函数逼近基本概念
常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
函数逼近

第3章 函数逼近
设函数 f ( x ) C[a, b] ,集合
H n span 1, x , x ,
2
,x
n
如果存在 p( x ) H n,满足 max f ( x ) p( x ) En
a xb
其中 En min max f ( x ) pn ( x )
pn ( x )H n a x b
a n
b k 0 k k a k
f ( x) S( x)
b a
k
( x ) ( x )dx 0 k 0,1,
21
,n
数值分析
第3章 函数逼近
Th
设给定节点 f ( x ) C[a, b],则其最佳平方逼近
唯一存在,且可以由前述 Gram 组成的方程组求解构造。
注:
组成的交错点组。
Chebyshev定理给出了最佳一致逼近多项式满足的性质
10
数值分析
第3章 函数逼近
f ( x )有唯一 设函数 f ( x ) C[a, b] ,则在 H n 中, 的最佳一致逼近多项式 P ( x ) 。
Th
(存在唯一性)
Th
(最佳一致逼近多项式的一种求法)
( n1)
[a , b]上不 设 f ( x ) 在[a , b]上有n+1阶导数, f ( x) 在 p( x ) H n 是 f ( x ) 的最佳一致逼近多项式,则: 变号, [a , b]的端点属于f ( x ) p( x ) 的交错点组。
n j 0
是[a,b]上的一个线性无
关函数系,且 j ( x) C[a, b] , ( x ) 为[a,b]上的一个权函数。 如果存在一组系数 使得广义多项式 满足
数学中的函数逼近与插值

数学中的函数逼近与插值数学中的函数逼近与插值是一门重要的数学分支,通过近似求解函数与数据之间的关系,可以快速计算和预测未知的数值。
本文将介绍函数逼近与插值的基本概念和方法,并探讨其在实际应用中的价值和意义。
一、函数逼近函数逼近是指通过一系列已知的数据点来建立一个近似的函数模型,以便于计算和预测未知的数值。
在实际应用中,我们经常需要使用函数逼近来处理大量的数据,从而节省计算和存储资源。
1.1 最小二乘法最小二乘法是函数逼近的常用方法,它通过最小化实际观测数据与模型预测值之间的误差平方和,来确定函数逼近的参数。
最小二乘法可以应用于线性和非线性函数逼近,是一种广泛使用的数学工具。
1.2 插值法插值法是函数逼近的一种常见技术,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。
插值法可以根据数据点的特点选择不同的插值多项式,如拉格朗日插值、牛顿插值等。
插值法在图像处理、信号处理等领域有广泛应用。
二、函数插值函数插值是指通过已知的数据点来构建一个连续的函数模型,以便于在任意位置计算函数值。
函数插值在数学、计算机科学和工程领域具有重要的应用价值。
2.1 插值多项式插值多项式是函数插值的一种常用方法,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。
插值多项式可以使用拉格朗日插值、牛顿插值等方法进行构造,这些方法在实际应用中具有较好的效果。
2.2 样条插值样条插值是一种更加精确和平滑的插值方法,它通过已知的数据点构建一系列分段连续的多项式函数,以逼近未知的函数模型。
样条插值可以解决插值多项式在几点处不光滑的问题,常用的样条插值方法有线性样条插值、二次样条插值和三次样条插值等。
三、函数逼近与插值在实际应用中的意义函数逼近与插值在科学研究和工程实践中具有广泛的应用,对于大数据处理、数值计算和机器学习等领域具有重要的作用和意义。
3.1 数据拟合与预测函数逼近与插值可以通过已知的数据点建立一个模型,从而对未知的数据进行拟合和预测。
函数逼近理论

函数逼近理论函数逼近是数学中研究近似计算方法的重要分支,它通过寻找一个接近所需函数的近似函数来简化复杂的计算问题。
函数逼近理论涵盖了多项式逼近、三角函数逼近、最小二乘逼近等各种方法。
本文将从数学背景、函数逼近的原理和应用领域三个方面进行讨论。
一、数学背景在了解函数逼近理论之前,我们需要回顾一些数学背景知识。
首先,我们要了解函数及其性质的概念。
函数是一种将一个集合中的元素映射到另一个集合中元素的规则,常用来描述数学、物理和工程问题。
其次,我们要熟悉多项式的性质。
多项式是由常数和变量的乘积相加而成的表达式,其具有高度的可控性和计算性能。
最后,我们需要了解一些数学分析工具,如泰勒级数展开和傅里叶级数展开等。
二、函数逼近的原理函数逼近的核心思想是通过构造一个近似函数,在一定范围内保持与所需函数的接近程度。
常用的函数逼近方法包括最小二乘逼近、插值逼近和曲线拟合等。
最小二乘逼近是一种基于最小化残差平方和的方法。
其基本思想是通过寻找一个多项式函数,使得所需函数与多项式函数的差异最小化。
这种逼近方法在实际问题中应用广泛,如信号处理、数据拟合等领域。
插值逼近是一种通过在给定数据点上构造插值多项式来逼近函数的方法。
插值多项式与原函数在数据点处相等,通过连接这些数据点构造出一个逼近函数。
插值逼近在图像处理、数值计算和计算机图形学等领域具有重要应用。
曲线拟合是一种寻找一条曲线与给定数据集最匹配的方法。
常用的曲线拟合方法包括多项式拟合、指数拟合和对数拟合等。
曲线拟合方法在统计学、经济学和物理学等领域具有广泛应用。
三、函数逼近的应用领域函数逼近理论在数学和工程领域中有着广泛的应用。
在数学领域,函数逼近可用于求解复杂的数学问题,如微积分、方程求解等。
在工程领域,函数逼近可用于优化算法、信号处理、图像处理等领域。
在优化算法中,函数逼近可用于近似解决无法求得精确解的优化问题。
通过构造一个逼近函数,可以减少计算量和提高计算效率,从而更好地解决实际问题。
函数逼近基本概念

如 果 存 在 不 全 为 零 的 数 1,2,L,nP,使 得
1x12x2Lnxn0,
( 1.1)
则 称 x1,x2,L,xn线 性 相 关 . 否 则 ,称 x1,x2,L,xn线 性 无 关 .
