模糊集合及其运算

合集下载

模糊数学2运算分解定理

模糊数学2运算分解定理
Question. 对于0<λ≤1, 求Aλ.
38
λ截集的性质1
性质1. 设A,B为论域X上的模糊集, λ∈[0,1],若A⊆B,则 Aλ⊆Bλ
证明: x ∈ Aλ ⇔ μA(x)≥λ A⊆B⇔∀x∈X, μB(x) ≥μA(x) ⇒μB(x)≥λ⇔ x ∈ Bλ
39
λ截集的性质2
性质2. 设A,B为论域X上的模糊集,
,当u A
0,当u A
46
1-5. 分解定理
47
三大定理
分解定理 表现定理 扩张原理
48
1-5 分解定理
分解定理是把模糊集合论的问题化 为经典集合论的问题来求解
模糊集合 水平截集
经典集合
49
分解定理Ⅰ
分解定理Ⅰ:设A为论域X上的模糊子 集, Aλ是A的λ截集,λ ∈[0,1],则 如下分解式成立:
[0,1]
A U H () [0,1]
54
分解定理Ⅲ的证明(2)
2)1 2 H (1) H (2 ) 证明:H (1) A1 A2 H (2 )
A1 A2是截集的性质
55
分解定理Ⅲ的证明(3)
3) A I H ( ) ( 0), A U H ( ) ( 1)
24
课内作业1-2
设X={a,b,c,d,e,f,g} A=0.5/b+0.4/c+1/d+0.7/f B=0.3/a+0.9/b+0.4/c+1/d+0.6/f+1/g C=1/a+0.3/b+0.6/c+0.2/d+1/f+0.6/g 求A∩B, A∪B, (A∪B)c ∩C, (A
故上式 [ ] [ 0] A(x)

模糊集合及其运算

模糊集合及其运算

40
31 0.78 110 85 0.75
50
39 0.78 120 95 0.79
60
47 0.78 129 101 0.78
70
53 0.76
由表 1可见,隶属频率随试验次数 n 的增加而呈现
稳定性,稳定值为 0.78,故有 [青年人] (27) = 0.78。
模糊统计与概率统计的区别: 模糊统计:变动的圆盖住不动的点 概率统计:变动的点落在不动的圆内
(2)随着n的增大,频率呈现稳定,此稳定值即为
u 0 对A的隶属度:
* u A 的次数 0 A ( u )lim 0 n n
例 取年龄作论域 X,通过模糊试验确定 x0= 27(岁)
对模糊集“青年人” A 的隶属度。
张南伦曾对 129 名学生进行了调查试验,要求
每个被调查者按自己的理解确定“年青人” (即 A)
0.1 0.2 0.2 B A 0.3 0.3 0.3 0.4 0.5 0.5
(3)模糊矩阵的转置
T ( a ) , 定义:设 A 称 A (aji )nm为A的 ij m n
转置矩阵。 (4)模糊矩阵的 截矩阵 定义:设 A 对任意的 称 [ 0 , 1 ], ( a ) , ij m n
1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
A0 .5
0 0 0 0 0 1 1 0 1 1
A0 .8
三、隶属函数的确定 1、模糊统计法
模糊统计试验的四个要素:
(1)论域U; (2)U中的一个固定元素 u 0 ;
* A (3)U中的一个随机运动集合 ;
~
A 称为 A 隶属函 确定了一个U上的模糊子集 A 。映射 ~ ~ ~

二、模糊计算

二、模糊计算

§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。

如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。

由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。

若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。

定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。

定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。

在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。

其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。

模糊集合

模糊集合

采用 m ax m in复合: 0 .7 0 . 5 R S 0 .7 0 .6 0.6 0.3
采用 m ax 乘积复合 : 0.49 0.30 R S 0.63 0.48 0.54 0.24
R S (2, a) max (0.4 0.9,0.2 0.2,0.8 0.5,0.9 0.7)
max (0.4,0.2,0.5,0.7) 0.7 R S (2, a) max (0.4 0.9,0.2 0.2,0.8 0.5,0.9 0.7) max (0.36,0.04,0.4,0.63) 0.63
图示:
X
1 2
R
0.4 0.2 0.8
Y
3
0.9

