辐射温度计
红外辐射温度计原理

红外辐射温度计原理
辐射温度计属非接触式测温仪表,是基于物体的热辐射特性与温度之间的对应关系设计而成。
其特点为:测温范围广,原理结构复杂;测量时,感温元件不与被测对象直接接触,不破坏被测对象的温度场;通常用来测定1000℃以上的移动、旋转或反应迅速的高温物体的温度或表面温度;但不能直接测被测对象的真实温度,且所测温度受物体发射率、中间介质和测量距离等因素影响。
1.红外热辐射测温原理
自然界一切温度高于绝对零度(-273.15℃)的物体,由于分子的热运动,都在不停地向周围空间辐射包括红外波段在内的电磁波,其辐射能量密度与物体本身的温度关系符合辐射定律。
红外辐射温度计的工作原理是基于四次方定律,通过检测物体辐射的红外线的能量,推知物体的辐射温度。
在红外热辐射温度传感器中,作为测量元件的热电堆将红外线的能量转换为热电,经过信号处理后作为检测信号输出。
2.红外热辐射测温仪结构
红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。
光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号,该信号再经换算转变为被测目标的温度值。
图2‐49为红外辐射温度计的外观及工作原理。
被测物体的辐射线由物镜聚焦在受热板上。
受热板是一种人造黑体,通常为涂黑的铂片,当吸收辐射能以后温度升高,由连接在受热板上的热电偶、热电阻或热敏电阻测定。
通常被测物体是灰体,以黑体辐射作为基准进行刻度标定,已知被测物体的黑度值,灰体辐射的总能量全部被黑体所吸收,这样它们的能量相等,但温度不同。
辐射温度计在工业生产中的应用
辐射温度计在现代工业生产中的应用较为广泛,尤其是冶金、铸造、医疗、食品等行业,。
辐射感温器辐射温度计安全操作及保养规程

辐射感温器辐射温度计安全操作及保养规程1. 引言辐射感温器辐射温度计是一种常见的温度测量仪器,广泛应用于工业、科研等领域。
为了确保温度计的正常运行和使用安全,本文档旨在提供辐射感温器辐射温度计的安全操作及保养规程。
2. 安全操作规程在使用辐射感温器辐射温度计时,请务必遵守以下安全操作规程:2.1 正确接线在连接辐射感温器辐射温度计之前,请先确保电源已关闭。
使用正确的电缆及连接器,根据温度计型号和规格连接电缆。
确保电缆无破损,并正确安装接地线。
2.2 安全距离在使用辐射感温器辐射温度计进行测量时,请注意保持安全距离。
避免将辐射感温器辐射温度计暴露在高温或高压环境中,以免对人身和温度计造成伤害。
2.3 防护措施在操作辐射感温器辐射温度计之前,请戴好适当的防护设备,如手套、护目镜等。
避免直接接触感温器表面,以免在高温情况下烫伤皮肤或眼睛。
2.4 正确使用在使用辐射感温器辐射温度计时,请按照使用说明书进行操作。
不要进行未经授权的自行维修或改装,以免引发故障或安全隐患。
2.5 安全存放在存放辐射感温器辐射温度计时,请将其放置在干燥、通风良好的地方,并远离易燃、易爆等危险物品。
3. 保养规程为了延长辐射感温器辐射温度计的使用寿命并确保测量数据的准确性,建议按照以下保养规程进行定期维护:3.1 清洁保养定期清洁辐射感温器辐射温度计的外壳和接触面,使用清洁布轻轻擦拭,避免使用有腐蚀性的溶剂或化学物质。
3.2 校准检验定期对辐射感温器辐射温度计进行校准检验,以确保测量结果的准确性。
可以委托专业的检测机构进行校准,或者按照厂家提供的校准方法进行自行校准。
3.3 存放保养若长时间不使用辐射感温器辐射温度计,请将其存放在干燥、通风的地方,并避免长时间暴露在高温、高湿环境中。
