2014届绵阳二诊理科数学
四川省绵阳南山中学2014级高考模拟数学试题(二)(理科含答案)

OyxC .OyxD .四川省绵阳南山中学高考模拟数学试题(二)(理科)1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
满分150分,考试时间120分钟.2.答题前考生务必用0.5毫米黑色墨水签字笔填写好自己的姓名、班级、考号等信息.3.考试作答时,请将答案正确填写在答题卡上。
第一卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米的黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效............................ 第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数iz 11-=,则z 的共轭复数是( )A .11i +B .1i +C .11i- D .1i - 2.已知命题:,2lg p x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∧⌝是假命题3.执行右图所示的程序框图(其中[]x 表示不超过x 的最大整数), 则输出的S 值为( )A .4B .5C .6D .74.函数()2sin f x x x =+的部分图象可能是( )5.将函数)0)(2sin(πϕϕ<<+=x y 的图象沿x 轴向右平移8π个单位后,得到的图象关于y 轴对称,则ϕ的一个可能的值为( )A .4π-B .4π C .43π D .43π-OyxA .OyxB .6.若22nx x ⎛⎫+ ⎪⎝⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .120B .180C .45D .907.已知双曲线)0,0(1:22221>>=-b a by a x C 的离心率为2,若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( ) A .y x 82= B .y x 162= C .y x 3382=D .y x 33162= 8.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( )A .364π B .348π C .316π D .38π9.已知131<≤k ,函数k x f x --=|12|)(的零点分别为,1x 2x)(21x x <,函数|12|)(-=x x g 12+-k k的零点分别为,3x 4x )(43x x <,则)()(1234x x x x -+-的最小值为( )A .3log 2B .6log 2C .3D .110.已知,x y R ∈且⎪⎩⎪⎨⎧≥≥-≤+0034y y x y x ,则存在R θ∈,使得(4)cos sin 20x y θθ-++=的概率为( )A .18π-B .24π-C .8πD .4π第II 卷(非选择题,共100分)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分。
绵阳市高中2014级第二次诊断性考试理科综合试题参考答案及评分标准概要

绵阳市2014级第二次诊断考试物理参考答案及评分意见二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项是符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分。
有选错的得0分。
14. B 15. A 16. C 17. C 18. D 19. AD 20. BC 21. BD三、非选择题:包括必考题和选考题两部分。
(一)必考题22.(6分)(1)0.77(2分),0.76(2分);(2)C (2分)。
23.(9分)(1)R 2(2分),R 4(2分)。
(2)①左端(1分);⑤0)1(R k -(2分)。
(3)与电源串联定值电阻R 3(2分)24.(12分)解:(1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,物块Ⅰ与物块Ⅱ碰撞前速度为v 1,碰撞后共同速度为v 2,则g m m qE )(21+=μ (2分)11υm qEt = (2分)22111)(υυm m m += (2分)解得 v 2=2 m/s (1分)(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ经过C 点时圆弧段轨道对物块支持力的大小为N ,则h R =-)cos 1(θ (2分) Rm m g m m N 222121)()(υ+=+- (2分) 解得 N =18 N (1分)25.(20分)解:(1)P 、K 在外力F 作用下一起向左运动,设加速度为a ,经过时间t 长木板P 与竖直挡板MN 发生第一次碰撞,则mg F μ21= (1分) ma F 2= (1分)221at d = (2分) 解得 g a μ41=。
gd t μ22= (2分) (2)设P 与竖直挡板MN 发生第一次碰撞前速度大小为v 1,则at =1υ (1分)之后,P 向右以v 1为初速度做匀减速运动,设加速度大小为a 1,经过时间t 1速度减为零,通过的距离为x 1,向右运动到最远;K 向左以v 1为初速度做匀减速运动,设加速度大小为a 2,设在时间t 1内通过的距离为x 2,则1ma mg =μ (1分)2ma F mg =-μ (1分)111t a =υ (1分)11121t x υ= (1分) 21211221t a t x -=υ (1分) 解得 21gd μυ=,g a μ=1,g a μ212=;g d t μ21=,d x 411=,d x 832= 设在时间t 1内,K 在P 上滑动的距离为 x ,P 、K 间因摩擦产生的热量为Q ,则21x x x += (1分)mgx Q μ= (1分)解得 mgd Q μ85= (2分) (3)小物块K 对地向左做匀加速运动、向左做匀减速运动,如此交替进行,始终向左运动,对木板P 相对静止、相对向左滑动;木板P 与竖直挡板MN 碰撞后先向右做匀减速运动,后向右匀加速运动再与小物块K 相对静止的匀加速运动,与竖直挡板MN 碰撞,与竖直挡板MN 碰撞前的速度一次比一次小,最后,当P 、K 与竖直挡板MN 碰撞前速度均为零,由于mg F μ21=,小物块K 将不再运动,若K 刚好达到长木板P 的左端,此种情况木板P 长度最小。
最新2014年全国高考理科数学二模试题及答案-全国卷

最新2014年全国高考理科数学二模试题及答案-理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y +=(4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2014级高三二诊数学(理)参考答案及评分意见

( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,
绵阳市高中2014级第二次诊断性考试理科综合能力测试

秘密★启用前【考试时间:2017年1月6日上午9 : 00〜11 : 30】绵阳市高中2014级第二次诊断性考试理科综合能力测试注意事项:1. 本试卷分第I卷(选择题)和第n卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上。
2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第n卷时,将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将答题卡交回。
可能用到的相对原子质量:H 1 C 12 O 16 S 32 Cu 64 Zn 65 Ba 137第I卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
7. 化学与生产、生活和科研密切相关,下列说法错误的是A. 用菜籽油浸泡花椒制得花椒油的过程未发生化学变化B. 河水中有许多杂质和有害细菌,加入明矶消毒杀菌后可以饮用C. 把浸泡过KMnO 4溶液的硅藻土放在水果箱里可延长水果的保鲜期D. 对医疗器械高温消毒时,病毒蛋白质受热变性8. 下列关于常见有机物的说法正确的是A .乙醚和乙醇互为同分异构体B .糖类、油脂、蛋白质均能发生水解反应C.聚氯乙烯可用作生产食品包装材料的原料D .分子式为C3H8O的有机物,只有2种能发生酯化反应9. 利用右下图所示装置进行实验,将仪器a中的溶液滴入b中,根据c中所盛溶液,预测其中现象正确的是选项a b c c试管中现象A浓盐酸KMnO 4FeCI 2溶液溶液变棕黄色B稀硫酸Na2S2O3溴水产生浅黄色沉淀C硼酸Na2CO3Na2SiO3 溶液析出白色沉淀D浓硝酸铁片KI-淀粉溶液溶液变蓝色10. 从薄荷中提取的薄荷醇可制成医药。
薄荷醇的结构简式如下图,下列说法正确的是A. 薄荷醇分子式为 C 10H 200,它是环己醇的同系物 丄B. 薄荷醇的分子中至少有 12个原子处于同一平面上」 fjlC. 薄荷醇在Cu 或Ag 做催化剂、加热条件下能被02氧化为醛0HD. 在一定条件下,薄荷醇能发生取代反应、消去反应和聚合反应|人11. 用FeS 2纳米材料制成的高容量锂电池,电极分别是二硫化亚铁和金属锂,电解液是含锂 盐的有机溶剂。
最新2014年全国高考理科数学二模试题及答案-四川卷

最新2014年全国高考理科数学二模试题及答案(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k kn k n n P k C p p k n …-=-=第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED ,则sin CED ∠=( )A 、10B 、10C 、10D 、155、函数1(0,1)xy a a a a=->≠的图象可能是( )A B C D 6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
四川省绵阳市 中考数学二诊试卷含答案解析
四川省绵阳市中考数学二诊试卷一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.﹣6的绝对值是()A.﹣6 B.﹣ C.D.62.在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:编号123456789101112消费金额(元)300200400500400300600300400800300300根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为()A.400,300 B.300,400 C.400,400 D.300,3005.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥6.如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD 的度数为()A.65°B.50°C.25°D.12.5°7.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.158.下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形9.如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣10.已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限11.如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.12.如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.化简:(2a2)3=.14.如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=.15.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.16.如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC为直径作圆,则图中阴影部分的面积是.17.若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是(写出你认为正确的所有结论的序号).18.在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是.三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.20.光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球”项目的有人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.22.如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.23.一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?24.在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)25.