.(2019·河北金华中学初三开学考试)数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试了一种辅助线,如图1,图2所示,其中辅助线做法能够用来证明三角形中位线定理的是()A.小丽和小亮的辅助线做法都可以B.小丽和小亮的辅助线做法都不可以C.小丽的辅助线做法可以,小亮的不可以D.小亮的辅助线做法可以,小丽的不可以14.(2020·山东省东营市河口区义和镇中心学校初二期末)如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为l cm,AB=2cm,∠B=60°,则拉开部分的面积(即阴影面积)是()A .1cm 2B .2cm 2C 2D .2二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2019·民勤县新河乡中学初二月考)已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.16.(2019·厦门市湖里中学初二月考)如图,在▱ABCD 中,∠DAB 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,则BC 的长为______17.(2019·福建初三)如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为____.18.(2020·全国初二课时练习)如图,在四边形ABCD 中,AD ∥BC ,AD=4,BC=12,点E 是BC 的中点.点P 、Q 分别是边AD 、BC 上的两点,其中点P 以每秒个1单位长度的速度从点A 运动到点D 后再返回点A ,同时点Q 以每秒2个单位长度的速度从点C 出发向点B 运动.当其中一点到达终点时停止运动.当运动时间t 为_____秒时,以点A 、P ,Q ,E 为顶点的四边形是平行四边形.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初二课时练习)已知E 、F 分别是平行四边形ABCD 中BD 上的点,且BE =DF ,试说明,四边形AECF是平行四边形。
(人教版)青岛市八年级数学下册第三单元《平行四边形》检测题(含答案解析)

一、选择题1.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .4 2.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cmB .6cm 或10cmC .12cm 或12cmD .12cm 或14cm 3.已知平行四边形ABCD 的一边长为5,则对角线AC ,BD 的长可取下列数据中的( )A .2和4B .3和4C .4和5D .5和6 4.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43 5.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S =.其中正确结论的个数是( )A .5个B .4个C .3个D .2个 6.如图,点E 为矩形ABCD 的边BC 上的点,DF AE ⊥于点F ,且DF AB =,下列结论不正确的是( )A .DE 平分AEC ∠B .ADE ∆为等腰三角形C .AF AB =D .AE BE EF =+ 7.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 8.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .249.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα= 10.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=24511.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 12.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案二、填空题13.三角形的三边长分别为21,5,2,则该三角形最长边上的中线长为____. 14.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.15.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)16.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.17.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.18.如图,B ,E ,F ,D 四点在一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为___cm .19.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.20.如图,在正方形ABCD 中,6,E 是CD 上一点,BE 交AC 于点F ,连接DF .过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G .∠ABE 的平分线交AD 于点M ,当满足四边形AGDF 面积2BCE S =△时,线段AM 的长度是_______.三、解答题21.如图,菱形ABCD 的对角线,AC BD 相交于点,O E 是AD 的中点,点,F G 在AB 上,,//EF AB OG EF ⊥.(1)判断四边形OEFG 的形状;(2)若8,6AC BD ==,求菱形ABCD 的面积和EF 的长.22.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?23.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.24.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.25.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.26.“半角型”问题探究:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:(2)如图2,在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,边长为4的正方形ABCD中,点E、F分别在AB、CD上,AE=CF=1,O为EF的中点,动点G、H分别在边AD、BC上,EF与GH的交点P在O、F之间(与O、F不重合),且∠GPE=45°,设AG=m,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据菱形的性质证明△ABD是等边三角形,求得BD=4,再证明EF是△ABD的中位线即可得到结论.【详解】解:连接AC,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 2.D解析:D【分析】由四边形ABCD 是平行四边形,可得OA=12AC ,OB=12BD ,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴OA=12AC ,OB=12BD ,A 、∵AC=4cm ,BD=6cm ,∴OA=2cm ,OB=3cm ,∴OA+OB=5cm <12cm ,不能组成三角形,故不符合;B 、∵AC=6cm ,BD=10cm ,∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.3.D解析:D【分析】由三角形三边关系可得三角形两边之和大于第三边,两边之差小于第三边.