4. 总结辐射感温器辐射温度计作为一种常见的温度测量仪器,正确的安全操作和定期保养对于确保其正常运行和使用的安全至关重要。
本文档提供了辐射感温器辐射温度计的安全操作及保养规程,希望能够对用户在使用过程中有所帮助,确保测量数据的准确性和用户的安全。
热辐射温度计使用方法

热辐射温度计使用方法
热辐射温度计是一种非接触式的温度测量仪器,它可以通过测量物体释放的红外线热辐射能够逆推物体的表面温度。
以下是热辐射温度计的使用方法:
1. 打开热辐射温度计的电源开关,并且设置好温度测量单位。
2. 瞄准要测量的物体,注意热辐射温度计要与测量物保持一定距离,具体距离可以参考仪器的使用说明书。
3. 按下热辐射温度计上的扫描键,仪器开始扫描测量物体表面的热辐射能。
4. 等待几秒钟,直到热辐射温度计显示出测量结果,然后记录下测量结果。
5. 关闭热辐射温度计的电源开关,并将仪器存放在干燥、通风的地方。
需要注意的是,在使用热辐射温度计时,要避免在强光、强电磁干扰或者高温、低温环境下进行测量,以免影响测量结果。
同时,为了保护热辐射温度计的精度,应该经常对其进行校准和维护。
便携式红外辐射温度计安全操作及保养规程

便携式红外辐射温度计安全操作及保养规程一、引言便携式红外辐射温度计是一种常用于测量温度的仪器,它可以非接触地测量目标物体的表面温度。
为了确保便携式红外辐射温度计的正常工作,并保证使用者的安全,需要遵守一些安全操作和保养规程。
二、安全操作规程2.1 选择适当的工作环境在使用便携式红外辐射温度计之前,确保工作环境安全,避免有可能引起危险的因素存在。
例如,在易燃、易爆或有高电压的环境下,不宜使用红外辐射温度计。
2.2 穿戴个人防护装备在操作便携式红外辐射温度计时,应穿戴适当的个人防护装备,例如手套、护目镜等。
这些装备可以有效地防止在操作过程中产生的意外伤害。
2.3 保持适当的距离使用红外辐射温度计时,需要保持适当的测量距离,以确保准确和安全的测量结果。
具体的测量距离需根据所使用的红外辐射温度计型号和目标物体而定,一般建议在距离目标物体1-5米的范围内进行测量。
2.4 避免直接照射眼睛红外辐射温度计在测量过程中会发射红外线,因此需要避免直接照射眼睛。
在操作红外辐射温度计时,应注意避免将红外线照射到眼睛,以免对视力造成伤害。
2.5 小心操作,避免碰撞在使用红外辐射温度计时,应小心操作,避免与其他物体碰撞。
由于红外辐射温度计是精密仪器,碰撞可能会导致其功能异常或损坏。
2.6 正确使用电池便携式红外辐射温度计通常使用电池作为能源。
在更换电池时,应正确安装电池,遵循厂家提供的使用说明和注意事项。
避免使用过期、不当存放或不合适的电池。
三、保养规程3.1 清洁红外辐射温度计定期清洁红外辐射温度计可以保持其表面干净,并提高测量的准确性。
清洁时,可使用柔软的干布轻轻擦拭表面,避免使用化学溶剂或研磨剂,以免损坏仪器。
3.2 储存温度计当不使用红外辐射温度计时,应将其存放在干燥、通风的地方,避免阳光直射和高温环境。
储存之前,应确保温度计处于关闭状态,以节省电池的使用。
3.3 定期校准为了确保红外辐射温度计的测量准确性,建议定期校准。
标准辐射温度计系列安全操作及保养规程

标准辐射温度计系列安全操作及保养规程标准辐射温度计系列是用来测量高温物体温度的仪器,其辐射能力高,精度高,测量范围大等特点被广泛应用于工业、科研等领域。
为了保证其安全可靠地运行,特制订以下安全操作及保养规程。