若 x1,x2,L,xn线 性 无 关 , 且 对 任 意 xS,都 有
x1x12x2Lnxn
则 记 Sspan{x1,x2, L,xn}
(2)(u,v)(u,v), R;
(3) (uv,w)(u,w)(v,w), u,v,wX; (4) (u,u)0,当且仅u当 0时(, u,u)0. 则称 (u,v)为X上的 u与v的内积 . 定义了内积的 称线 为内积空 . (v,间 u )为 (u)的 ,v 共 K 轭 R 时 (v,, u ) (u当 ),.v
并x称 1,x2,,xn为空 S的 间 一组基 S为 , n维 称 空 空 间
有 序 1,数 2,,组 n称 为 x在 元 x1,x2,素 ,xn这 个 基,下 的 并 记 1,作 2,,( n)
如S 果 中有无限个素 线, 性S 则 无 为称 关 无元 限维线性空
例 p ( x ) : H n { a n x n 设 a 1 x a 0 |a n R } 则p(x)anxna1xa0 又1,x, ,xn线性无关
故 H n sp, ax , n, { x n } 1H ,n 维n 数 1 . 为
对连续函数f(x)∈C[a, b],它不能用有限个线性无关的 函 数 表 示 , 故 C[a, b] 是 无 限 维 的 , 但 它 的 任 一 元 素
f(x)∈C[a, b]均可用有限维的p(x)∈ H n 逼近,使误差
函数类 B 通常是 n 次多项式,有理函数或分段低次多项式。
计算方法-最佳一致逼近多项式-切比雪夫多项式

xn )
|
要使 max 1 x 1
|
(x
x0 )(x
x1) … (x
xn )
|
取极小值, 只需令:
(x x0 )(x x1) … (x xn)
1 2n
Tn1(x),
最佳一致 逼近0的 多项式
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagrange插值多项式Ln(x)的节点取为Tn1(x) 的0点 :
最佳一致逼近多项式
§3 最佳一致逼近多项式
一、基本概念及其理论
不超过n次的实系 数多项式的全体
本节讨论f(x) C[a, b], 求多项式pn* (x) Hn , 使得误差
||
f(x)
pn* (x)
||
min
pn Hn
||
f(x)
pn(x)
||
此即所谓最佳一致逼近 或切比雪夫逼近问题 。
Hn
设f(x) Cn1[a, b], 则函数通过变换
x a b b a t, 1 t 1
2
2
化为
f(x)
f(a b 2
b 2
a t)
g(t)
针对g(t) 使用定理7
例如:为将[0, 1] [-1, 1],可以令:
则
x
0
2
1
1 0 2
t
1 (t 2
1)
f(x) f(1 (t 1)) g(t) , 1 t 1. 2
f(x)
p(x)
|
可以证明存在唯一的(a*0 , a1* , … , an* ), 使得
(a*0 , a1* , … , an* )
min{max
函数逼近
第七章 函数逼近用简单的函数p (x )近似地代替函数f (x ),是计算数学中最基本的概念和方法之一。
近似代替又称为逼近,函数f (x )称为被逼近的函数,p (x )称为逼近函数,两者之差)()()(x p x f x R -=称为逼近的误差或余项在计算数学里,所谓简单的函数主要是指可以用加、减、乘、除四则运算进行计算的函数,如有理分式函数、多项式等。
由于多项式最简单,计算其值只需用到加、减与乘三种运算,且求其微分和积分都很方便,所以常用它来作为逼近函数,而被逼近的函数f (x )一般是一个比较复杂的不易计算的函数或以表格形式给出的函数。
第六章介绍的插值法实际上也是函数逼近的一种方法。
不过,它要求函数p (x )与f (x )在节点处具有相同的函数值 (甚至要求有相同的导数值),但在非节点处,p (x ) 虽然有可能很好地逼f (x ),但也可能使逼近f (x ) 的误差很大,如果实际问题要求p (x )在区间[a , b ] 上每一点都“很好”地逼近的话,用插值多项式p (x ) 去逼近f (x )有时就要失败,所谓龙格现象,就是典型一例。
大家知道,用f (x )的泰勒(Taylor)展开式)()()!1()()(!)()(!2)())(()()(010)1(00)(200000之间与在x x x x n f x x n x f x x x f x x x f x f x f n n n n ξξ++-++-++-''+-'+=Λ的部分和去逼近函数f (x ),也是常用的方法。
这种方法的特点是:x 越接近于x 0,误差就越小,x 越偏离x 0,误差就越大。
若要使这种逼近在整个所讨论的区间上都达到精度要求,则需取很多项,这样,计算工作量就大大增加。
因此,如何在给定精度下,求出计算量最小的近似式,这就是函数逼近要解决的问题,这个问题的一般提法是:对于函数类A 中给定的函数f (x ),要求在另一类较简单的且便于计算的函数类B (⊂ A )中寻找一个函数p (x ),使p (x )与f (x )之差在某种度量意义下最小。
函数近似与逼近理论教案
函数近似与逼近理论教案一、简介函数近似与逼近是数学中的重要概念和方法。
它涉及到函数的逼近问题,旨在通过一系列逼近函数来接近原函数。
本教案将介绍函数近似与逼近的基本理论和方法,并通过案例演示实际应用。
二、函数近似的基本概念1. 函数逼近的概念函数逼近是指通过一系列逼近函数来接近原函数的过程。
原函数可以是已知函数或未知函数,逼近函数可以是多项式、三角函数等。
2. 最小二乘逼近最小二乘逼近是一种常见的函数逼近方法,通过调整逼近函数的参数,使得逼近函数与原函数的残差的平方和最小。
三、函数逼近的方法和技巧1. 查表法查表法是一种简单而实用的函数逼近方法,通过查找已知函数表格中的数值,来逼近原函数的值。