【详解】解:由于两条对角线的一半与平行四边形的一边组成一个三角形, 所以12(AC-BD )<5<12(AC+BD ), 由题中数据可得,AC 和BD 的长可取5和6,故选D .【点睛】本题考查了平行四边形对角线互相平分及三角形三边关系问题,能够熟练求解此类问题. 4.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴BO == ∴2BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.5.C解析:C【分析】证明△OFB ≌△CFB ,可判断结论①正确;利用菱形的定义,可判断结论②正确; 根据OC=OB ,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM ,故结论④是错误的;证NE ∥BM ,AN=NO=OM ,所以BM=3NE ,AO=2OM ,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD ,∵四边形ABCD 是矩形,∴AC=BD ,AC 、BD 互相平分,∵O 为AC 中点,∴BD 也过O 点,∴OB=OC ,∵∠COB=60°,OB=OC ,∴△OBC 是等边三角形,∴OB=BC=OC ,∠OBC=60°,∵FO=FC ,BF=BF∴△OBF ≌△CBF (SSS ),∴△OBF 与△CBF 关于直线BF 对称,∴FB ⊥OC ,OM=CM ;∴①正确,∵AB ∥CD ,∴∠OCF=∠OAE ,∵OA=OC ,∴△AOE ≌△COF ,∴OE=OF ,FC=AE ,∴DF=BE ,DF ∥BE ,∴四边形EBFD 是平行四边形,∵OA=OB ,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE ,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF ,∴四边形EBFD 是菱形,∴结论②正确;∵OA=OB ,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE ,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB >OB ,∵OB=OC ,∴FB >OC ,∴③错误,在直角三角形AMB 中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM ,∴④错误,设ED 与AC 的交点为N ,设AE=OE=2x ,则NE=x ,BE=4x ,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.6.C解析:C【分析】根据矩形的性质及HL 定理证明Rt △DEF ≌Rt △DEC ,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD 中,∠C=90°,AB=CD∵DF AE ⊥于点F ,且DF AB =∴∠DFE=∠C=90°,DF=CD在Rt △DEF 和Rt △DEC 中DF DC DE DE =⎧⎨=⎩∴Rt △DEF ≌Rt △DEC∴∠FDE=∠CDE ,即DE 平分AEC ∠,故A 选项不符合题意;∵Rt △DEF ≌Rt △DEC∴∠FED=∠CED又∵矩形ABCD 中,AD ∥BC∴∠ADE=∠CED∴∠FED=∠ADE∴AD=AE ,即ADE ∆为等腰三角形,故B 选项不符合题意∵Rt △DEF ≌Rt △DEC∴EF=EC在矩形ABCD 中,AD=BC ,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF ,故D 选项不符合题意由于AB=CD=DF ,但在Rt △ADF 中,无法证得AF=DF ,故无法证得AB=AF ,故C 选项符合题意故选:C .【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键. 7.A解析:A【分析】以AC 为对角线,可得AD ∥BC ,AD=BC ;以AB 为对角线,可得AD ∥BC ,AD=BC ;以AD 为对角线,可得AB ∥CD ,AB=CD .【详解】解:①以AD 为对角线时,可得AB ∥CD ,AB =CD ,∴A 点向左平移6个单位,再向下平移3个单位得B 点,∴C 点向左平移6个单位,再向下平移3个单位得D₁(-4,-8);②以AC 为对角线时,可得AD ∥BC ,AD=BC ,∴B 点向右平移6个单位,再向上平移3个单位得B 点,∴C 点向右平移6个单位,再向上平移3个单位得D₂(8,-2);③以AB 为对角线时,可得AD ∥BC ,AD=BC ,∴C 点向右平移3个单位,再向上平移5个单位得A ,∴B 点向右平移3个单位,再向上平移5个单位得D₃(2,2);综上可知,D 点的坐标可能为:D₁(-4,-8)、D₂(8,-2)、D₃(2,2),故选:A .【点睛】本题考查了坐标与图形的性质,利用平行四边形的判定:对边平行且相等的四边形是平行四边形,要分类讨论,以防遗漏.8.C解析:C【分析】根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出平行四边形ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵在平行四边形ABCD 中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴平行四边形ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.9.A解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠ M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键. 10.D解析:D【分析】四个选项,A 、C 选项CP 为顶角的平分线, B 、D 选项CP 为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D 选项.【详解】解:∵∠C =90°,点P 在边AB 上.BC =6, AC =8,∴22228610 AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D.【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.11.D解析:D【分析】首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;【详解】解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:3a,故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC是等边三角形.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.【分析】利用勾股定理逆定理判断出此三角形是直角三角形再根据直角三角形斜边上的中线等于斜边的一半解答【详解】∵∴此三角形是直角三角形斜边为5∴该三角形最长边上的中线长为:5=故答案为:【点睛】本题考查解析:5 2【分析】利用勾股定理逆定理判断出此三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵2222255+==,∴此三角形是直角三角形,斜边为5,∴该三角形最长边上的中线长为:12⨯5=52.故答案为:52.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理逆定理的应用,熟记性质并判断出此三角形是直角三角形是解题的关键.14.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=,∴12BC =,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.15.