安全操作规程1.操作前准备1.在安装、调试、使用标准辐射温度计系列时,应保持其干燥、清洁。
2.必须使用对应的夹具固定标准辐射温度计,夹具不得影响仪器的测量精度。
3.熟悉仪器操作说明书,了解仪器的结构、性能、使用方法,首次使用前应进行仪器性能测试和标定,确保仪器性能满足工艺或科研要求。
4.必须使用对应光源,以保证温度计的亮度。
2.操作中1.在操作仪器时,必须注意其测量范围,以免超出测量范围而损坏仪器。
2.操作人员必须佩戴防护手套和眼镜等个人防护装备,以免被辐射热烧伤。
3.操作中禁止对仪器进行拆卸或改装,如需要改动可寻求设备生产厂商的帮助。
4.在使用前应检查标准辐射温度计及其连接的设备是否正常工作,确保仪器可以测量被测物体的温度。
3.操作后1.操作结束后,应关闭辐射源电源,避免不必要的辐射伤害。
2.清洗标准辐射温度计时应用清洁布擦拭,禁止使用化学溶剂或强烈酸碱等剂取,以免损伤其精准度。
3.仪器存储时,必须放置在干燥、通风、避光的地方,不得受到机械振动和腐蚀物质的侵蚀。
4.将标准辐射温度计系列进行封存时,应注意仪器元器件的正确放置,不得强行捏压或堆放,以免损坏仪器。
保养规程1.定期检查1.定期检查标准辐射温度计的外观、仪器运行时间、精度情况,如有异常情况应及时回收维修。
2.定期对标准辐射温度计进行校准,以保证其测量精度和准确度。
2.清洗维护1.在仪器连续使用后应进行及时清洗,清洗时应使用专用的清洁液,禁止使用水或其他普通清洁剂。
2.仪器运行周期结束后,应对仪器进行全面维护,包括维护电路、光源等元器件。
3.备件存储1.标准辐射温度计备件存放时应注意大小、型号,分类存放,防止对备件进行交叉使用。
2.将备件进行封存时应注意密封性,并存放在防潮、防尘的环境中。
全辐射测温法的测温原理

全辐射测温法的测温原理全辐射测温法(全辐射温度计)是一种无接触、非接触的测温技术,适用于高温环境中的温度测量。
其测温原理基于黑体辐射定律和红外辐射的特性。
全辐射测温法利用物体本身的热辐射,测量物体表面的温度。
根据热辐射定律,所有物体在一定的温度下都会发出热辐射,且辐射强度与物体温度成正比。
根据斯特藩-玻尔兹曼定律,物体的辐射功率与其绝对温度的四次方成正比。
因此,通过测量物体辐射出的光功率,可以计算出物体的温度。
全辐射温度计主要利用红外辐射进行测量。
红外辐射的波长范围是0.78 - 1000微米,对应的频率范围为300 - 380 THz。
物体在这个波长范围内发出的热辐射,可以通过红外传感器接收到。
红外传感器感应物体发出的红外辐射,并将其转化为电信号。
这个电信号经过转换和处理后,可以得到物体的温度。
全辐射温度计一般由光谱辐射计和温度计两部分组成。
光谱辐射计是一个红外感应器,用来检测物体发出的辐射能量。
光谱辐射计可以根据不同物体的辐射特性,选择合适的波长范围来测量温度。
温度计则根据感应到的辐射能量,通过一系列的转换和计算,计算出物体的温度。
全辐射测温法的原理可以用以下步骤来概括:1. 根据应用需要,选择适合的红外波段来进行测量。
不同物体的辐射特性不同,需要选择适合的波段以获得准确的测温数据。
2. 将红外辐射传感器对准目标物体的表面。
红外辐射传感器可以通过检测物体发出的辐射能量来测量温度。
3. 红外传感器感应到物体发出的红外辐射,将其转化为电信号。
4. 通过光谱分析和滤波技术,将感应到的红外辐射从其他干扰光信号中分离出来。
5. 对传感器得到的电信号进行放大和增强处理,以提高测量的准确度和稳定性。
6. 将处理后的电信号输入到温度计中,进行计算和转换。
7. 根据辐射定律和斯特藩-玻尔兹曼定律,将感应到的辐射功率转化为温度值。