如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y 关于x的函数解析式,并求出AN长度取值范围.四川省绵阳市中考数学二诊试卷参考答案与试题解析一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.﹣6的绝对值是()A.﹣6 B.﹣ C.D.6【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选D.2.在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2500亿有12位,所以可以确定n=12﹣1=11.【解答】解:2500亿=2.5×1011.故选A.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:编号123456789101112消费金额(元)300200400500400300600300400800300300根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为()A.400,300 B.300,400 C.400,400 D.300,300【考点】众数;算术平均数.【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵300出现了5次,出现的次数最多,∴众数是300;这组数据的平均数是:÷12=400;故选:A.5.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的正视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体侧面形状,得到答案.【解答】解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选:B.6.如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD 的度数为()A.65°B.50°C.25°D.12.5°【考点】圆周角定理;垂径定理.【分析】连接AC,根据直径AB⊥弦CD于点H,利用垂径定理得到,从而利用等弧所对的圆周角相等得到∠CAB=∠DAB,利用圆周角定理得到∠BAD=∠BAC=25°.【解答】解:连接AC,∵直径AB⊥弦CD于点H,∴∠CAB=∠DAB∵∠BAC=∠BEC=25°,∴∠BAD=∠BAC=25°.故选C.7.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.15【考点】相似三角形的应用.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,故选B.8.下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形【考点】正方形的判定;平行四边形的性质;菱形的性质;矩形的判定.【分析】根据菱形的性质判断A;根据矩形的判定判断B;根据正方形的判定判断C;根据矩形与正方形的性质判断D.【解答】解:A、菱形的四条边都相等,正确.B、一组邻边垂直的平行四边形是矩形,正确.C、对角线相等且互相垂直的四边形可能是等腰梯形,可能是正方形,错误.D、矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形,正确.故选C.9.如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣【考点】根据实际问题列二次函数关系式.【分析】由折叠性质可得AE=A′E=x、∠BEM=∠B′EM=60°、∠B=∠EB′M=90°、BE=B′E=4﹣x,继而可得BM=BM′=BEtan∠BEM=(4﹣x)、A′B′=A′E﹣B′E=2x﹣4,根据三角形面积公式即可得.【解答】解:∵∠AEF=60°,∴∠BEF=120°,由题意知,∠BEM=∠B′EM=60°,∠B=∠EB′M=90°,BE=B′E=4﹣x,∴BM=BM′=BEtan∠BEM=(4﹣x),又∵AE=A′E=x,∴A′B′=A′E﹣B′E=x﹣(4﹣x)=2x﹣4,=×A′B′×B′M,∵S△A′B′M∴y=(2x﹣4)[(4﹣x)]=﹣x2+6x﹣8,故选:A.10.已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限【考点】反比例函数与一次函数的交点问题.【分析】根据x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根即可判断A;根据一次函数图象上点的坐标特征和根与系数的关系即可求得m2﹣b2=8,即可判断B;根据勾股定理和m2﹣b2=8得出OA=,即可判断C;根据根与系数的关系求得k,判定反比例函数的位置,然后根据直线所处的位置即可判断D.【解答】解:A、∴反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x2=x1+b,∴b=x2﹣x1,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴b=x2﹣x1≠0,故正确;B、∵x2=x1+b,∴x2﹣x1=b,∴(x1+x2)2﹣4x1x2=b2,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,x1+x2=﹣m,∴m2﹣4×2=b2,∴m2﹣b2=8,故正确;C、∵点A(x1,x2),∴OA===,∵m2﹣b2=8,∴m2=,m2﹣b2=8∴OA=,∵b≠0,∴b2+4>4,∴OA=>2,故正确;D、∵反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x1x2=k,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,∴k=2,∴反比例函数在一三象限,∵一次函数y=x+b的图象一定经过一、三象限,∴y=与y=x+b图象的交点分别在第一、第三象限,故错误;故选D.11.如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.【考点】解直角三角形.【分析】作辅助线BF⊥AC,根据题目中的数据利用三角形相似和勾股定理可以分别求得BF、EF、BE的长度,本题得以解决.【解答】解:作BF⊥AC于点F,如右图所示,∵CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,DE⊥AC,∴,即,解得,BF=2AE,设AE=a,则BF=2a,∵DE⊥AC,BF⊥AC,∴△ADE∽△ABF,∴,即,得AF=2a2,∴EF=2a2﹣a,∵tan∠C=,tanC=,BF=2a,解得,CF=4a,∵CE=CF+EF,CE=5,即5=4a+2a2﹣a,解得,a=1或a=﹣2.5(舍去),∴BF=2,EF=1,∴BE=,故选C.12.