2. 插值法插值法是一种通过已知函数值来逼近未知函数值的方法,常用的插值方法有拉格朗日插值和牛顿插值。
3. 最小二乘逼近法最小二乘逼近法通过调整逼近函数的参数来最小化残差的平方和,常用的最小二乘逼近方法有多项式逼近和三角多项式逼近。
四、函数近似与逼近的应用案例1. 信号处理函数近似与逼近在信号处理中有广泛的应用,例如通过逼近函数对信号进行去噪、平滑和压缩等处理。
2. 数据拟合函数逼近可以用于数据拟合,通过逼近函数来拟合离散数据点,从而得到拟合曲线或曲面。
3. 图像处理在图像处理中,函数逼近可以用于图像的重建、去噪、边缘检测等方面,提高图像质量和处理效果。
五、教学过程安排1. 理论讲解首先,介绍函数近似与逼近的基本概念和方法,讲解最小二乘逼近等常见的函数逼近方法。
2. 案例演示通过具体的案例,演示函数逼近在信号处理、数据拟合和图像处理等方面的应用。
3. 实践操作提供适当的实践操作,让学生亲自操作并体验函数近似与逼近的方法,加深理解和掌握。
4. 总结讨论对教学内容进行总结,并引导学生进行讨论,思考函数逼近在其他领域的应用和潜力。
六、教学资源和参考文献1. 教学资源提供函数近似与逼近的相关教材、课件和案例资料等,供学生参考和学习。
数值分析06函数逼近
函数逼近的历史与发展
早期发展
早在古希腊时期,数学家就开始研究用简单的几何图形来近 似表示复杂的曲线。随着数学的发展,函数逼近的理论和方 法不断完善和丰富。
现代进展
随着计算机科学和数值分析的兴起,函数逼近在数值计算、 信号处理、图像处理等领域的应用越来越广泛。现代的逼近 方法不仅追求形式简单,还注重逼近的精度和计算效率。
数据拟合
在数据分析和机器学习中,利用数值逼近方法对数据进行拟合, 以提高预测精度。
图像处理
在图像处理中,利用数值逼近方法对图像进行平滑、去噪等处理, 以提高图像质量。
工程计算
在工程计算中,利用数值逼近方法对复杂函数进行近似计算,以简 化计算过程和提高计算效率。
05
结论与展望
总结与评价
总结
数值分析06函数逼近课程是一门重要的数学课程,它涉及到许多实际问题的求解,如插值、拟合、最小二乘法等。 通过学习这门课程,学生可以掌握如何使用数学工具来近似描述和分析函数,从而更好地理解和解决实际问题。
数。
稳定性分析
稳定性定义
稳定性是指在逼近过程中,对于小的扰动或误差,逼近结果的变 化程度。
不稳定性影响
不稳定的逼近可能导致结果出现较大的偏差,影响数值计算的精 度和可靠性。
稳定性判据
根据稳定性判据,判断逼近函数的稳定性以及如何提高稳定性。
04
数值实例与应用
一元函数逼近实例
01
线性逼近
通过多项式逼近方法,将一元函 数在某点附近展开成线性形式, 如泰勒级数展开。
评价
这门课程的内容非常实用,对于数学专业的学生来说是一门必修课程。它不仅有助于提高学生的数学素养,还可 以为学生提供解决实际问题的能力。然而,该课程难度较大,需要学生具备较高的数学基础和思维能力。
第6章 函数逼近与函数插值
第六章 函数逼近与函数插值本章介绍函数逼近与插值的有关理论和算法. 函数逼近问题与插值问题两者既有联系又有区别,它们都是用较简单的函数来近似未知的、或表达式较复杂的函数. 一般来说,函数逼近是要在整个区间、或一系列离散点上整体逼近被近似函数,而在进行插值时,则须保证在若干自变量点上的函数值与被近似函数相等.6.1 函数逼近的基本概念进行函数逼近一般是在较简单的函数类Φ中找一个函数p(x)来近似给定的函数f(x),以使得在某种度量意义下误差函数p (x )−f(x)最小. 被逼近函数f(x)可能是较复杂的连续函数,也可能是只在一些离散点上定义的表格函数,而函数类Φ可以是多项式、分段多项式、三角函数、有理函数,等等. 函数逼近问题中度量误差的手段主要是函数空间的范数,下面先介绍函数空间的范数、内积等有关概念,然后讨论函数逼近问题的不同类型.6.1.1 函数空间线性空间的概念大家都很熟悉,其定义中包括一个元素集合和一个数域,以及满足一定运算规则的“加法”和“数乘”运算. 简单说,若这个元素集合对于“加法”和“数乘”运算封闭,则为一线性空间. 线性空间的元素之间存在线性相关和线性无关两种关系,进而又有空间的基和维数的概念.在这里我们先考虑连续函数形成的线性空间. 例如C [a,b ]按函数加法、以及函数与实数乘法,构成一个线性空间. 对于[a,b]区间上所有k 阶导数连续的函数全体C k [a,b ],也类似地构成一个线性空间. 我们一般讨论实数函数,因此对应的是实数域ℝ,若讨论复数函数,则相应的是复数域ℂ. 另外,与线性代数中讨论的向量空间ℝn 不同,连续函数空间是无限维的.对线性空间可以定义范数的概念(见3.1.2节). 针对实连续函数空间C [a,b ],与向量空间类似,可定义如下三种函数的范数(function norm):1) ∞-范数 设f (x )∈C [a,b ],则‖f (x )‖∞=max x∈[a,b ]|f (x )| .其几何意义如图6-1所示,即函数值绝对值的最大值.2) 1-范数‖f (x )‖1=∫|f (x )|dx b a .其几何意义如图6-2所示,即函数曲线与横轴之间的面积总和.3) 2-范数‖f (x )‖2=[∫f 2(x )dx b a ]1/2. 2-范数也常称为平方范数,其几何意义与1-范数类似. 线性空间还有一个重要概念是内积,它定义了空间中两个元素的一种运算. 下面给出一般的复数域上线性空间内积的定义.定义6.1:设S为实数域ℝ上的线性空间,∀u,v∈S,定义值域为ℝ的二元运算〈u,v〉,若满足1)〈u,v〉=〈v,u〉, (可交换性)2)〈αu,v〉=α〈u,v〉, ∀α∈ℂ(线性性1)3)〈u+v,w〉=〈u,w〉+〈v,w〉, ∀w∈S(线性性2)4)〈u,u〉≥0,当且仅当u=O时①,〈u,u〉=0, (非负性)则称〈u,v〉为一种实内积运算(inner product). 