全辐射测温法的优点是非接触、无接触的测量方式,可以在高温环境中进行温度测量,避免了传统接触式温度计可能导致的交叉感染、杂散热等问题。
辐射式温度计的校准

辐射式温度计也是用比核法进行校淮。通常是采用黑体辐射源或光学温度灯泡作为恒温源,被校准的辐射式温度计和同类型的标准辐射式温度计同时测量这个位温源的温度,比较两者的读数就可以得到被校温度计的测量误差。在校淮低于1300℃的温度点时,也可使用标准铂诧-钠热电佃作为测量温度的标准仪表,用铂锗-铂热电偶测量出黑体炉膛的温度作为标准温度。
温度计的显示仪表,大多数是电气仪表,它们的校准方法和一般电气仪表相同,也都是通过比较法进行校准的。
ቤተ መጻሕፍቲ ባይዱ
[b]转载请注明出处-仪器交易网([/b][b][/b][b])[/b][b]
[/b](文章来源:信封印刷/)
由于各种辐射式温度计所测得的温度都和被测物体的[b]光谱[/b]发射率EX或者发射率E有关,所以在校准时必须设法避免发射串的影响.为此,都使用黑体辐射汲作为被测对象,黑体辐射源的技术要求及构造可参阅计量器具检定规程 JJcT309-83。在黑体辐射源内,靶心放在其中心部分,靶心的发射率通常都在0.99以上.标准辐射式温度计和被校辐射式湿度汁都瞄准靶心选取读数,两者之差即为误差.
工作用辐射温度计检定规程

工作用辐射温度计检定规程嘿,朋友们!今天咱来聊聊工作用辐射温度计检定规程这档子事儿。
你说这辐射温度计啊,就像是咱工作中的一把秘密武器!它能帮咱准确测量温度,那可太重要啦!但要是这武器不精准,那不就跟拿了把钝刀上阵一样嘛!所以啊,这个检定规程就好比是给这武器磨磨刀、校校准。
想象一下,要是没有这个检定规程,那不同的温度计测出来的温度五花八门的,那不乱套啦!咱得知道,这工作用辐射温度计可不是随便玩玩的,它得靠谱呀!就像咱出门得知道路怎么走,不然不就瞎转悠啦!这检定规程呢,就详细规定了怎么去检测这温度计是不是准确的。
比如说,得在特定的环境下,用特定的标准去对照,看看它测得准不准。
这就好像是给温度计来一场考试,看看它能不能及格。
咱可别小瞧了这些规定,这都是专家们经过深思熟虑才定下来的。
就跟咱做饭得按照菜谱来一样,不能乱了套。
而且啊,这检定还得定期做呢,不能说测一次就完事儿了。
就像咱车子还得定期保养呢,不然哪天在路上抛锚了咋办?你说要是温度计不准,那在一些对温度要求特别高的工作中,不就出大乱子啦?比如炼钢的时候,温度差一点,那炼出来的钢质量可能就大打折扣了。
这可都是真金白银的损失呀!所以啊,严格按照检定规程来,那是必须的!每次做检定的时候,都得认真仔细,不能马虎。
这可不是闹着玩的,一个小疏忽可能就导致大问题。
这就跟走钢丝一样,得小心翼翼的。
而且,做检定的人也得专业呀,不能随便找个人就来干,那能行吗?咱再想想,要是所有使用辐射温度计的地方都能严格遵守这个检定规程,那得多好呀!大家都能得到准确的温度数据,工作起来也更放心,更有效率。
这不就是我们想要的嘛!总之呢,工作用辐射温度计检定规程那可是相当重要的,咱可不能不当回事儿。
得把它当成宝贝一样对待,严格按照要求来执行。
只有这样,我们才能让这些温度计发挥出最大的作用,为我们的工作保驾护航!这就是我的看法,你们觉得呢?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辐射温度计一.概述辐射温度计属非接触式测温仪表,是基于物体的热辐射特性与温度之间的对应关系设计而成。