①②【分析】先证明∠ACD=∠BCE 根据三角形全等判定定理SAS 可证明△ADC ≌△BEC ;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE ,根据三角形全等判定定理SAS 可证明△ADC ≌△BEC ;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB =OC ;利用三角形三边关系可得DE BC ≥;根据OB =OC 可知点O 在BC 的垂直平分线上,找到点O 的起始位置及终点位置,即可求出OA 的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB = 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线. 16.75【分析】由将正方形纸片对折折痕为MN 可得MA=MD=由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB 可推出AH=AD=2AM 可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB解析:75.【分析】由将正方形纸片对折,折痕为MN ,可得MA=MD=1AD 2,由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB ,可推出AH=AD=2AM ,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB 中,AH=AB 由内角和可求∠ABH=75︒即可.【详解】解:∵正方形纸片对折,折痕为MN ,∴MN 是AD 的垂直平分线 ,∴MA=MD=1AD 2, ∵把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,∴AB=AH ,∵四边形ABCD 是正方形 ,∴AD=AB ,∴AH=AD=2AM ,∵∠AMH=90°,AM=1AH 2, ∴∠AHM=30°,∵MN ∥AB ,∴∠BAH=30°,在△AHB 中,AH=AB , ∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】 本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.17.【分析】过点P 作PG ⊥CB 交CB 的延长线于点G 过点Q 作QF ⊥CB 运用AAS 定理证明△QBF ≌△BPG 根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形利用勾股定理求得线段BC 的长然后结合全解析:10【分析】过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB ,运用AAS 定理证明△QBF ≌△BPG ,根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形,利用勾股定理求得线段BC 的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB∵BP BQ ⊥,PG ⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF ⊥CB ,BP BQ ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,BC=228AB AC-=∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键18.13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD交于点O∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO∵正方形AECF的面积为50cm2∴AC2=50∴AC=1解析:13【分析】根据正方形的面积可用对角线进行计算解答即可. 【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,BO=DO , ∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm , ∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm , ∴BO=DO=12cm , ∴22AB AO BO +25144+,故答案为13.【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答.19.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm .【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解. 【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =, 由勾股定理得,2222435AB AC BC cm =+=+=,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称, ∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时, 由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125 ∴P 3E=CD又P 3E ⊥AB ,CD ⊥AB , ∴P 3E//CD ,∴四边形P 3CDE 是平行四边形, 又∠CDE=90°∴四边形P 3CDE 是矩形, ∴P 3C=DE ∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA 又∠P 3EA=∠CDB=90° ∴△P 3AE ≌△CBD ∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm .故答案为:5cm 或245cm 或75cm .【点睛】本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.20.【分析】根据正方形ABCD 得结合题意推导得通过证明得从而得到正方形面积结合四边形面积计算得到;过点M 作交BE 于点N 连接ME 根据正方形ABCD 通过计算即可完成求解【详解】∵正方形ABCD ∴∴∵过点D 且解析:3【分析】根据正方形ABCD ,得90ADC BAD ∠=∠=,BAC ACD ∠=∠,AB BC CD AD ====CDF ADG ∠=∠、FCD DAG ∠=∠,通过证明CDF ADG △≌△,得CDF ADG S S =△△,从而得到12ACDS=正方形ABCD 面积,结合四边形AGDF面积BCE =△,计算得到CE ;过点M 作MN BE ⊥交BE 于点N ,连接ME ,根据ABMNBMBCENMEEDMS SSSS++++=正方形ABCD ,通过计算即可完成求解. 