如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1【考点】圆的综合题.【分析】如图,作直线AO交⊙O于P1,P2,点P在⊙O上运动,所以PA的最小值就是AP1的长,PA的最大值就是PA2的长,求出相应的AM的最小值、最大值即可解决问题.【解答】解:如图,作直线AO交⊙O于P1,P2.∵点P在⊙O上运动,∴PA的最小值就是AP1的长,PA的最大值就是PA2的长,∵∠AP1M1=∠AP2M2,∴P1M1∥P2M2,∵∠AM1P1=∠AM2P2=90°,∴A、M1、M2共线,∵OA==2,∴AP1=2﹣2,AP2=2+2,∵cos∠AP1M1=,∴sin∠AP1M1=,∴AM1=PA1•=(2﹣2),AM2=(2+2),∴M1M2=,由图象可知M1M2就是点M随着点P运动而运动且运动路径形成的圆的直径,∴该圆的半径是.故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.化简:(2a2)3=8a6.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方计算即可.【解答】解:(2a2)3=23•a2×3=8a6.14.如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=45°.【考点】平行线的性质.【分析】先根据△ABC是等腰直角三角形,∠BAC=90°求出∠B的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC是等腰直角三角形,∠BAC=90°,∴∠B=45°.∵m∥n,∴∠1=∠B=45°.故答案为:45°.15.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.【考点】几何概率.【分析】利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.【解答】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故答案为:.16.如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC为直径作圆,则图中阴影部分的面积是π﹣6.【考点】勾股定理.【分析】观察图形发现:阴影部分的面积=两个半圆的面积﹣直角三角形的面积,根据半圆面积公式和直角三角形面积公式求面积即可.【解答】解:π×(3÷2)2+π×(4÷2)2﹣4×3÷2=π+2π﹣6=π﹣6.故图中阴影部分的面积是π﹣6.故答案为:π﹣6.17.若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是①②④(写出你认为正确的所有结论的序号).【考点】实数的运算.【分析】①把2根据规定运算写成1+1代入即可得出结论正确;②由于a>b,设a=b+n(n为整数)代入规定化简即可得出结论正确;③根据规定f(a﹣b)+f(a+b)=0,再判断出f(a)≥,即可得出结论不正确;④将f(a﹣b)•f(a+b)根据规定化简得出右边,即可判断出结论正确.【解答】解:①f(2)=f(1+1)=f(1)•f(1)==2,∴①正确;②设a=b+n,n为正整数,∴f(a)=f(b)+f(n)=f(b)+nf(1)=f(b)+n>f(b),∴②正确;③∵f(a﹣b)+f(a+b)=﹣f(a)•f(b)+f(a)•f(b)=0,由②知f(a)≥f(1),∵f(1)=,∴f(a)≥≠0,∴③不正确;④∵f(a﹣b)•f(a+b)=f(a﹣b+a+b)=f(2a),∴④正确;∴正确的有①②④故答案为①②④.18.在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是(1,3).【考点】轴对称﹣最短路线问题.【分析】如图,作直线y=x+2关于x轴的对称的直线y=﹣x﹣2,过点N作直线y=﹣x﹣2的垂线垂足为E,交x轴于M,则点E坐标(1,﹣3),点E关于x轴的对称点P 坐标(1,3),可以证明点P就是所求的点.【解答】解:如图,作直线y=x+2关于x轴的对称的直线y=﹣x﹣2,过点N作直线y=﹣x﹣2的垂线垂足为E,交x轴于M,则点E坐标(1,﹣3),点E关于x轴的对称点P坐标(1,3),此时MN+MP最短,理由:∵MN+MP=MN+ME=NE,∴MN+MP最短(垂线段最短).故点P坐标为(1,3),故答案为(1,3).三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)原式利用二次根式性质,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)分式去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+﹣1+=3﹣;(2)去分母得:x2+2x﹣2x2﹣2x+4=2,即x2=2,解得:x=±,经检验x=±都为分式方程的解.20.光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10人,男生最喜欢“乒乓球”项目的有20人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)总数减去喜欢跳绳、乒乓球、羽毛球、其他的人数,即可得出喜欢“踢毽子”项目的人数,先求出男生喜欢乒乓球的人数所占的百分比,继而可得出男生最喜欢“乒乓球”项目的人数;(2)由(1)的答案可补全统计图;(3)根据男生、女生喜欢乒乓球人数所占的百分比,即可得出计该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20人;(2)补充条形统计图如右图:.(3)400×28%+450×=193,答:该校喜欢“羽毛球”项目的学生总人数为193人.21.如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.【考点】切线的判定.【分析】(1)连接OD,则∠AOD=90°,由四边形ABCD是平行四边形,则AB∥DC.从而得出∠CDO=90°,即可证出答案.(2)连接BE,则∠ADE=∠ABE根据题意得sin∠ABE=,由AB是圆O的直径求出AB的长.再在Rt△ABE中,求得AE即可.