bell(x:20,4,50)
隶属函数的参数化:
以钟形函数为例, bell ( x; a, b, c) a,b,c,的几何意义如图所示。
1
1
x c 2b a
斜率=-b/2a
c-a
c
c+a
改变a,b,c,即可改变隶属函数的形状。
模糊隶属函数的修正(Hedges)
1 ) 压缩 (Concentrat ion)
yV
2) max - 乘积复合运算 P S ( x, z ) {( x, w), sup[( P ( x, y ) S ( y, z ))}
yV
当U,V,W是离散论域时, Sup(取上界)变成取极大运算
非同一空间模糊关系复合运算举例与图示: 举例
令X { 1,2,3}, Y { , , , }, Z {a , b} 0.1 0.3 0.5 0.7 R(X , Y ) 0.4 0.2 0.8 0.9 0.6 0.8 0.3 0.2 0.9 0.2 S (Y , Z ) 0.5 0.7 0.1 0.3 0.6 0.2

模糊集合论及其应用

模糊集合论及其应用

模糊集合论及其应用模糊集合论是一种重要的数学工具,它能够处理现实世界中的模糊、不确定和不精确的信息,具有广泛的应用前景。

本文首先介绍模糊集合论的基本概念和运算,然后探讨其在决策分析、控制理论、人工智能等领域的应用,并最后展望其未来发展方向。

一、模糊集合论的基本概念和运算1.1 模糊集合的定义在传统的集合论中,一个元素只能属于集合或不属于集合,不存在中间状态。

而在模糊集合论中,一个元素可以同时属于多个集合,并且对于不同的元素,其属于集合的程度也不同。

因此,模糊集合论将集合的概念进行了扩展,使其能够更好地描述现实世界中的不确定性和模糊性。

设X为一个非空的集合,称为全集,一个模糊集A是一个从X到[0,1]的函数,即:$$A(x):Xrightarrow[0,1]$$其中,A(x)表示元素x属于模糊集A的隶属度,取值范围为[0,1]。

当A(x)=1时,表示x完全属于A;当A(x)=0时,表示x完全不属于A;当0<A(x)<1时,表示x部分属于A。

1.2 模糊集合的运算模糊集合的运算包括模糊集合的交、并、补和乘积等。

模糊集合的交:对于两个模糊集合A和B,其交集为:$$(Acap B)(x)=min{A(x),B(x)}$$模糊集合的并:对于两个模糊集合A和B,其并集为:$$(Acup B)(x)=max{A(x),B(x)}$$模糊集合的补:对于一个模糊集合A,其补集为:$$(eg A)(x)=1-A(x)$$模糊集合的乘积:对于两个模糊集合A和B,其乘积为:$$(Atimes B)(x,y)=min{A(x),B(y)}$$其中,(A×B)(x,y)表示元素(x,y)属于模糊集合A×B的隶属度。

1.3 模糊关系和模糊逻辑在模糊集合论中,还有两个重要的概念,即模糊关系和模糊逻辑。

模糊关系是指一个元素对另一个元素的隶属度,可以用矩阵表示。

例如,设A和B是两个模糊集合,它们之间的模糊关系R可以表示为: $$R=begin{bmatrix} R_{11} & R_{12} R_{21} & R_{22}end{bmatrix}$$其中,Rij表示元素i与元素j之间的隶属度。