【详解】 ∵正方形ABCD∴90ADC BAD ∠=∠=,//AB CD,AB BC CD AD ====∴90CDF ADF ∠+∠=,90BAC CAD ∠+∠=,BAC ACD ∠=∠ ∵过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G ∴90FDG ADF ADG ∠=∠+∠=,90CAG CAD DAG ∠=∠+∠= ∴CDF ADG ∠=∠,BAC DAG ∠=∠ ∴ACD DAG ∠=∠,即FCD DAG ∠=∠∴FCD DAG CDF ADG CD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CDF ADG △≌△ ∴CDF ADG S S =△△∵四边形AGDF 面积=12ADF ADG ADF CDF ACD S S S S S +=+==△△△△△正方形ABCD 面积∴四边形AGDF 面积=16632⨯⨯= ∵11622BCE S BC CE CE =⨯=⨯△,且满足四边形AGDF 面积2BCE S =△ ∴12632CE ⨯⨯= ∴3CE =∴22633BE BC CE =+=+=如图,过点M 作MN BE ⊥交BE 于点N ,连接ME∵∠ABE 的平分线交AD 于点M ∴ABM NBM ∠=∠∵BM BM =,90BAM BNM ∠=∠= ∴ABM NBM △≌△ ∴6BN AB ==,MN AM =设AM x =162ABM NBM S S AB x ==⨯=△△ 113632222BCE S BC CE =⨯==△ ()(11136222NME S NE MN BE BN MN x =⨯=-⨯=-△ ()())111636222EDM S ED DM CD CE AD AM x =⨯=-⨯-=△∵ABMNBMBCENMEEDMSSSSS++++=正方形ABCD∴()63112236636662222x x x ⨯+=∴3333x ==+故答案为:33-. 【点睛】本题考查了正方形、全等三角形、一元一次方程、二次根式、三角形角平分线、勾股定理的知识;解题的关键是熟练掌握正方形、全等三角形、三角形角平分线的性质,从而完成求解.三、解答题21.(1)矩形;(2)24,125【分析】(1)先证明四边形OEFG 是平行四边形,再根据垂直即可得到结果; (2)根据菱形的面积求解和等面积法计算即可; 【详解】解:()1四边形OEFG 是矩形.在菱形ABCD 中,,DO BO =E 是AD 的中点, ,AE DE ∴=//,OE AB ∴ //,OE FG ∴又//,OG EF∴四边形OEFG 是平行四边形.,EF AB ⊥ 90,EFG ∴∠=︒四边形OEFG 是矩形.()2菱形的面积11862422AC BD =⋅=⨯⨯=.四边形ABCD 是菱形,11,4,322BD AC AO AC BO BD ∴⊥====, 5AB ∴=.由()1知,四边形OEFG 是矩形,,EF OG OG AB ∴=⊥.1122AO BO AB OG ∴⋅=⋅, 125AO BO OG AB ⋅∴==, 125EF ∴=. 【点睛】本题主要考查了矩形和菱形的判定和性质,准确计算是解题的关键. 22.(1)t =2;(2)t =3或65t =. 【分析】(1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解. 【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米). ∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒), 当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键. 23.(1)见解析 (2)392【分析】(1)Rt ABC ∆中,由斜边上的中线等于斜边的一半得出12CD BD AD AB ===,根据已知条件证明△CEF ≌△CDE (SAS )得出CE CD =,等量转换得出AD CE =.(2)由(1)求得12 ADBD CD CE AB====,在等腰三角形BCD中,过D作DG BC⊥于G,由等腰三角形的性质得出12CG BG BC==,由勾股定理求出DG,然后用三角形的面积公式计算BDE∆的面积为12BE DG⋅即可.【详解】证明:()190,ACB CD∠=︒是斜边AB上的中线12CD BD AD AB∴===,CF ED DF EF⊥=∴在△CEF和△CDE中,90oEF DFEFC DFCCF CF=⎧⎪∠=∠=⎨⎪=⎩∴△CEF≌△CDE(SAS),CE CD∴=AD CE∴=.()2由()1知:5,210CE AD AB AD====,90,6ACB AC∠=︒=228,BC AB AC∴=-=13BE BC CE∴=+=.过D作DG BC⊥于G,CD BD DG BC=⊥,142CG BG BC∴===223DG BD BG∴=-=,DBE∴∆的面积为:1139133222BE DG⋅=⨯⨯=.【点睛】本题考查了直角三角形中,斜边的中线等于斜边的一半,三角形全等的判定,等腰三角形的性质和判定,勾股定理,三角形的面积公式,熟练掌握各性质是解题的关键. 24.(1)见解析;(2)四边形AGCH 是菱形,见解析 【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论. 【详解】 证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-, 即OE OF =,又AOE COF ∠=∠, AOE COF ∴≌, AE CF ∴=.(2)四边形AGCH 是菱形. 理由:AOE COF ≌,EAO FCO ∴∠=∠, //AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=, AC 平分HAG ∠, HAC GAC ∠∠∴=, ∴GAC ACB ∠=∠, GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.25.(1)见解析;(2)CE=CF ,理由见解析;(3)【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论; (3)分点F 在AB 右侧和左侧两种情况求解即可. 【详解】 解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG ,BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒, ∴四边形BEFG 是正方形; (2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形, 90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒, DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中, 90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45° ∴在Rt △DHG 中,∠GDH =45° ∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=, CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-, 在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去), 即12BG BE ==,17125AG CE ==-=, ∵四边形BEFG 是正方形, ∴∠BAD =90°. ∵DK ⊥AG , ∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90° ∠ADK +∠KAD =90° ∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG , 则AK =BG =12,DK =AG =5, ∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,在R t △DFK 中,根据勾股定理可得,DF 22122DK FK +=综上所述,DF 的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.26.(1)见详解;(2)见详解;(3)4833m <≤ 【分析】(1)根据旋转变换及三角形全等即可得解;(2)延长FD 到点G ,使DG=BE ,连接AG ,通过,ABE ADG △≌△AEF AGF ≌即可得解;(3)根据题意分两种情况∶P 与O 重合,H 与C 重合,通过构造全等三角形,求得MN=NQ ,再设BM=a ,则CM=4-a ,MN=QN=a+2,根据222MN CM CN =+,得出222(2)(4)2a a +=-+,进而得到a=43,求得AG 的长为于43;根据BM=43,可得48'433AG CM ==-=,进而分析计算即可得出m 的取值范围 . 