【解答】(1)证明:连接OD,则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°,∴OD⊥CD,∴CD与圆O相切;(2)连接BE,则∠ADE=∠ABE,∴sin∠ADE=sin∠ABE=,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6,在Rt△ABE中,sin∠ABE==,∴AE=5.22.如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【分析】(1)作AH⊥x轴于点H,根据等腰三角形性质及三角函数可求得点A的坐标,从而可得反比例函数解析式;(2)由反比例函数解析式及点D的纵坐标可得D的坐标,结合点A的坐标,待定系数法可求得直线AD解析式.【解答】解:(1)如图,作AH⊥x轴于点H,∵OA=2,∠AOH=45°,∴OH=AH=OAsin∠AOH=2×=,即A(,),又∵点A(,)在y=图象上,∴m=×=2,∴反比例函数解析式是y=;(2)∵点D的纵坐标为,且点D在双曲线y=上,∴其横坐标为2,即D(2,),设直线AD解析式为:y=kx+b,将点A(,)、D(,2)代入得:,解得:,∴直线AD的解析式为y=﹣x+.23.一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据:第3个月的产量=前2条生产线改造后的产量和+后3条生产线未改造的产量和,列式计算可得;(2)当1≤x≤6时,根据(1)中相等关系可列函数关系式;当x>6时,总产量=改造后每条生产线的产量×生产线数量;(3)根据前6个月的总盈利=一台机器的盈利×前6个月的生产量﹣改造升级的总费用,计算出前6个月的总盈利,再计算出不升级改造的总盈利可得x>6,继而根据:该厂的盈利扣除生产线改造升级费用后的盈利总金额≥同样时间内生产线不作改造升级时的盈利总额,列出不等式即可得x的范围.【解答】解:(1)由已知可得,第3个月的产量是:2×500×(1+20%)+500×3=2700(台),答:该厂第3个月的产量是2700台.(2)①当1≤x≤6时,每月均有一条生产线在停产改造,即均是有5条生产线在生产,其中,升级后的生产线有x﹣1条,未升级的生产线有6﹣x条,根据题意,得:y=(x﹣1)×500×(1+20%)+(6﹣x)×500=100x+2400;②当x>6时,y=500×(1+20%)×6=3600台;综上,y=.(3)由(2)得,当1≤x≤6时,y=100x+2400,则前6个月的总产量Q=100×(1+2+3+4+5+6)+2400=16800(台),∴前6个月的盈利扣除改造升级的成本应是:16800×0.04﹣30×6=480(万元),如果不升级改造,前6个月盈利应是:500×6×6×0.04=720(万元),故前6个月不符合题目要求,从而得x>6,则有:480+(x﹣6)×3600×0.04≥500×6x×0.04,解得:x≥16,答:至少要到第16个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额.24.在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M 为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)由菱形性质得AC⊥BD,由已知得出∠CEB=∠CBE,由MF⊥BE,得出∠BOE=∠BFM,即可得出结论;(2)作MP∥AC于BE交于点P,与OB交于点Q,由△BOE∽△MFB,得出∠EBO=∠FMB,证出tan∠OCB==,由平行线的性质得出∠MPB=∠CEB=∠CBE,∠MQN=90°,=,证出△MBP为等腰三角形,由等腰三角形的三线合一性质得出BF=FP,∠PMF=∠BMF=∠PBQ,证得△PBQ∽△NMQ,由对应边成比例得出比例式即可求出结果.【解答】(1)证明:∵AC、BD是菱形ABCD的对角线,∴AC⊥BD,∴∠BOE=90°,∵CE=CB,∴∠CEB=∠CBE,∵MF⊥BE,∴∠BFM=90°,∴∠BOE=∠BFM,∴△BOE∽△MFB;(2)解:作MP∥AC与BE交于点P,与OB交于点Q,如图所示:由△BOE∽△MFB,∴∠EBO=∠FMB,∵BD=AC,∴OB=OC,∴tan∠OCB==,∵MP∥AC,∴∠MPB=∠CEB=∠CBE,∠MQN=90°,=,∴△MBP为等腰三角形,∵MF⊥BE,∴BF=FP,∠PMF=∠BMF=∠PBQ,∵∠MQN=∠BQP=90°,∴△PBQ∽△NMQ,∴===,∴MN=BP=×2BF=3BF=3a.25.如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y 关于x的函数解析式,并求出AN长度取值范围.【考点】二次函数综合题.【分析】(1)根据抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B (0,8),可以求得b、c的值,从而可以得到函数的解析式;(2)由∠BAO=α,要求tan的值,只要从图中可以找到等于的角即可,过点C 作CH⊥x轴于点H,只要证明∠BAC=∠HAC即可,根据题目中的信息,可以证明这两个角相等,从而可以求得tan的值;(3)要想求y与x之间的函数关系式,只要作出合适的辅助线,用题目中的数量关系可以表示出y与x之间函数关系.进而可以确定y的取值范围.【解答】解:(1)∵抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8),∴,解得,,即抛物线的解析式为:y=﹣x2+x+8;(2)如图1所示,过点C作CH⊥x轴于点H,∵点C(4,m)在抛物线上,∴,得m=5,∴点C(4,5),又∵点A(﹣6,0),点B(0,8),∴AB=,BC=,∵CH=5,AH=AO+OH=6+4=10,AC=AC,∴AB=AH,BC=HC,∴△ABC≌△AHC,∴∠BAC=∠HAC,∵∠BAO=∠BAC+∠HAC,∴∠HAC=,∴tan;(3)如图2,作MQ⊥AB于点Q,∵∠NMO=∠PMN+∠PMO=∠BAO+∠ANM,又∵∠PMN=∠BAO,∴∠PMO=∠ANM,∵CH∥EO,在图1中,,∴OE=,∵BD=8﹣5=3,∴OE=OB﹣BD﹣OE=8﹣3﹣3=2,∵点P横坐标为x,即PD=x,∴tan∠EMO=tan∠DPE=,∴,即,得OM=,∴AM=OA﹣OM=6﹣,在Rt△QAM中,sin∠QAM=,cos∠QAM=,∴QM=AM•sin∠QAM=(6﹣),AQ=AM•cos∠QAM=,∵在Rt△QNM中,,即QN=QM,∴AN=AQ+QN=,化简,得=,∴当x=时,y取得最大值,∵y>0,∴AN的取值范围是:0.2017年3月12日。
2017绵阳市第二次诊断数学(理)答案