模糊集合的运算以及合成

模糊集合的运算以及合成

模糊集合的运算以及合成标题:模糊集合的运算与合成概述:模糊集合是一种用于处理不确定性和模糊性问题的数学工具。

它能够更好地描述现实世界中的不确定性和模糊性情况。

本文将讨论模糊集合的运算及其合成方法,并通过人类视角的叙述,使读者更好地理解和感受这一概念。

引言:在现实生活中,我们常常遇到一些模糊的问题,比如说“这个人高吗?”、“这个饭菜辣吗?”等等。

这些问题往往没有一个确定的答案,而是具有一定的不确定性。

为了更好地处理这种不确定性,人们提出了模糊集合的概念。

1. 模糊集合的运算模糊集合的运算包括交集、并集和补集。

通过这些运算,我们可以对模糊集合进行综合和分析。

1.1 交集运算交集运算是指将两个模糊集合的元素逐个比较,取其中相对较小的隶属度作为交集结果的隶属度。

例如,对于模糊集合A和B,其交集记为A∩B,其隶属度的计算公式为:μ(A∩B) = min{μA(x), μB(x)}1.2 并集运算并集运算是指将两个模糊集合的元素逐个比较,取其中相对较大的隶属度作为并集结果的隶属度。

例如,对于模糊集合A和B,其并集记为A∪B,其隶属度的计算公式为:μ(A∪B) = max{μA(x), μB(x)}1.3 补集运算补集运算是指将一个模糊集合的元素的隶属度取反,得到其补集。

例如,对于模糊集合A,其补集记为A',其隶属度的计算公式为:μ(A') = 1 - μA(x)2. 模糊集合的合成模糊集合的合成是指将多个模糊集合综合起来,得到一个新的模糊集合。

合成方法包括合取、析取和修正。

2.1 合取合成合取合成是指将多个模糊集合的隶属度进行逐个相乘,得到新的模糊集合。

例如,对于模糊集合A和B,其合取合成记为A⊗B,其隶属度的计算公式为:μ(A⊗B) = μA(x)* μB(x)2.2 析取合成析取合成是指将多个模糊集合的隶属度进行逐个相加,得到新的模糊集合。

例如,对于模糊集合A和B,其析取合成记为A⊕B,其隶属度的计算公式为:μ(A⊕B) = μA(x) + μB(x) - μA(x) * μB(x)2.3 修正合成修正合成是指将一个模糊集合的隶属度与另一个模糊集合的隶属度进行修正,得到新的模糊集合。

模糊数学第二讲 模糊集合及其运算

模糊数学第二讲  模糊集合及其运算

实际生活中有些概念并非清晰概念, 例如鲜美的食品、美丽 的景色、魁梧的身材、漂亮的服装、高个子…等等.对于这些 概念,普通集合就无能为力.
7
2014-8-15
定义1 :设U为论域,U在闭区间[0,1]上的任一映射A[0,1]称 为U上的隶属函数。 对于任意的xU,隶属函数值A(x)称为x对A的隶属度。A为论 域U上的模糊集合。
( A B) C ( A C ) ( B C )
论域:被讨论对象的全体组成的集合称为论域。
包含: AB :对于任意xA ,必有yB. 空集:若对于任意集合A,都有A,则称是任意集合A的空集.
幂集:设U是论域,U的所有子集所组成的集合称为U的幂集, 记为P(U). 例如,U={a,b,c},则
P(U)={,{a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
2014-8-15

两个模糊子集的交并运算还可以推广到任意多个 模糊集合的情形。
定义3 设At F (U ), t T , T 是指标集.u U , 规定 ( ( 称
tT tT tT
At )(u ) At (u ) sup At (u );
tT tT tT
At )(u ) At (u ) inf At (u ).
A U U , A U A,
A AC A B) c Ac B c ,
2014-8-15
( A B) c Ac B c
5
特征函数
特征函数CA(u) 表示论域U中的元素u是否属于U的子集A. 若uA, 则CA(u) =1;若 uA ,则CA(u) =0. 显然,特征函数是论域U到{0,1}的一 个映射. 例如,设U自然数组成的集合,A={1,2,3},则A的特征函数为