定义了内积的线性空间称为实内积空间.应说明的是,将定义6.1加以扩展可在更一般的实数域ℂ上定义内积,区别只是将第1条性质改为共轭可交换性:〈u,v〉=〈v,u〉 .例如复向量的内积为: 〈u,v〉=u T v̅,可以验证它满足上述共轭可交换性. 下面只考虑实内积,但得到的结果都可以类似地推广到复内积空间. 另外,定义6.1的条件2还说明零元素与任意元素的内积均等于0.根据内积的线性性可推出:〈α1u1+α2u2,v〉=α1〈u1,v〉+α2〈u2,v〉,∀α1,α2∈ℂ,(6.1) 更一般地有:〈∑αj u j nj=1,v〉=∑αj〈u j,v〉nj=1,∀α1,⋯,αn∈ℂ.(6.2)这里主要考虑函数空间,则(6.2)式表明,线性组合函数(与另一函数作)内积等于(相应各个函数)内积的线性组合.可以规定一种依赖于内积运算的范数:‖u‖≡√〈u,u〉 .易知这种内积导出的范数满足范数定义的三个条件(见3.1.2节),详细证明过程留给读者思考. 应注意,在向量空间中,由内积导出的范数等同于向量的2-范数. 在实函数空间C[a,b]中,一般定义内积为〈u(x),v(x)〉=∫u(x)v(x)dxba,(6.3) 因此,由它导出的范数也等同于函数空间的2-范数.下面介绍与内积有关的两个重要定理.定理6.1:设S为实内积空间,∀u,v∈S,有:|〈u,v〉|2≤〈u,u〉∙〈v,v〉 .(6.4) 这是著名的柯西-施瓦茨不等式(Cauchy-Schwarz inequality).定理6.1的证明留给读者思考,若u,v为三维向量,也请思考该定理有什么几何含义?定理6.2:设S为实内积空间,u1,…,u n∈S,则格莱姆矩阵(Gram matrix)G=[〈u1,u1〉〈u2,u1〉⋯〈u n,u1〉〈u1,u2〉〈u2,u2〉⋯〈u n,u2〉⋮⋮⋱⋮〈u1,u n〉〈u2,u n〉⋯〈u n,u n〉](6.5)非奇异的充要条件是u1,…,u n线性无关.[证明] 首先要用到线性代数中的一个基本结论:矩阵G非奇异⟺det(G)≠0⟺齐次线性方程组Ga=0只有全零解.设向量a=[a1,…,a n]T,则方程Ga=0可写成:①这里用正体的字母O表示线性空间的零元素.∑a j 〈u j ,u k 〉nj=1=0,k =1,2,⋯,n (6.6)下面证明方程组(6.6)只有恒零解的充分必要条件是u 1,…,u n 线性无关. 先证必要性,即已知方程组(6.6)只有恒零解,要证u 1,…,u n 线性无关. 采用反证法,若u 1,…,u n 线性相关,即存在不全为0的一组系数{αj ,j =1,⋯,n}使∑αj u j n j=1=O ,则∑αj 〈u j ,u k 〉n j=1=〈∑αj u j nj=1,u k 〉=〈O,u k 〉=0,(k =1,…,n ),即这组{αj }是方程组(6.6)的解,与已知条件矛盾!再证明充分性,即已知u 1,…,u n 线性无关,要证方程组(6.6)只有全零解. 仍采用反证法,若方程组(6.6)存在不全为零的一组解{αj },则∑αj 〈u j ,u k 〉n j=1=〈∑αj u j nj=1,u k 〉=0,k =1,…,n将上述方程中第k 个方程乘以αk ,累加所有方程得到,〈∑αj u j n j=1,∑αj u j nj=1〉=0 ,根据内积的定义,必有∑αj u j n j=1=O , 也就是说存在不全为0的一组{αj }j=1n 使∑αj u j n j=1=O ,这与u 1,…,u n 线性无关的已知条件矛盾!综上所述,完成了定理的证明.应注意,格莱姆矩阵是实对称矩阵,并且当u 1,…,u n 线性无关时,它是对称正定矩阵. 针对实函数空间C[a, b],常常有权函数、加权内积的概念.定义6.2:若函数ρ(x )≥0,∀x ∈[a,b],且满足1) ∫x k ρ(x )dx ba 存在,(k =0,1,…),2) 对非负连续函数g (x ),若∫g (x )ρ(x )dx =0b a 可推出g (x )≡0,则称ρ(x)为区间[a,b]上的权函数(weight function).关于权函数的定义,说明几点:● 定义中对连续性没有要求,即ρ(x )可能不是连续函数;第1个条件要求的是ρ(x )与多项式乘积为可积函数.● 定义中第2条件的意义不是很直观,较直观的一种等价形式为:不存在子区间(c,d )⊆[a,b],使ρ(x )=0,∀x ∈(c,d ),即“权函数在[a,b]中任一子区间不恒为零”. ● 一般遇到的C [a,b ]中非负函数(一定有界、可积),若不在某一子区间恒为零,则都可作权函数.定义6.3:若ρ(x )为区间[a,b]上的权函数,则可定义C [a,b ]上的内积为:〈u (x ),v (x )〉=∫ρ(x )u (x )v (x )dx b a ,(6.7)并称其为加权内积(weighted inner product).容易验证加权内积满足一般内积的定义,并且常用的函数内积(6.3)式是加权内积的特例,其对应于权函数ρ(x )≡1的情况. 根据加权内积,也可以导出范数,这种范数可看成是广义的2-范数,其公式为:‖f(x)‖=[∫ρ(x )f 2(x )dx b a ]12⁄ .6.1.2 函数逼近的不同类型在函数逼近问题中,用简单函数p(x)来近似f(x),并要求误差最小. 这里度量误差大小的标准是范数,采用不同范数时其问题的性质是不同的. 下面分两种情况作些讨论.1) ∞-范数考虑误差函数p (x )−f (x )的∞-范数,假设函数的定义域为[a, b],则可设ε=‖p (x )−f (x )‖∞=max x∈[a,b ]|p (x )−f (x )| , 因此有−ε≤p (x )−f (x )≤ε,∀x ∈[a,b ],即p (x )−ε≤f (x )≤p (x )+ε, ∀x ∈[a,b ]图6-3显示了函数p (x ),f (x ), 以及‖p (x )−f (x )‖∞之间的关系,从中可以看出,在∞-范数意义下的逼近要求使ε尽量小,也就是要p (x )在整个区间上“一致地”接近f (x ). 