【详解】解∶ (1)结论∶ EF=BE+FD .理由如下 ∶由旋转及题意知,F ,D ,G 三点共线,BE=DG ,AE=AG ,∠BAE=∠DAG ,∠EAF=12∠BAD, ∴∠GAF=∠DAF+∠DAG=∠DAF+∠BAE=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF AGF ≌∴.EF=FG , 又∵FG=DG+DF=BE+DF ,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.理由如下 ∶延长FD 到点G ,使DG=BE ,连接AG ,如图所示∶∵∠B+∠ADC =180°,180ADF ADG ∠+∠=︒ ,∴B ADG ∠=∠,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,,ABE ADG ∴△≌△∴AE=AG ,∠BAE=∠DAG , 12EAF BAD ∠=∠ GAF DAF DAG FAD BAE BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠ , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴,AEF AGF △≌△∴.EF=FG.又 ∴FG=DG+DF=BE+DF ,∴EF=BE+DF .(3)①假设P 与O 重合, 如图,∵O 为EF 的中点,∴O 为正方形ABCD 的对称中心,过A 作AN //EF 交CD 于N ,则NF=AE=1,∴DN=CN=2,过O 作''//G H GH 交AD 于'G ,交BC 于'H ,''AG CH ∴=,''DG BH = ,过A 作//''AM G H 交BC 于M ,∴''AG MH = ,'45G OE ∠=︒ ,∴∠MAN=45°,延长CD 到Q ,使DQ=BM ,由AB=AD ,∠B=∠ADQ ,BM=DQ ,可得△ABM ≌△ADQ ,∴AM=AQ,∠BAM=∠DAQ∵∠MAN=45°,∠BAD=90°,∴∠BAM+∠DAN=45°=∠DAQ+∠DAN=∠QAN,∴∠MAN= ∠QAN由AM=AQ ,∠MAN=∠QAN ,AN=AN ,可得△MAN ≌△QAN ,∴MN=NQ设BM=a ,则CM=4-a ,MN=QN=a+2,∵222MN CM CN =+,()()222242a a ∴+=-+ ,解得∶a=43, ∴ BM=43, CM=83又∵'''AG CH MH ==,814'323AG ∴=⨯=, ②当H 与C 重合时,如图由①知BM=43 48''433AG CM ==-=∴, ∴m 的取值范围为∶4833m <≤ . 【点睛】 本题考查了全等三角形的判定和性质,旋转变换以及正方形的性质,熟练掌握相关各个性质并作辅助线构造出全等三角形是解题的关键.。
青岛市八年级数学下册第三单元《平行四边形》检测(有答案解析)

一、选择题1.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .42.如图,在ABC 中,90ACB ∠=︒,点D 在AC 边上且AD BD =,M 是BD 的中点.若16AC =,8BC =,则CM 等于( )A .5B .6C .8D .103.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .39 4.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对5.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°6.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠; D .OAB OAD ∠=∠.7.如图,在菱形ABCD 中,对角线BD =4,AC =3BD ,则菱形ABCD 的面积为( )A .96B .48C .24D .68.如图,已知四边形ABCD 中,R 、P 分别为BC 、CD 上的点,E 、F 分别为AP 、RP 的中点.当点P 在CD 上从点C 向点D 移动而点R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长不变C .线段EF 的长逐渐减小D .线段EF 的长与点P 的位置有关 9.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形10.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163 11.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+ 12.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD 3 二、填空题13.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.14.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)15.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.16.如图,B ,E ,F ,D 四点在一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为___cm .17.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.18.如图,将Rt △ABC 沿着点B 到A 的方向平移到△DEF 的位置,BC =8,FO =2,平移距离为4,则四边形AOFD 的面积为__.19.如图,在Rt △ABC 中,∠ACB =90°,D 是斜边AB 中点,若∠B =30°,AC =2,则CD =_____.20.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.三、解答题21.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).22.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .23.已知:如图,ABCD 中,AE 、CF 分别是BAD ∠和BCD ∠的角平分线,分别交边DC 、AB 于点E 、F ,求证:AE CF =.24.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,DE ∥AB ,AF ∥CD ,且四边形AEFD 是平行四边形.(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论; (2)现有三个论断:①AD AB =;②=B C +∠∠90°;③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.25.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 26.如图,在ABC 中,CD 是AB 边的中线,E 是CD 的中点,连接AE 并延长交BC 于点F .求证:2BF CF =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先根据AD AC =可得△ACD 为等腰三角形,再由AE CD ⊥结合“三线合一”性质可得E 为CD 的中点,从而得到EF 为△CBD 的中位线,最终根据中位线定理求解即可. 