绵阳市高2014级第二次诊断性考试数学(理工类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BACAB CCDAD CB 二、填空题:本大题共4小题,每小题5分,共20分.13.-1114.3215.5316.55三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ) 令n n n a a c -=+1,则n n c c -+1=(12++-n n a a )-(n n a a -+1)=1212=+-++n n n a a a (常数),2121=-=a a c ,故{a n +1-a n }是以2为首项,1为公差的等差数列. ………………………4分 (Ⅱ)由(Ⅰ)知1+=n c n , 即a n +1-a n =n +1, 于是11211)()()(a a a a a a a a n n n n n +-+-+-=-- 2)1(12)2()1(+=+++-+-+=n n n n n , …………………………8分 故)111(2)1(21+-=+=n n n n a n . ∴ S n =2(1-21)+2(21-31)+2(31-41)+…+)111(2+-n n =2(111+-n )=12+n n . ………………………………………………………………12分 18.解:(Ⅰ) ∵a c 2=,∴ 由正弦定理有sin C =2sin A . …………………………………………2分 又C =2A ,即sin2A =2sin A ,于是2sin A cos A =2sin A , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分(Ⅱ)根据已知条件可设21+=+==n c n b n a ,,,n ∈N *. 由C =2A ,得sin C =sin2A =2sin A cos A ,∴ acA C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得acbc a c b 22222=-+, 代入a ,b ,c 可得nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. ………………………………12分19.解:(Ⅰ)由已知有1765179181176174170=++++=x ,6656870666462=++++=y ,2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b=3727≈0.73, 于是17673.066ˆˆ⨯-=-=b a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y=72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分 20.解:(Ⅰ) 设椭圆C 的焦半距为c ,则c =6,于是a 2-b 2=6.由12222=+b y a c ,整理得y 2=b 2(1-22a c )=b 2×222a c a -= 24a b ,解得y =a b 2±,∴ 222=ab ,即a 2=2b 4, ∴ 2b 4-b 2-6=0,解得b 2=2,或b 2=-23(舍去),进而a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程:⎪⎩⎪⎨⎧+==+,,112822ty x y x消去x 得:072)4(22=-++ty y t , ∴ y 1+y 2=422+-t t ,y 1y 2=472+-t . ………………………………………7分于是482)(22121+=++=+t y y t x x , 故线段PQ 的中点)444(22+-+t tt D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k ,即t t t t y -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,. 又△NPQ 是等边三角形,∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t , 解得102=t ,10±=t , …………………………………………………11分 ∴ 直线l 的方程是0110=-±y x . ………………………………………12分 21.解:(Ⅰ)222221)(xm x x x m x f -=+-=', ……………………………………1分 ①m ≤0时,)(x f '>0,)(x f 在)0(∞+,上单调递增,不可能有两个零点. …………………………………………………………2分②m >0 时,由0)(>'x f 可解得m x 2>,由0)(<'x f 可解得m x 20<<, ∴ )(x f 在)20(m ,上单调递减,在)2(∞+,m 上单调递增,于是)(x f min =)2(m f =12ln 212-+m m m , ……………………………………4分 要使得)(x f 在)0(∞+,上有两个零点, 则12ln 212-+m m m <0,解得20em <<,即m 的取值范围为)20(e,. ………………………………………………5分(Ⅱ)令x t 1=,则11ln 21)1(--=x x m x f 1ln 2--=t mt , 由题意知方程1ln 2--t mt =0有两个根t 1,t 2, 即方程tt m 22ln +=有两个根t 1,t 2,不妨设t 1=11x ,t 2=21x .令tt t h 22ln )(+=,则221ln )(t t t h +-=', 由0)(>'t h 可得e t 10<<,由0)(<'t h 可得et 1>, ∴ )10(e t ,∈时,)(t h 单调递增,)1(∞+∈,et 时,)(t h 单调递减.故结合已知有 t 1>e1>t 2>0. ……………………………………………………8分要证e x x 21121>+,即证et t 221>+,即e t e t 1221>->. 即证)2()(21t eh t h -<. …………………………………………………………9分令)2()()(x eh x h x --=ϕ,下面证0)(<x ϕ对任意的)10(ex ,∈恒成立.22)2(21)2ln(21ln )2()()(x ex e x x x e h x h x ----+--=-'+'='ϕ.………………………10分 ∵ )10(ex ,∈,∴ 22)2(01ln x ex x -<>--,,∴ )(x ϕ'22)2(21)2ln()2(21ln x e x e x e x ----+--->=2)2(22)2(ln x ee x x --+--. ∵ )2(x e x -<221]2)2([ex e x =-+,∴ )(x ϕ'>0,∴ )(x ϕ在)10(e ,是增函数,∴ )(x ϕ<)1(eϕ=0,∴ 原不等式成立.