模糊控制02-模糊集合及其基本运算

模糊控制02-模糊集合及其基本运算

中心 如果一个模糊集的隶属度函数达到最大值的 有点的均值是一个有限值,则该均值就是模 有点的均值是一个有限值 集的中心; µ(x) 1 如果均值是正(负) 穷大,则将中心定义 所有最大隶属度值的 中最小(最大)点。
模糊集合的一些基本概念
交叉点 论域U中模糊集A的隶属度值等于0.5 论域U中模糊集A的隶属度值等于0.5的点。 0.5的点。 模糊集的高度 µ(x) 指模糊集内任意点所达到的 1 大隶属度值。 a 模糊集高度为1 模糊集高度为1时,该模糊 该模糊 称为标准模糊集。
1
supp( A) = {x ∈ U | µ A ( x) > 0}
0
模糊集合的一些基本概念
空模糊集 如果一个模糊集的支撑集为空集,则该模糊 如果一个模糊集的支撑集为空集 为空模糊集。 模糊单值 µ(x) 1 如果模糊集的支撑集仅包 则该模糊集 U中的一个点,则该模糊集 模糊单值。
模糊集合的一些基本概念
x
z
模糊集合的运算
模糊集合A 模糊集合A 和B等价 对于任意 x∈U,当且仅当µA(x)=µB(x), 当且仅当µ 当且仅当 (x), 称A和B是等价的。 模糊集合A 模糊集合A被B包含 对于任意 x∈U,当且仅当 µA(x)≤µB(x) , 当且仅当 称B包含A。 包含A
模糊集合的运算
糊集合A 糊集合A 的补集 模糊集合A 模糊集合A的补集记作 ,A ,隶属度函数为 µ A (x) = 1 − µ A (x) 糊集合A 糊集合A和B的并集 AU B 模糊集合A 模糊集合A和B的并集记作 ,隶属度函数为 µ A∪ B (x) = max[µ A ( x), µ B ( x)] 糊集合A 糊集合A和B的交集 AI B 模糊集合A 模糊集合A和B的交集记作 ,隶属度函数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 模糊集合及其运算(教材第2章)
1.1 模糊集合创立背景
1. 不兼容原理:一个系统的复杂性增大时,我们使它精确化的能力将减小,在达到一定阀值时复杂性与精确性相排斥,即高复杂性与高精度不兼容。

2. Zadeh 研究大系统遇到的问题
他经常徘徊于人脑思维-大系统-计算机三者之间,人脑对复杂大系统中许多模糊概念与模糊信息不是用是、非二值逻辑,而是用模糊逻辑。

线性的计算机是以二值逻辑{0,1}为基础,不能处理模糊信息,怎么办
为使大脑能像人脑那样处理模糊信息,必须将{0,1}扩展到[0, 1]闭区间,于是他在1965年发表了开创性论文“Fuzzy sets ”。

0 复杂性 精 确 性
图不兼容原理示意图
图人脑、电脑与大系统
举例解释模糊性与随机性两个概念的差异。

1.2 经典集合及其运算 1. 复习经典集合理论
定义: 基于某种属性的、确定的、彼此可区别的事物全体。

论域: 研究对象的全体称为论域(全域、全集、空间、话题) 元素与集合之间的关系: 属于与不属于 集合之间关系: 包含与相等
集合的基本运算: 并、交、补运算 集合的三种基本形式如下:
定义式:A B {x |x A x B }∈∈U @或(只用符合字母)
描述式:(只用文字)由属于一个集合或另一个集合的元素构成的集合称为这两个集合的并
文氏图:(只用图)
集合的直积(叉积,笛卡尔积):
两个集合A,B 的直积:A B {(x,)|x A y B }y ∆
⨯=∈∈且
注意几点:
(1) 序偶不能颠倒顺序(x, y )≠ (y, x), 因此A ×B ≠ B ×A ; (2) 直积可推广到n 个集合;
(3) 当R 为实数集,即R={x|-∞<x < +∞},R ×R={(x, y)| -∞<x<+∞,-∞<y<+∞}
称R ×R=R 2为二维欧氏空间。

2. 映射与关系
(1) 映射f :x →y;
(2) 关系:集合X ×Y 直积的一个子集R 称为X 到Y 的二元关系,简称关系; (3) 映射是关系的特例,因为f :x→y 显然{(x, y)|y=f(x)}⊂X ×Y 。