【详解】∵AD AC =,∴△ACD 为等腰三角形,∵AE CD ⊥,∴E 为CD 的中点,(三线合一)又∵点F 是BC 的中点,∴EF 为△CBD 的中位线, ∴152EF BD ==, 故选:C .【点睛】 本题考查等腰三角形三线合一的性质以及中位线的性质,准确判断出中位线是解题关键. 2.A解析:A【分析】 根据直角三角形斜边的中线等于斜边的一半,得出12CM BD =,设CM x =,则2BD AD x ==,再根据勾股定理列方程求解即可得出答案.【详解】 解:90ACB ∠=︒,M 是BD 的中点,12CM BD ∴= 设CM x =,则2BD AD x ==16AC =162CD AC AD x ∴=-=-在Rt BCD △中,根据勾股定理得222BC CD BD +=即()()22281622x x +-=解得:5x =,故选A .【点睛】本题考查了直角三角形斜边的中线性质、勾股定理,熟练掌握性质定理是解题的关键. 3.C解析:C【分析】设平行四边形AB 边上的高为h ,分别表示出△ACE 的面积和平行四边形ABCD 的面积,从而求出结果.【详解】解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD 的面积的14. 4.C解析:C【分析】因为图形对折,所以首先△CDB ≌△ABD ,由于四边形是长方形,进而可得△ABE ≌△CDE ,如此答案可得.【详解】解:∵△BDC是将长方形纸片ABCD沿BD折叠得到的,∴CD=AB,AD=BC,∵BD=BD,∴△CDB≌△ABD(SSS),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.5.A解析:A【分析】根据平行四边形的对角相等求出∠B即可得解.【详解】解:□ABCD中,∠B=∠D,∵∠B+∠D=100°,∴∠B=1×100°=50°,2故选:A.【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.6.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.7.C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.8.B解析:B【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【详解】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选:B.【点睛】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.9.C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.10.A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.11.D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:EC=3=3a,故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC是等边三角形.二、填空题13.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC ⊥BD ,OA=12AC=12×6=3, ∵AB=5,由勾股定理得:4=,∴BD=2OB=8,∵AB ∥CD , ∴△EAB 和△ECD 的高的和等于点C 到直线AB 的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键. 14.(答案不唯一)【分析】根据平行四边形的判定定理有一组对边平行且相等的四边形是平行四边形即可填写【详解】解:∵AD ∥BCAD=BC ∴四边形ABCD 是平行四边形故答案为:AD=BC (答案不唯一)【点睛】解析:AD BC =(答案不唯一)【分析】根据平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”即可填写.【详解】解:∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形.故答案为:AD=BC (答案不唯一)【点睛】本题考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键,本题有多种答案,如可以根据平行四边形的定义填写AB ∥CD 等.15.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =, ∴2GF =;故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.16.13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2,∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2,∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm ,∴22AB AO BO=+=25144+=13cm,故答案为13.【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答.17.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D 作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.18.【分析】根据平移的性质判断AD=CF=BE=4AD∥CF再根据平行四边形的面积和三角形面积公式解答即可【详解】如图连接CF由平移的性质知AD=CF =BE=4AD∥CF∴四边形ACFD为平行四边形∴=解析:28【分析】根据平移的性质,判断AD =CF =BE =4,AD ∥CF ,再根据平行四边形的面积和三角形面积公式解答即可.【详解】如图,连接CF .由平移的性质知,AD =CF =BE =4,AD ∥CF ,∴四边形ACFD 为平行四边形.∴ACFD S =AD •BC =4×8=32,∵FO =2,∴S △FOC =12OF •BE =1242⨯⨯=4, ∴AOFD S 四边形=ACFD FOC S S -=32-4=28.故答案为28.【点睛】本题考查图形的平移以及平行四边形的判定.根据题意得出AOFD S 四边形=ACFD FOC SS -是解答本题的关键. 19.【分析】先由所对的直角边是斜边的一半求解再利用直角三角形斜边上的中线等于斜边的一半可得答案【详解】解:∠ACB =90°∠B =30°AC =2D 是斜边AB 中点故答案为:【点睛】本题考查的是含的直角三角形解析:2.【分析】先由30所对的直角边是斜边的一半求解,AB 再利用直角三角形斜边上的中线等于斜边的一半可得答案.【详解】解: ∠ACB =90°,∠B =30°,AC =2,24AB AC ∴==,D 是斜边AB 中点,1 2.2CD AB ∴== 故答案为:2.【点睛】本题考查的是含30的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,掌握以上知识是解题的关键.20.【分析】连接CE 过点C 作交AB 的延长线于点H 设AE=x 则BE=8-xCE=AE=x 在根据勾股定理即可得到x 的值【详解】如图:连接CE 过点C 作交AB 的延长线于点H 平行四边形ABCD 中设AE=x 则BE= 解析:203 【分析】连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,设AE=x ,则BE=8-x ,CE=AE=x ,在根据勾股定理,即可得到x 的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒= 90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==,在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=,解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长.