……………………………………………………………12分22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x . 设Q (ααsin cos 3,),则M (ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t =2时,21)(-+-=x x x f .若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x >25. ∴ 不等式2)(>x f 的解集为{x | x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x )= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x ,显然g (x )min =g (1)=t -2. 当1<x <t 时,g (x )=t -1-x ,此时g (x )>g (1)=t -2. 当t ≤x ≤3时,g (x )=x -t -1,g (x )min =g (1)=t -2. ∴ 当x ∈[1,3]时,g (x )min = t -2. 又∵ t ∈[1,2],∴ g (x )min ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. ……………………………………………10分。
2014届绵阳二诊理科数学【含答案详解】A3版
绵阳市高2011级第二次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.BDCDA AACCB二、填空题:本大题共5小题,每小题5分,共25分.11.12.1 13.4 1415.②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.解:(Ⅰ)f(x)=a•b=2sin2x+2sin x cos x=22cos12x-⨯+sin2xsin(2x-4π)+1,………………………………3分由-2π+2kπ≤2x-4π≤2π+2kπ,k∈Z,得-8π+kπ≤x≤83π+kπ,k∈Z,∴f(x)的递增区间是[-8π+kπ,83π+kπ]( k∈Z).…………………………6分(II)由题意g(xsin[2(x+6π)-4πsin(2x+12π)+1,…………9分由12π≤x≤127π得4π≤2x+12π≤45π,∴0≤g(x),即g(x)+1,g(x)的最小值为0.…12分17.解:(I)设等比数列{a n}的公比为q,由题知a1=12,又∵S1+a1,S2+a2,S3+a3成等差数列,∴2(S2+a2)=S1+a1+S3+a3,变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3,∴32q=12+q2,解得q=1或q=12,…………………………………………4分又由{a n}为递减数列,于是q=12,∴a n=a11-n q=(12)n.……………………………………………………6分(Ⅱ)由于b n=a n log2a n=-n∙(12)n,∴()211111[1+2++1]2222n nnT n n-=-⋅⋅-⋅+⋅()()(),于是()211111[1++1]2222n nnT n n+=-⋅-⋅+⋅()()(),两式相减得:2111111[()++()]22222n nnT n+=--⋅+()111[1()]122=212nnn+⋅--+⋅-(),∴()12()22nnT n=+⋅-.∴21()22n n T n +=+≥116,解得n ≤4, ∴ n 的最大值为4. …………………………………………………………12分18.解:(I )∵ 抽到持“应该保留”态度的人的概率为0.05,∴3600120x+=0.05,解得x =60. ………………………………………………2分 ∴ 持“无所谓”态度的人数共有3600-2100-120-600-60=720. ……… 4分∴ 应在“无所谓”态度抽取720×3603600=72人. ………………………… 6分(Ⅱ)由(I )知持“应该保留”态度的一共有180人,∴ 在所抽取的6人中,在校学生为6180120⨯=4人,社会人士为618060⨯=2人, 于是第一组在校学生人数ξ=1,2,3, …………………………………… 8分P (ξ=1)=12423615C C C =,P (ξ=2)=21423635C C C =,P (ξ=3)=30423615C C C =, 即ξ的分布列为:∴ E ξ=1×15+2×35+3×15=2. …………………………………………… 12分 19.(I )证明:如图,作 FG ∥EA ,AG ∥EF ,连结EG 交AF 于H ,连结BH ,BG ,∵ EF ∥CD 且EF =CD , ∴ AG ∥CD ,即点G 在平面ABCD 内. 由AE ⊥平面ABCD 知AE ⊥AG , ∴ 四边形AEFG 为正方形, CDAG为平行四边形, …………………………………………………… 2分∴ H 为EG 的中点,B 为CG 中点, ∴ BH ∥CE ,∴ CE ∥面ABF .……………………………………………………………… 4分 (Ⅱ)证明:∵ 在平行四边形CDAG 中,∠ADC =90º, ∴ BG ⊥AG .又由AE ⊥平面ABCD 知AE ⊥BG , ∴ BG ⊥面AEFG ,∴ BG ⊥AF .…………………………………………………………………… 6分 又∵ AF ⊥EG , ∴ AF ⊥平面BGE ,∴ AF ⊥BE .…………………………………………………………………… 8分(Ⅲ)解:如图,以A 为原点,AG 为x 轴,AE 为y 轴,AD 为z 轴建立空间直角坐标系A -xyz . 则A (0,0,0),G (1,0,0),E (0,0,1),D (0,2,0),设M (1,y 0,0),∴ (021)ED =- ,,,0(12)DM y =- ,,0, 设面EMD 的一个法向量()x y z =,,n ,则020(2)0ED y z DM x y y ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,,n n 令y =1,得022z x y ==-,, ∴0(212)n y =-,,.………………………………………………………… 10分又∵ AE AMD ⊥面,∴ (001)AE =,,为面AMD 的法向量,∴cos cos6|<n>|AE π===,, 解得02y =, 故在BC 上存在点M ,且|CM |=|2(23-±|=3.………………………12分 20.解:(I )设椭圆的标准方程为12222=+bx a y (a >b >0),焦距为2c ,则由题意得 c =3,24a , ∴ a =2,222b a c =-=1,∴ 椭圆C 的标准方程为2214y x +=. ……………………………………… 4分∴ 右顶点F 的坐标为(1,0).