其特点为:测温范围广,原理结构复杂;测量时,感温元件不与被测对象直接接触,不破坏被测对象的温度场;通常用来测定1000℃以上的移动、旋转或反应迅速的高温物体的温度或表面温度;但不能直接测被测对象的真实温度,且所测温度受物体发射率、中间介质和测量距离等因素影响。
1.1 辐射测温技术的发展历史与现状在仪器制造方面,辐射温度计的发展经历了以下几个阶段:隐丝式光学高温计阶段;用光电倍增管作为检测器的光电高温计阶段;以及用硅光电二极管、碲镉汞等作为检测器的光学测量和光电精密测温阶段。
隐丝式光学高温计出现在本世纪初,直到现在仍在高温(800℃以上)测量领域中被使用。
1927年国际温标采用此种高温计作为金点以上的温度复现及传递标准器。
它的工作原理是在峰值为650nm并在尽可能小的带宽内,使目标与钨灯灯丝的亮度平衡,灯丝消隐在目标中。
由于要人眼比较亮度平衡,手动调节灯丝电流,因此,人为误差大,不适于自动控制系统。
60年代中期,出现了用光电倍增管作为检测器的光电高温计。
它是以光电倍增管替代隐丝式光学高温计中的人眼来作亮度比较,具有较高的灵敏度和精度,且不需要人参与,因而被美国标准局NBS等国家实验室用来复现国际实用温标。
我国也曾采用此种检测元件研制成比较式的基准光电比较仪及高温计式的标准光电高温计,用以复现金点以上的国标温标及传递800~2000℃的高温实用温标。
在70年代初,Witherell和Faulhaber指出:硅光电探测器稳定性、线性度及灵敏度优良、结构牢固、寿命长、且价格适中,适合于精密光度测量,同时Ruffino在噪声和检测数据方面证明了硅光电二级管应用到高分辨率温度计的可能性。
不久,在意大利国家计量院IMGC制成了用硅光电二极管作为检测元件的高精度光电高温计。
与此同时,辐射温度计的工作波长亦从单波长逐步发展为两色(比色)和多色,从短波到长波,仪器的功能亦逐步丰富和智能化。
仪器的测量精度、响应速度、稳定性、分辨率都达到了相当高的水平,测温范围亦从以往的中高温延伸到室温或更低温度。
辐射测温技术近30年取得的主要成果有:在测温范围方面,最高可达500万摄氏度,如地下核爆炸火球温度,最低可达-170℃;灵敏度方面有的基准或标准光电高温计在金点温度已达到0.0001K,工业仪表可达0.1K;反应时间方面最快可达微秒级;最小可测目标直径为0.5mm,显微测温仪则可达0.01mm。
1.2 辐射温度法及辐射温度计辐射测温法包括亮度法(光学高温计)、辐射法(辐射高温计)和比色法(比色温度计)。
各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。
只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。
如欲测定物体的真实温度,则必须进行材料表面发射率的修正。
对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。
附加辐射的影响能提高被测表面的有效辐射和有效发射系数。
利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。
最为典型的附加反射镜是半球反射镜。
至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。
通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。
在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。