因此,采用∞-范数的函数逼近问题常称为最佳一致逼近.2) 1-范数和2-范数先看看误差函数p (x )−f (x )的1-范数,‖p (x )−f (x )‖1=∫|p (x )−f (x )|dx ba令A =‖p (x )−f (x )‖1,则它表示p (x )和f (x )两个函数曲线之间的面积(如图6-4所示). 在1-范数意义下的逼近,要求使A 尽量小,也就是要p (x )与f (x )曲线之间的总面积尽量小,反映出这种逼近有整个区间上“平均”误差尽量小的含义(在某个子区间上误差可能很大).2-范数的意义与1-范数大体上类似,由于它更容易处理,在实际的逼近问题中一般采用图6-3 函数p (x ),f (x ), 以及‖p (x )−f (x )‖∞之间的关系.图6-4 函数p (x ),f (x ), 以及‖p (x )−f (x )‖1之间的关系.2-范数. 这种逼近称为最佳平方逼近或最小二乘逼近(least squares fitting).从直观上看,采用∞-范数的最佳一致逼近效果更好一些,而最佳平方逼近具有平均误差最小的含义.除了度量误差函数可采用不同的范数,被逼近函数也可分为连续函数和表格函数两种情况. 表格函数就是仅在一系列离散自变量点上已知函数值的函数,可通过函数值组成的向量来刻画,有关逼近问题的求解有特殊的处理方法. 而在逼近函数类方面,多项式函数是最常用的一种. 下面给出魏尔斯特拉斯定理(Weierstrass Theorem ),它是用多项式函数进行逼近的一个重要依据.定理6.3:设f (x )∈C[a,b],则对任何ϵ>0,总存在一个多项式P (x ),使‖P (x )−f (x )‖∞<ϵ在[a, b]上一致成立.该定理的证明已超出了本书的要求,因此不做讨论. 值得一提的是,若f (x )∈C[0,1],伯恩斯坦多项式(Bernstein polynomial)②B n (f,x )=∑f (k )Q k (x )nk=0 , 其中Q k (x )=(n k)x k (1−x )n−k , 就是满足定理要求的多项式P (x ). 注意B n (f,x )为n 次多项式,并且可以证明,lim n→∞B n (f,x )=f(x)在[0, 1]上一致成立. 因此,C[0,1]中的任意函数都可以用伯恩斯坦多项式(一致)逼近到任意好的程度. 应注意,它一般不是多项式函数类ℙn 中的最佳一致逼近.最后说明一点,求最佳一致逼近多项式的方法比较复杂,感兴趣的读者请参考[4, 9]. 本章后面主要介绍求最佳平方逼近的方法,它有很广泛的应用.6.2 连续函数的最佳平方逼近为了记号的方便,在6.2节和6.3节的介绍中记函数的自变量为t.6.2.1 一般的法方程方法一. 问题描述假设对f (t )∈C [a,b ]进行函数逼近,逼近函数类Φ应是形式简单的函数类,比如多项式函数、三角函数、有理函数,等等,并且它是有限维的线性子空间. 设Φ=span {φ1(t ),…,φn (t )},则Φ的任一元素可表示为:S (t )=Σj=1n x j φj (t ), (6.8)其中x 1,…,x n ∈ℝ.连续函数的最佳平方逼近问题就是求S (t )∈Φ,使 ‖S (t )−f (t )‖2达到最小值. 利用公式(6.8)以及2-范数的定义,上述问题等价于最小化F =‖S (t )−f (t )‖22=∫[Σj=1n x j φj (t )−f (t )]2dt b a .(6.9)F 是关于实系数x 1,x 2,…,x n 的多元函数,需求出F 的最小值对应的那组系数x 1,x 2,…,x n .二. 法方程方法下面推导如何求(6.9)式的最小值点. 为了记号简便,省略函数记号中的“(t )”,即直接② 由原苏联数学家伯恩斯坦(1880—1968)于1912年提出.f ̃=f (3)=f (2)−2v 2T f (2)v 2T v 2v 2=[ −4.2061330.399807−0.004750130.0009512830.00195269], 此时矩阵A 经变换为: R =A (3)=[ −2.236068−3.35410200.790569000000] . 根据算法6.3,需求解方程R 1x =b ,其中R 1=[−2.236068−3.35410200.790569],b =[−4.2061330.399807]. 解得:x =[1.12250.5057]T ,即拟合公式为y ̃=1.1225+0.5057t ,它与例6.6, 6.7得到的结果是一样的.根据表格函数与其函数值向量的对应关系可证明,算法6.3与通过Gram-Schmidt 正交化过程求最佳逼近函数的方法在数学上是等价的. 不同之处在于:前者不涉及正交函数族,直接得到原基函数对应的拟合系数;前者的主要计算是矩阵的QR 分解,它可通过Householder 变换或Givens 旋转变换等不同方法实现. 由于算法6.3直接利用矩阵的QR 分解的特点,它更易于实现和应用,而且稳定性比算法6.2好. 最后说明一点,若初始的表格函数φ1(t ),…,φn (t )线性相关,矩阵A 不是列满秩的,QR 分解也能进行,但得到的上三角阵R 1奇异. 可以证明,这种情况下有无穷多个最小二乘解,详细的讨论请参考[6].一. 问题背景1945年7月16日,美国科学家在新墨西哥州Los Alamos沙漠试爆了世界上第一颗原子弹,这一事件令全球震惊. 但在当时有关原子弹爆炸的任何资料都是保密的,而很多其他国家的科学家非常想知道这次爆炸的威力有多大.两年之后,美国政府首次公开了这次爆炸的录像带,而其他数据和资料仍然不被外界所知. 