设抛物线E 的标准方程为22(0)y px p =>, ∴1242pp ==,, ∴ 抛物线E 的标准方程为24y x =. ………………………………………… 6分(Ⅱ)设l 1的方程:(1)y k x =-,l 2的方程1(1)y x k =--,11()A x y ,,22()B x y ,,33()G x y ,,44()H x y ,, 由2(1)4y k x y x =-⎧⎨=⎩,,消去y 得:2222(24)0k x k x k -++=, ∴ x 1+x 2=2+24k ,x 1x 2=1. 由21(1)4y x ky x ⎧=--⎪⎨⎪=⎩,,消去y 得:x 2-(4k 2+2)x +1=0, ∴ x 3+x 4=4k 2+2,x 3x 4=1,……………………………………………………9分 ∴ ()()AG HB AF FG HF FB ⋅=+⋅+=FB FG HF FG FB AF HF AF ⋅+⋅+⋅+⋅=||·||+||·|| =|x 1+1|·|x 2+1|+|x 3+1|·|x 4+1|=(x 1x 2+x 1+x 2+1)+(x 3x 4+x 3+x 4+1) =8+2244k k+ ≥8+22442k k⋅ =16.当且仅当2244k k=即k =±1时,⋅有最小值16.……………………13分 21.解:(I )∵[0)x ∈+∞,时,2()(1)2x af x e x =-,∴ 2()(1)2x af x e x ax '=--+.由题意,)(x f '≥0在[0)+∞,上恒成立,当a =0时,()x f x e '=>0恒成立,即满足条件.当a ≠0时,要使)(x f '≥0,而e x >0恒成立,故只需212ax ax --+≥0在[0)+∞,上恒成立,即⎪⎪⎩⎪⎪⎨⎧≥+⋅-⋅->-,,01002022a a a解得a <0. 综上,a 的取值范围为a ≤0.……………………………………………… 4分 (Ⅱ)由题知f (x )≤x +1即为x e -22xa x e ≤x +1. ①在x ≥0时,要证明x e -22xa x e ≤x +1成立, 只需证x e ≤212x a x e x ++,即证1≤212x a x x e++, ① 令21()2x a x g x x e+=+,得21(1)()()xxx xe x e x g x ax ax e e ⋅-+'=+=-, 整理得)1()(xe a x x g -=', ∵ x ≥0时,1xe ≤1,结合a ≥1,得)(x g '≥0, ∴ ()g x 为在[0)+∞,上是增函数,故g (x )≥g (0)=1,从而①式得证.②在x ≤0时,要使x e -22xa x e ≤x +1成立, 只需证x e ≤212x a x e x -++,即证1≤22(1)2x x ax e x e --++, ② 令22()(1)2xx ax m x e x e --=++,得2()[(1)]x x m x xe e a x -'=-+-,而()(1)x x e a x ϕ=+-在x ≤0时为增函数, 故()x ϕ≤(0)1a =-ϕ≤0,从而()m x '≤0,∴ m (x )在x ≤0时为减函数,则m (x )≥m (0)=1,从而②式得证. 综上所述,原不等式x e -22xa x e ≤x +1即f (x )≤x +1在a ≥1时恒成立.…10分 (Ⅲ)要使f (x 0)>x 0+1成立,即1202000+>-x e x a e x x , 变形为02001102x ax x e++-<, ③要找一个x 0>0使③式成立,只需找到函数21()12x ax x t x e+=+-的最小值,满足min ()0t x <即可.∵ 1()()xt x x a e '=-, 令()0t x '=得1x e a=,则x =-ln a ,取x 0=-ln a , 在0< x <-ln a 时,()0t x '<,在x >-ln a 时,()0t x '>,即t (x )在(0,-ln a )上是减函数,在(-ln a ,+∞)上是增函数, ∴ 当x =-ln a 时,()t x 取得最小值20()(ln )(ln 1)12at x a a a =+-+- 下面只需证明:2(ln )ln 102aa a a a -+-<在01a <<时成立即可.又令2()(ln )ln 12ap a a a a a =-+-, 则21()(ln )2p a a '=≥0,从而()p a 在(0,1)上是增函数,则()(1)0p a p <=,从而2(ln )ln 102aa a a a -+-<,得证.于是()t x 的最小值(ln )0t a -<,因此可找到一个常数0ln (01)x a a =-<<,使得③式成立.………………14分。
绵阳市2014级二诊模拟(四)
绵阳市2014级二诊模拟(四)第Ⅰ卷(选择题,每小题6分,选对不全得3分,共42分)1、下列说法正确的是( )A .奥斯特发现电流磁效应并提出分子环形电流假说B .牛顿是国际单位制中的基本单位C .万有引力定律只适用像天体这样质量很大的物体D .物体惯性的大小只由物体的质量决定2、一位同学的质量为50kg ,乘坐电梯从六楼下到一楼的过程中,其v -t 图象如图所示,g 取10m/s 2.下列说法正确的是( ) A.前2s 内该同学处于超重状态B.该同学在10s 内通过的位移大小是17mC.该同学在10s 内平均速度大小是1m/sD.在第10s 内,该同学对电梯底面的压力大小为520N3、如图所示,通电金属棒MN 用两段绝缘细线悬吊在垂直纸面向里的匀强磁场中,金属棒MN 处于水平,电流方向由M →N ,此时悬线的拉力不为零,要使悬线的拉力变为零,可采用的办法是( ) A.将磁场方向反向,并适当增大磁感应强度B.将磁场方向反向,并适当减小磁感应强度C.适当增大电流强度D.将电流方向反向4、2012年9月采用一箭双星的方式发射了“北斗导航卫星系统”(BDS )系统中的两颗圆轨道...半径均为21332km 的“北斗-M5”和“北斗-M6”卫星,其轨道如图所示。
关于这两颗卫星,下列说法正确的是( ) A .两颗卫星绕地球运行的向心加速度大小相等B .两颗卫星绕地球的运行速率均大于7.9km/sC .北斗-M5绕地球的运行周期大于地球的自转周期D .北斗-M6绕地球的运行速率大于北斗-M5的运行速率5、如图所示,直线MN 是某个点电荷形成的电场中的一条电场线(方向末画出)。
虚线是一带电的粒子只在电场力的作用下,由a 到b 的运动轨迹,轨迹为一曲线。
粒子重力不计。
下列判断正确的是( ) A.电场线MN 的方向一定是由M 指向NB.带电粒子在a 点的加速度一定大于在b 点的加速度C.带电粒子在a 点的速度一定大于在b 点的速度D.带电粒子在a 点的电势能一定大于在b 点的电势能6、如图所示,半圆形凹槽的半径为R ,O 点为其圆心。