【详解】(1)∵PA 平分BAD ∠,BP AP ⊥, ∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒; (2)如图1,延长BP 交AD 的延长线于点G ,∵BP AP ⊥,PA 平分BAD ∠,∴90APB APG ∠=∠=︒,BAP GAP ∠=∠,在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠, ∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD ,∴CBP DGP ∠=∠,在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△,∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G , ∴由已知条件可知,此时四边形ABFE 是平行四边形, ∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =, 由(2)可知,ABP AGP ≌,∴5BA GA a ==,3BP GP a ==,由(2)可知,BCP GDP △≌△,∴=CP DP ,=BC GD ,∵//BC AD ,∴BFP GEP ∠=∠,在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠, ∴CFP ≌DEP ,∴CF DE =,∵=BC GD ,∴BC CF GD DE +=+,∴BF EG =,又∵四边形ABFE 是平行四边形,∴BF AE =,∴BF AE EG ==,∴25AG AE a ==, ∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+,∴5BF AE BC AD AB a +=+==,在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△,梯形ABCD 的面积2122BC AD BH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=, ∵//BC AD ,∴BH FI =,BF HI =,∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =,∴Rt BHA △≌Rt FIE △, ∴75AH EI a ==, ∴2()BF AE BF AH EI HI BF AH +=+++=+,∴2()BF AE BF AH +=+, ∴1110BF a =, ∴3910AE AB BF a =-=.图3【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.22.见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.23.见解析【分析】根据平行四边形的性质及角平分线的定义,证明ADE CBF ∆≅∆即可判断AE CF =.【详解】 解:四边形ABCD 是平行四边形,DAB DCB ∴∠=∠,D B ∠=∠,AD BC =.AE ∵、CF 分别是BAD ∠和BCD ∠的角平分线,DAE BCF ∴∠=∠.()ADE CBF ASA ∴∆≅∆.AE CF ∴=.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质.证明线段相等的技巧一般是找到两个线段的相关三角形,通过全等求解.24.(1)3BC AD =,见解析;(2)见解析【分析】(1)先证明四边形ABED 是平行四边形,得到AD BE =,同理得到AD FC =,根据四边形AEFD 是平行四边形,得到AD EF =,从而得到AD BE EF FC ===,进而得到3BC AD =;(2)选择论断②作为条件.根据DE ∥AB ,得到B DEC ∠=∠,从而证明90DEC C ∠+∠=,得到90EDC ∠=,根据EF FC =,得到DF EF =,从而证明平行四边形AEFD 是菱形.【详解】解:(1)线段AD 与BC 的长度之间的数量为:3BC AD =.证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.∴AD BE =.同理可证,四边形AFCD 是平行四边形.∴AD FC =.又∵四边形AEFD 是平行四边形,∴AD EF =.∴AD BE EF FC ===.∴3BC AD =.(2)选择论断②作为条件.证明:∵DE ∥AB ,∴B DEC ∠=∠.∵90B C ∠+∠=,∴90DEC C ∠+∠=.即得90EDC ∠=.又∵EF FC =,∴DF EF =.∵四边形AEFD 是平行四边形,∴平行四边形AEFD 是菱形.【点睛】本题考查平行四边形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半等知识,熟知相关定理并根据题意灵活应用是解题关键.25.(1)见解析;(2)BC <AC【分析】(1)画射线BD ,以B 为端点取BC=a ,过点C 作BD 的垂线,再以点B 为圆心,c 为半径画弧,与该垂线交于点A 即可;(2)根据直角三角形的性质得到AB ,利用勾股定理求出AC ,再比较大小即可.【详解】解:(1)如图,△ABC 即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴AC=22107-=51,∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.26.见解析【分析】取AF 的中点M ,连接DM ,则DM 是△ABF 的中位线,利用中位线定理结合全等三角形的判定即可证得.【详解】证明:取AF 的中点M ,连接DM ,∵CD 是AB 边的中线,∴D 是AB 边的中点,∴2BF DM =,//DM BC .∴MDE FCE ∠=∠,DME CFE ∠=∠.∵E 是CD 的中点,∴DE CE =,在△MDE 和△FCE 中,MDE FCE DME CFE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MDE FCE ≌△△.∴DM CF =,∴2BF CF =.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.已知:如图,把长方形纸片 ABCD 沿 EF 折叠,使 D、C 分别落在 D、C的位置, 若 EFB 65 ,则 AED 的度数为_________.
19.如图,在 Rt△ABC 中, A 90 , AB 2 ,点 D 是 BC 边的中点,点 E 在 AC 边 上,若 DEC 45 ,那么 DE 的长是__________.
B.5
C. 4 5
D.10
6.在矩形 ABCD 中,对角线 AC、BD 相交于点 O,AE 平分 BAD 交 BC 于点 E,
CAE 15 .连接 OE,则下面的结论:① DOC 是等边三角形;②△BOE 是等腰三角
形;③ BC 2AB ;④ AOE 150 ;⑤ S AOE S COE ,其中正确的结论有( )
一、选择题
1.在平面直角坐标系中,长方形 OACB 的顶点 O 在坐标原点,顶点 A、B 分别在 x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边 OB 的中点,若 E 为 x 轴上的一个动点,当△ CDE 的周长最小时,求点 E 的坐标( )
A.(一 3,0)
B.(3,0)
C.(0,0)
D.(1,0)
14.如图,在 ABC 中, AB AC 10 ,D 为 CA 延长线上一点, DE BC 交 AB 于点 F.若 F 为 AB 中点,且 BC 12 ,则 DF __________.