英国物理学家G. I. Taylor(1886 ~ 1975)通过研究原子弹爆炸的录像带,建立数学模型对爆炸所释放出的能量进行了估计,得到估计值与若干年后正式公布的爆炸能量21 kt 相当接近(1 kt 为1千吨TNT 炸药的爆炸能量). Taylor 是如何根据爆炸录像估计的呢?主要是通过测量爆炸形成的“蘑菇云”半径来进行估计的(如图(A)). 因为爆炸产生的冲击波从中心点向外传播,爆炸的能量越大,在相同时间内冲击波传播得越远、蘑菇云的半径就越大. Taylor 通过图(A) 原子弹爆炸的蘑菇云.*t 的单位为ms, r 的单位为m.然后通过量纲分析法建立了蘑菇云半径r 与时间t 和爆炸能量E 的关系式,利用上述数据最后求出了爆炸的能量.二. 数学模型考虑到原子弹爆炸在极短的时间内释放出巨大的能量,蘑菇云半径r 主要与时间t 、爆炸能量E 、以及空气密度ρ等几个参数有关. 通过仔细分析这几个量的单位,采用量纲分析法得到如下的蘑菇云半径的近似表达式:r =(t 2E )15. 其中r , t , E 的单位分别为米(m), 秒(s)和焦耳,而空气密度ρ的值为1.25 (kg m 3⁄). 对这次原子弹爆炸来说,E 为一固定值,因此r 与t 2成正比. 图(B)是根据蘑菇云半径与对应时刻的数据画出的散点图,它大体反映了这个趋势. 接下来的问题是如何求未知的参数E .三. 求解过程首先,改写蘑菇云半径的公式为r =at b 的形式,通过测量数据拟合出参数a 和b ,来验证量纲分析法得到的公式. 要作线性最小二乘拟合,进一步改写公式为:lnr =lna +blnt . 根据测量数据我们得到lnr 和lnt 的数据,将它们的函数关系拟合为1次多项式,得到系数b =0.4094,其值与前面分析的结果2/5非常接近,从而验证了量纲分析得到的公式.为了更为准确地计算爆炸能量E ,将蘑菇云半径公式改写为:5lnr −2lnt =ln (E ) . 此时可根据测量数据得到5lnr −2lnt 对应的一组数据,将它拟合为0次多项式(常数),设得到拟合系数为c ,则E ≈ρ∙e c .根据此方法算出E ≈8.6418×1013,单位为焦耳,查表得知1kt=4.184×1012焦耳,因此爆炸能量约等于20.65 kt.6.4函数插值与拉格朗日插值法函数插值可看作一种“特殊”的函数逼近问题,其逼近采用的“度量”准则是要求在插值节点处误差函数的值为0. 本节先介绍关于插值(interpolation)的一些基本概念,然后讨论最简单的一种多项式插值——拉格朗日插值法.图(B) 蘑菇云半径与对应时刻的数据 rt个节点:x 0<x 1<⋯<x n 进行插值,只需将B −k k (x ),B −k+1k (x ),⋯,B n−1k (x )这n+k 个k 次B-样条函数进行组合. 可以证明,它们在区间[x 0,x n ]上的部分组成n+k 个线性无关的基函数. 因此,对于满足额外边界条件的[x 0,x n ]上的k 次样条函数,可唯一地用这些基函数的线性组合表示. 感兴趣地读者可以推导B i 3(x )的表达式,然后利用插值条件和边界条件列方程求这些基函数对应的系数,进而推导出三次样条插值函数的表达式. 这个计算过程将与上一小节的方法得到相同的结果.利用B-样条基函数,可得到确定和计算各阶样条插值的有效而稳定的方法. 此外,它在计算机图形学、几何建模,以及数值求解微分方程等领域都有广泛的应用.评述关于多项式逼近和插值问题的研究历史悠久,应用面也很广. 本章只讨论了一元函数的最佳平方逼近,更多的相关内容,包括多元函数的逼近、正交多项式等,可参考下述文献:● P . J. Davis, Interpolation and Approximation , Dover, 1975.● W. Cheney, Introduction to Approximation Theory , AMS Chelsea Publishing, 2nd edition,1998.● G. A. Baker, and P . R. Graves-Morris, Pade Approximations , Cambridge University Press,2nd edition, 1996.● W. Gautschi, “Orthogonal polynomials: Applications and computation,” Acta Numerica ,Vol. 5, pp. 45-119, 1996.最佳平方逼近的法方程方法在1795年由高斯提出. 格莱姆-斯密特正交化方法在1883年由格莱姆提出,1907年斯密特给出了现代算法. 在求解最小二乘问题中使用QR 分解方法,特别是使用Householder 变换的方法是在1965年由G. Golub ⑥提出的. 最小二乘方法是统计学的重要工具,也称为回归分析,很多常用的数据处理软件(比如微软公司的Excel 软件)都具有这个功能. 本章讨论的线性最小二乘问题实际上是一种最简化的形式,即假设待逼近函数是基函数的线性组合. 在实际应用中还常遇到非线性最小二乘问题,它属于非线性优化问题,见参考文献[6]及其中给出的更多文献. 另外,若考虑所有参量都带有随机误差的情形,则成为完全最小二乘问题,有关详细讨论见文献:● S. Van Huffel and J. Vandewalle, The Total Least Squares Problem , SIAM Press, 1991. 本章也没有讨论拟合的基函数可能线性相关的情况,这在实际中可能由于拟合模型的不合理或数值误差造成,它使得矩阵A 列不满秩. 此时最佳平方逼近解不唯一,要得到实际有用的一个逼近解,需采用列重排的QR 分解等技术,更多讨论参见文献[6]及其他文献.多项式插值问题历史非常悠久,牛顿、拉格朗日等都在这方法做出了很多贡献. 除了将函数值作为条件的插值问题,插值条件中包括各阶导数值的情况也常见于各种工程应用中. 