1.3 辐射温度计的主要计算公式二.亮度温度计亮度温度计是目前高温测量中应用较广的一种测温仪器,主要用于金属的冶炼、铸造、锻造、轧钢、热处理以及玻璃、陶瓷、耐火材料等工业生产过程热处理以及玻璃、陶瓷、耐火材料等工业生产过程高温计两类。
光学高温计应用历史鼓长,但必须用肉眼进行亮度平衡,因此容易带有主观误差,同时无法实现自动记录、控制和调节,受肉眼限制,测量下限为700℃。
近30年来迅速发展的光电高温计,以光电元件代替肉眼进行测量,可以弥补以上缺点。
而且光电元件的光谱比肉眼宽,进而可以扩展测温范围。
与滤光片配合,可以优选测温的波段,易避开水蒸气、二氧化碳等吸收带,使溢度计更适合于工业恶劣环境下测温。
20世纪70年代以后,开始将微处理器应用于光电高温计,使仪器钾能化和小型化,进而提高仪器测景的准确度。
2.1 测温原理亮度温度计,又称单波段温度计,是利用各种物体在不同温度下辐射的单色辐射亮度与温度的函数关系制成的。
它具有较高的准确度,可作为墓准或侧沮标准仪表用。
亮度温度计的理论基础是普朗克黑体辐射定律。
2.2 典型亮度温度计可分为光学高温计和光电高温计两类。
前者又分为工业隐丝式光学高温计、恒定亮度式光学高温计、用于科学实验精密测试的精密光学高温计和用于量值传递的标准光学高温计。
2.3 使用注意事项2.3.1 非黑体辐射的影响2.3.1.1 材料发射率的印象因素1)波长:金属的光谱发射率随着波长的增大而减小;而非金属材料包括某些金属氧化物的光谱发射率则随着波长的增大而增大。
2)温度:金属的光谱发射率随着温度的升高而增大;非金属的光谱发射率随着温度的升高而减小。
3)表面条件:通常发射率随着粗糙度和氧化程度的增加而增大。
4)发射角:发射角是指发射方向与材料表面法线的夹角。
对于发射率与发射角之间的依赖关系,金属材料要比非金属材料强。
光滑的金属表面的定向发射率随着发射角的增加而增加。
5)偏振状态:一般不会对实际测温产生很大的影响。
2.3.1.2 人造黑体空腔典型的很提空腔包括:圆筒形(带盖或不带盖)、圆锥-圆筒形(带盖或不带盖)、内凸锥形-圆筒形(带盖或不带盖)、双锥形、带盖锥形、球形2.3.1.3 发射率的计算1)多次反射理论;2)积分方程理论;3)Mont-Carlo理论。
2.3.2 工作波段的选择1)对于金属材料,它们的光谱发射率随着波长的增大而减小,因此选择短波是有利的。
2)对于大多数玻璃和某些陶瓷材料来说,它们在短波下是部分透明的,从而难以测量。
因此,选择较长的工作波长对于这些材料的准确温度测量是必须的。
3)塑料材料的光谱发射率曲线表明,它们在红外区域内的一定波长下具有峰值。
因此,工作波段应选择在峰值波长附近。
4)在低温测量中,由于辐射能量很小,所以必须要考虑大气吸收。
在一定光谱区域内,大气吸收为最小,因此常选择该区域作为工作波段进行测量。
该区域的波长范围大约是8- 145m,也称为“大气窗口”。
2.3.3 中间介质吸收的影响理论上光学高温计与被测目标间没有距离上的要求,只要求物像能均匀布满目镜视野即可。
但实际上其间的灰尘、烟雾、水蒸气和二氧化碳等对热辐射均有散射效应和吸收作用,从而使测是值偏低。
相反,外来反射光线(如日光、火焰、强的照明光等)可使测址值增加。
所以实际使用时,为减少外来光的干扰,可对温度计采用遮光装咒;为减少中间介质的吸收,光学高温计应距被测物体不宜太远,一般在1-2m内比较合适。
2.3.4 周围环境的影响工业用亮度温度计通常在10一50℃环境温度下使用,否则标准灯会受环境温度影响产生较大误差。
仪表内部可调线圈电阻也会随温度变化产生附加误差。