15.如图,在菱形 ABCD 中, AC 6 , AB 5,点 E 是直线 AB , CD 之间任意一 点,连接 AE , BE , DE , CE ,则 EAB 和 ECD 的面积之和是______.
()
A. a : b CD : BC B. D 的度数为 C.若 60 ,则四边形 AECF 的面积为平行四边形 ABCD 面积的一半
D.若 60 ,则平行四边形 ABCD的周长为 4 3 a b
3
4.下列命题中,错误的是 ( ) A.有一个角是直角的平行四边形是正方形; B.对角线相等的菱形是正方形;
(1)求证:四边形 BCDE 为菱形; (2)连接 AC ,若 AC 平分 BAD , BC 1,求 AC 的长.
20.如图,在矩形 ABCD 中,AD=2.将∠ A 向内翻折,点 A 落在 BC 上,记为 A ,折痕为
DE.若将∠ B 沿 EA 向内翻折,点 B 恰好落在 DE 上,记为 B ,则 AB=_______.
三、解答题 21.用总长度为 4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面
C.对角线互相垂直的矩形是正方形;
D.一组邻边相等的矩形是正方形.
5.如图,在 ABC 中, A 90 , D 是 AB 的中点,过点 D 作 BC 的平行线,交 AC
于点 E,作 BC 的垂线交 BC 于点 F ,若 AB CE ,且 △DFE 的面积为 1,则 BC 的长
为(
)
A. 2 5
AD , CE 交于点 F ,若 S△ABC 60 ,则 S四边形DBEF ( )
A.15
B.18
C.20
D.25
12.如图,已知平行四边形 ABCD 中, B 4A ,则 C ( )
A.18°
二、填空题
B.36°
C.72°
D.144°
13.如图,在菱形纸片 ABCD 中, AB 4 , A 60 ,将菱形纸片翻折,使点 A 落在 CD 边的中点 E 处,折痕为 FG ,点 F 、 G 分别在边 AB 、 AD 上,则 GE _______.
积较大.小东同学的看法对不对?请你用数学知识进行说理.
22.如图,点 A,B,C,D 在同一条直线上,点 E,F 分别在直线 AD 的两侧,且 AC BD , EBC FCB , BE CF .
求证:四边形 AFDE 是平行四边形; 23.如图,在四边形 ABCD 中, BD 为一条对角线, AD / /BC , AD 2BC , ABD 90 , E 个 B. 2 个 C. 3 个 D. 4 个 8.如图,点 P 是矩形 ABCD 的对角线上一点,过点 P 作 EF / /BC ,分别交 AB,CD 于
E, F ,连接 PB, PD ,若 AE 1, PF 3 ,则图中阴影部分的面积为( )
A. 3
B. 6
C. 9
D.12
9.如图,在 Rt ABC 中,∠C 90 , A 30 ,D 是 AC 边的中点, DE AC 于点
A.2 个
B.3 个
C.4 个
D.5 个
7.如图, ABCD 的对角线 AC、BD 交于点 O, DE 平分 ADC 交 AB 于点
E,BCD 60,
AD
1 AB ,连接 OE .下列结论:① S 2
ABCD
AD BD ;② DB 平
分 CDE ;③ AO DE ;④ OE 垂直平分 BD .其中正确的个数有( )
16.如图,在正八边形 ABCDEFGH 中, AE 是对角线,则 EAB 的度数是
__________.
17.如图,点 E 是长方形纸片 DC 上的中点,将 C 过 E 点折起一个角,折痕为 EF ,再 将 D 过点 E 折起,折痕为 GE ,且 C,D 均落在 GF 上的一点 H 处.若 1 649,则 CEF _______.
2.如图,把长方形纸片 ABCD 沿对角线折叠,设重叠部分为△EBD .下列说法错误的
是( )
A. AE CE
B. AE 1 BE 2
C. EBD EDB D.△ ABE≌ △ CDE
3.如图,在平行四边形 ABCD中, B 90 , BC AB .作 AE BC 于点 E,
AF CD 于点 F,记 EAF 的度数为 , AE a , AF b .则以下选项错误的是
D,交 AB 于点 E,若 AC 8 3 ,则 DE 的长是( )
A.8
B.6
C.4
D.2
10.如图,把一张长方形纸片沿对角线折叠,若△ EDF 是等腰三角形,则∠ BDC( )
A.45º
B.60º
C.67.5º
D.75º
11.如图,在 ABC 中, D 是 BC 的中点, E 在 AB 上,且 AE : BE 1: 2,连接