目前,常用的文档编辑软件都已使用保形分段插值来绘制曲线,例如微软公司的Word 和Power Point 软件. 样条函数是1946年由Schoenberg 首先提出的,本章只讨论了一维数据的样条插值和B-样条函数,实际问题中还有高维的插值问题,尤其在计算机图形学中二维B-样条是一个重要的工具. 关于样条的参考文献主要有:● C. de Boor, A Practical Guide to Splines , Springer-Verlag, 2nd edition, 1984.● E. V. Shikin and A. I. Plis, Handbook on Splines for the User , CRC Press, 1995.最后,列表说明Matlab 中与本章讨论的函数逼近与插值有关的命令和功能.⑥ Gene H. Golub (1932-2007), 美国斯坦福大学计算机系教授,美国科学院、工程院、艺术与科学院三院院士,著名的数值计算专家,1996年出版的著作”Matrix Computations ” [21]被奉为矩阵计算领域的经典.线拟合与样条插值的功能.[本章知识点]: 连续函数的范数;内积及其性质;内积空间的格莱姆矩阵、及其非奇异的充要条件;权函数与加权内积;最佳一致逼近与最佳平方逼近的概念;法方程方法求连续函数的最佳平方逼近;最佳平方逼近的误差;正交函数族与Gram-Schimdit正交化过程;勒让德多项式;用正交函数族作最佳平方逼近;曲线拟合的线性最小二乘问题;线性最小二乘问题的矩阵描述;法方程方法解线性最小二乘问题;表格函数的线性无关性与相关性;利用矩阵的QR分解解线性最小二乘问题;插值的基本概念;范德蒙矩阵与多项式插值的存在唯一性;拉格朗日插值公式;拉格朗日插值余项公式;牛顿插值公式;差商的计算;牛顿插值余项公式;高次多项式插值的问题;分段线性插值;埃尔米特插值;分段三次埃尔米特插值;保形分段插值;三次样条插值及边界条件;三次样条插值的构造方法;三弯矩方程;几种插值的比较;B-样条函数的基本概念与性质.算法背后的历史:拉格朗日与插值法约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange,1736年1月25日—1813年4月10日)是法国数学家、物理学家. 他在数学、力学和天文学三个领域中都有巨大的贡献,其中尤以数学方面的成就最为突出. 拉格朗日与同时代的勒让德(Legendre)、拉普拉斯(Laplace)并称为法国的3L.拉格朗日于1736年生于意大利西北部的都灵. 17岁时,开始专攻当时迅速发展的数学分析. 1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士. 1766年赴柏林任普鲁士科学院数学部主任,居住柏林达20年之久,这是他一生科学研究的鼎盛时期. 在此期间,他完成了著作《分析力学》. 1786年加入了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任. 1795年建立了法国最高学术机构——法兰西研究院后,拉格朗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 i n
n
||x||1
| x
i 1
n
i
| ,
称为1 范数,
称为2 范数.
2 ||x||2 xi , i 1
1 2
类似地,对C [a , b]上的f ( x ),可定义三种常用范数 : || f || max | f ( x ) | , 称为 范数, || f ||1
[ f ( x ) pn ( x )]2 dx
* 则称pn ( x )是f ( x)的n次最佳平方逼近多项式
2. 若f ( x ) 是[a,b]上的一个列表函数,在a x0 x1 xm b上 给出f ( xi )( i 0,1,, m ),要求p *( x ) span{ 0 ,, n }, 使得
若x1 , x2 , , xn 线性无关,且对任意x S , 都有 x 1 x1 2 x2 n xn 则记 S span{ x1 , x2, , xn }
(1.1)
并称x1 , x2 ,, xn为空间S的一组基,称空间 S为n维空间。
有序数组1 , 2 , , n称为元素x在x1 , x2 , , xn这个基下的坐标, 并记作(1 , 2 , , n)
2 | | f ( x ) p* ( x ) ||2 min || f ( x ) p ( x ) || 2 2 ( p x)
2 [ f ( x ) p ( x )] i i i 0 m
min
( p x)
则称p* ( x)是f ( x)的最小二乘拟合
n n 1/2
若x, y C ,则定义加权内积 ( x, y) i xi yi .
n i 1
n
定义4 设 ( x )是区间 [a, b (有限的或无限的)上 ] 的非负函数, 如果满足条件 (1)
b
a
x k ( x )dx存在, k 0,1, 2, ;
b a
(2) 对于[a, b]上的非负连续函数g ( x ),若 g ( x ) ( x )dx 0, 则在[a, b]上g ( x ) 0; 就称 ( x )为[a, b]上的权函数.
根据定理3,0 ,, n线性无关 det(G ) 0.
四、
1.
最佳逼近
* | | f ( x ) pn ( x) || min || f ( x) pn ( x) || . pn H n
* 设f ( x ) C[a, b], 求多项式pn ( x ) H n , 使得误差
例:C[a, b]上的内积
设f ( x ), g ( x ) C[a, b], ( x )为[a, b]上的权函数, 则可 定义内积
( f , g)
b a ( x ) f ( x ) g( x )dx .