此外,温度计工作现场应避免有强磁场的干扰。
2.3.5 被测对象亮度温度计不宜测量反射光很强的物体;也不能测址不发光的物体。
2.3.6 其他对光电高溢计,由于标准灯和光电器件的特性有较大的分散性,使器件互换性差,因此在更换标准灯和光电器件时需要重新进行调整和分度。
另外,流过标准灯的电流方向应与分度时保持一致。
三. 比色温度计通过测量被测物体在两个不同指定波长下的光谱辐射亮度之比来实现测温的仪表,被称作比色温度计或颜色温度计。
因为实际物体的光谱发射率E入受环境的影响较大,但对同一种物体6A.与6A:比值的变化却很小,因而可以减小黑度变化、尘埃吸收及散射所产生的影响。
此外用比色温度计测得的温度较全辐射温度计和亮度温度计更接近于真实温度,且测温准确度高、响应快、可用于测址小目标的温度。
目前,比色温度计已广泛应用于冶金、水泥、玻璃等工业部门,用来测盆铁液、钢水、熔渣及回转窑中水泥等温度。
3.1 典型比色温度计单通道单光路比色温度计、单通道双光路比色温度计、双通道比色温度计四、全辐射温度计全辐射温度计是基于斯忒藩-波尔兹曼定律设计的。
其优点是接受辐射能力大,灵敏度高,坚固耐用,结构简单,价格便宜,可测较低温度并能自动显示和记录,如何毫伏计同时使用,可不用电源。
缺点是光谱通带宽,不能避开水蒸气等吸收带,因此受中间介质影响大。
4.1 测温原理全辐射高温计是根据绝对黑体在整个波长范围内的辐射出度与其温度之间的函数关系,即斯忒藩-波尔兹曼定律。
4.2 全辐射温度计的分类4.2.1根据收集辐射能方式的不同1)透镜焦距式2)反射式3)透镜-反射组合式4)双反射式4.2.2根据接收元件不同1)热电锥式2)热敏电阻式3)双金属片式4.3 使用注意事项1)发射率的影响:全辐射高温计的发射率E随物体性质、表面状态、温度和辐射条件有较大的变化,因此应尽可能准确地得知被测物体的E,或创造条件使被测物体趋近黑体性质,以便减少辐射温度与真实温度的误差,在不进行修正的情况下,直接读数。
2)环境中介质的影响:由于环境中存在的中间介质吸收辐射能,使全辐射温度计接受的辐射能减少,示值偏低,引起误差。
在通常条件下,空气对辐射能的吸收是很小的,但该值将随空气中的水蒸气及C02 含量的增加而增大。
为了减小此项误差,被测对象与物镜之间的距离最好不超过2m。
3)环境温度的影响:使用环境温度的不同,必然引起热电堆参考端温度的变化而造成测量误差。
一般当环境温度高于100℃时必须在水套中加冷水降温,否则将引起较大的误差。
4)距离系数:辐射高温计的距离系数是指被测物体到全辐射温度计之间的距离L和被测物体的直径D之比LID。
当距离系数较大时,被测物体在热电堆平面上成像太小,不能全部覆盖住热电堆的受热靶心,使热电堆接收到的辐射能减少,温度示值偏低。
当距离系数较小时,物像过大使热电堆附近的其他零件受热,参考端温度上升,也造成示值下降。
五.辐射测温的干扰分析1)光路中的干扰:一般把被测物体和辐射温度计间测量时所必须行经的路径叫做光路。
其中水蒸气,二氧化碳等气体对辐射能的吸收是有选择性的,即对某些波长的辐射能有吸收的能力,而对另一些波长的辐射能则是透明的。
这样,就减弱了入射到辐射温度计中的辐射能,造成测量误差。
2)外来光的干扰:外来光的干扰是指从其他光源入射到被测表面上并且被反射出来,混入到测量光中的成分。
3)发射率变化产生的误差:物体的发射率不仅与温度、波长有关,而且即使是同一种物质也与其表面粗糙度、锈蚀和氧化程度等因素有关。
如果对物体发射率确定有误或发射率在某一平均值附近无规则变化,都将造成测量误差。