3. 集合性质
幂等律、交换律、结合律、分配律、吸收律、同一律、复原律、互补律、对偶律
0 Y
x 自变量
X (集合)
(集合) 映射f :X →Y X →x
Y →y
y 图函数关系是映射的特例
4. 集合的表示:除描述法,列举法,递推公式法之外,还有特征函数表示法
集合A 的特征函数定义为 A 1A ()0
A
x x x χ∈⎧=⎨
∉⎩
特征函数的性质:
A A A
B A B A B A B (1)()1()
(2)()max{(),()}(3)
()min{(),()}
x x x x x x x x χχχχχχχχ=-==U I
模糊集合的定义及运算
(1) 概念的内涵与外延
内涵:一个概念中包含那些区别其它概念的全体本质属性称概念的内涵,概念的内涵就是集合的定义。

外延:符合某概念的对象的全体,称为概念的外沿,概念的外延就是指集合的所有元素。

(2) 模糊概念: 在人们思维中,没有明确外沿的概念称模糊概念。

例如,高、低、大等。

(3) 模糊集定义:
图集合A 的特征函数 0
1 A (x ) 图模糊集合 的隶属函数 0
A U u 1 u 2
i A (u1 A (u2 A (ui 1[0,1] U
~
A
给定论域U 到[0,1]闭区间的映射。

: U → [0,1]
u → ()A u μ%
都确定一个模糊子集A %;A μ%称为A %的隶属度函数;()A u μ%称为u 对A %隶属度;
在不至于混淆的情况下,用()A u %
表示()A u μ%。

(4) 模糊集合的表示
① U 为有限离散的情况
Zadeh 表示法: 1212()()()
n n
A u A u A u A u u u =+++L L %%%% 序偶表示法: 1122{(,()),(,()),(,())}n n A u A u u A u u A u =L L %%%% 向量法: 12((),(),())n A A u A u A u =L L %%%%
注意:隶属度为0的元素应保留
综合法: 1212()()()(,,,)n n
A u A u A u A u u u =L L %%%% ② U 为连续的情况
()
A U
u A u
μ=⎰
%
%
(5) 模糊集合的运算
① 包含、相等的概念同普通集合 ② 并、交、补的运算
()max[(),()] [(),()]
()min[(),()] [(),()]()1()
c
A B A B A B A B A B A B A A u u u u u u u u u u u u μμμμμμμμμμ
μμ⋃⋂=∨=∧=-%%
%
%
%
%
%%%%%%%
%
@@
1
③ 模糊集合的代数运算
代数积:A B A B A B μμμ⋅==⋅g %%
%%%%
代数和:1
1
1A
B A B A B A B μμμμμμμ+++≤⎧⎪=⎨+>⎪⎩%%
%
%
%%
%
%
(6) 模糊集合的运算性质
不满足互补律,其余8条同普通集合的运算性质相同。

1.4 模糊集合与经典集合的联系
(1) 截集:{|()},01A A u u λμλλ≥≤≤%
@
%
称A A λλ%%
为的截集 强截集:{|()},01A A u u λμλλ∆
=>≤≤%%
(2) 分解定理
[]
0,1A A λλλ∈=%U ,其中 ()0 A x A x x A λλ
λλ
λμ∈⎧=⎨∉⎩
分解定理提供了用经典集合构造模糊集合的可能性,它是联系模糊数学与经典数学的纽带。

(3) 扩张原则:f :x→y 可扩展为
:()f A f A f f =%%%称的扩展 规定在扩张中保持它的隶属度函数值不变,扩张原则目的是把普通数学方法
扩展到模糊集合运算中。

隶属函数
(1) 确定隶属函数:主观性与客观性的统一 (2) 隶属函数确定方法
模糊统计法:介绍张南伦老师对“年轻”“中年”隶属函数的模糊统计方法
图模糊集合的并、交示意图 0
1 A (x) 图分解定理示意图
例证法:Zadeh提出,利用语言值对样本的询问
专家经验法
(3)凸模糊集概念:具有单峰的模糊集合称为凸模糊集。

(4)模糊分布:常见四种形式(正态分布, 型分布,戒上型分布,戒下型分
布)。

相关文档
最新文档