1, ( f , g )
b f ( x) g ( x)dx. a
§3.1 函数逼近的基本概念
一、函数逼近与函数空间
函数逼近问题 : 对于函数类A中给定的函数f ( x ), 要求在 另一类较简单的便于计 算的函数类B A中找一个函数 p( x ), 使p( x )与f ( x )的误差在某种度量意义 下达到最小.
注:函数类 A 通常是 [a,b] 上的 连续函数,记作C[a,b] ,称为 连续函数空间。 函数类 B 通常是 n 次多项式,有理函数或分段低次多项式。
例2、 实数域上的m n 阶矩阵的全体Rmn {( aij ) mn aij R} 对矩阵的加法及数乘构 成线性空间 .
例3、 次数不超过n的实系数多项式的全体 H n {an x n a1 x a0 ai R} 对多项式的加法及数乘 构成线性空间 .
例4、 [a, b]上连续函数的全体C[a, b]按通常函数的加法及数 与函数 的乘法构成线性空间 .
定理3 设X为一个内积空间,u1 , u2 , , un X , 矩阵 ( u1 , u1 ) ( u2 , u1 ) ( un , u1 ) ( u , u ) ( u , u ) ( u , u ) 2 2 n 2 G 1 2 ( u , u ) ( u , u ) ( u , u ) 2 n n n 1 n 称为格拉姆(Gram)矩阵,则G非奇异的充要条件是u1 , u2 , , un线性 无关.
(5) 1 ; (6) k (l ) (kl ); (7) (k l ) k l; (8) k ( ) k k .
则称V为F上的线性空间 .
说明:V中的元素可以是向量, 矩阵,函数,多项式 .
例1、 实n维向量的全体Rn {( a1, a2, , an ) ai R} 对向量的加法及数乘构 成线性空间 .
a xb b a | f ( x ) | dx,
称为1 范数, 称为2 范数.
|| f ||2 a f 2 ( x )dx ,
b
1 2
三、内积与内积空间
Rn中向量x及y的内积定义为 : ( x, y ) x1 y1 , xn yn .
将其推广有如下定义 .
定义3 设X是数域K ( R或C)上的线性空间,对 u , v X , 有K中一个数与之对应,记 为( u, v ),并满足条件: (1) ( u,v ) (v , u), u,v X ; (2) (u,v ) ( u,v ), R; (3) ( u v , w ) ( u,w ) (v,w ), u,v,w X ; (4) ( u, u) 0, 当且仅当u 0时, ( u, u) 0.
内积 ( x , y) xi yi;
i 1
n
2 范数 || x ||2 (x , x) xi i 1
1/2 n
1/2
若给定i 0(i 1,, n),称{i }为权系数, 则定义
2 加权内积 ( x , y) i xi yi; 加权范数 || x ||2 i xi i 1 i 1
* 则称p span {0 ,, n }, 则称相应的pn ( x)为最佳逼近函数。
* * 1). 若求pn ( x ),使得 | | f ( x ) pn ( x ) || min || f ( x ) pn ( x ) || . pn H n
(1.6)
在内积空间X 上可以由内积导出一种范数, 即对u X , 记 || u || ( u, u), (1.10) 易证它满足范数定义的正定性,齐次性和三角不等式.
例:R n与Cn的内积
设x ( x1 ,, xn )T , y ( y1 ,, yn )T R n,则定义
* 则称pn ( x )是f ( x)的n次最佳一致逼近多项式
* 2). 若求pn ( x ),使得 * 2 | | f ( x) pn ( x) ||2 min || f ( x ) p ( x ) || 2 n 2 pn ( x )H n
mi n
pn ( x )H n
b
a
如果S中有无限个线性无关元 素,则称S为无限维线性空间。
例:设p( x) Hn {an x n a1 x a0 | an R}
则p( x ) an x n a1 x a0 又1,x, ,x n线性无关
故Hn span{1 ,x, ,xn }, Hn维数为n 1.
定理 1(魏尔斯特拉斯定理) 若f (x)是区间[a, b]上的连续函数,则对于任意 >0,
总存在代数多项式 p (x),使对一切a ≤x ≤b 有
max f ( x ) p( x )
a x b
二、范数与赋范线性空间
定义2 设S是线性空间,x S, 如果存在唯一实数 || || ,满足条件 (1) ||x || 0, 当且仅当x 0时,|| x || 0; (2) (3) (正定性) (齐次性) (三角不等式)
x || x ||, R;
x y || x || || y ||, x , y S .
则称 || || 为线性空间S上的范数,S与 || || 一起称为赋范 线性空间,记为X .
例如,对R n上的向量x ( x1 ,, xn )T ,有 三种常用范数:
并且上述两种运算满足 下面8条法则:
(1) ;
(2) ( ) ( ) ;
( 3) 存在0 V, 使得 V,有 0 ,0称为V的零元素;
(4) V, 存在 V, 使得 0, 称为的负元素, 记为 ;
对连续函数f(x)∈C[a, b],它不能用有限个线性无关的
函 数 表 示 , 故 C[a, b] 是 无 限 维 的 , 但 它 的 任 一 元 素 f(x)∈C[a, b]均可用有限维的p(x)∈ H n 逼近,使误差
max f ( x ) p( x )
a x b
其中ε为任意给的小正数. 这就是下面著名的魏尔斯特拉斯( Weierstrass)定理.
由此内积导出范数
|| f ( x ) ||2
1/ 2 b 2 a ( x ) f ( x )dx .
b 1, || f ( x ) ||2 f 2 ( x )dx . a 1/ 2
设0 ,, n C[a, b], 则Gram矩阵为
G G ( 0 ,, n ) ( 0 , 0 ) ( , ) 1 0 ( , ) n 0 ( 0 ,1 ) (1 ,1 ) ( n ,1 ) ( 0 , n ) (1 , n ) ( n , n )