函数的基本概念及表示法
函数的基本概念

函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
八年级上册函数知识点总结

八年级上册函数知识点总结函数是数学中重要的基本概念之一。
学习函数不仅是数学学习的重点之一,而且在学习物理、化学、经济等科学中也具有重要作用。
函数的概念和应用是本章的重点内容。
下面就来一起回顾一下八年级上册主要的函数知识点。
一、函数的概念函数是一种对应关系,它把一个数集中的每个数都唯一地对应到另一个数集中的一个数上。
在函数中,我们通常用符号 y=f(x) 来表示,其中 x 称为自变量,y 称为因变量,f(x) 称为函数名。
二、函数的表示方法函数可以用图像、显式公式、隐式公式、数据表、文字语言等方式表示。
1. 图像表示法:函数图像是函数概念的直观反映,函数的图像通常在平面直角坐标系中表示,自变量通常在横轴上,因变量在纵轴上。
2. 显式公式:显式函数公式是指用已知的代数式或数式,直接表达出 y 与 x 之间的关系式。
例如:y=2x+3。
3. 隐式公式:隐式函数公式是指不用具体的公式把y 表达出来,而是通过给定的条件解出 y 与 x 之间的关系式。
例如:x^2+y^2=4。
4. 数据表:将函数的各种数值列成一张表格,其中自变量和函数值成对出现。
可以用表格的方式来表示函数。
5. 文字语言:对函数的描述可以用文字语言来表示,例如:函数 y=2x+3 表示一个自变量为 x 的函数,因变量 y 等于自变量 x 的两倍加上 3。
三、函数的性质和分类1. 单调性:函数单调增加表示随着自变量的增加,因变量也相应地增加;函数单调减少表示随着自变量的增加,因变量反而减少。
2. 奇偶性:当函数中自变量为 x 和 -x 时,如果有函数值f(x)=f(-x),那么函数具有偶对称性;如果有函数值 f(x)=-f(-x),那么函数具有奇对称性。
3. 周期性:如果一个函数 f(x+T)=f(x),其中 T>0,那么函数就具有周期性。
4. 分类:函数也可以根据函数名中的代数式或数式的特征分类。
例如,一次函数 f(x)=kx 、二次函数 f(x)=ax^2+bx+c、反比例函数f(x)=k/x、指数函数 f(x)=a^x、对数函数 f(x)=loga(x) 等。
函数的基本概念与表示方法

函数的基本概念与表示方法在数学的广袤天地中,函数就像是一座桥梁,连接着不同的数量关系和变化规律。
它不仅是数学研究的重要对象,也是解决实际问题的有力工具。
让我们一起走进函数的世界,去探寻它的基本概念和表示方法。
函数是什么呢?简单来说,函数是一种特殊的对应关系。
想象有两个集合,一个集合中的元素通过某种规则与另一个集合中的元素一一对应,这个规则就是函数。
比如说,我们有一个集合是学生的学号,另一个集合是对应的学生成绩。
当给定一个学号,就能通过特定的规则找到对应的成绩,这就是一个函数关系。
函数通常用符号“f”“g”等来表示。
假设我们有一个函数 f,它把集合A 中的元素 x 映射到集合 B 中的元素 y,我们就可以写成 f(x) = y 。
这里的 x 叫做自变量,y 叫做因变量。
自变量是主动变化的量,因变量则是随着自变量的变化而变化的量。
函数有几个重要的特点。
首先,对于集合 A 中的每一个自变量 x,都必须有唯一确定的因变量 y 与之对应。
也就是说,一个自变量不能对应多个不同的因变量。
其次,集合 A 中的元素都要有“用武之地”,不能有被“冷落”的元素。
这两个特点保证了函数关系的确定性和完整性。
函数的表示方法有很多种,最常见的有解析法、列表法和图像法。
解析法就是用数学表达式来表示函数关系。
比如,y = 2x + 1 就是一个用解析法表示的函数。
这种方法简洁明了,能够清晰地展示自变量和因变量之间的数量关系。
通过这个表达式,我们可以很容易地计算出当 x 取不同值时 y 的值。
列表法是将自变量和对应的因变量列成表格的形式。
比如,我们要表示一个人的体重随年龄的变化,就可以列出这样一个表格:|年龄(岁)| 10 | 15 | 20 | 25 | 30 |||||||||体重(kg)| 30 | 45 | 55 | 60 | 65 |列表法直观清晰,对于一些离散的数据或者有限的取值范围,使用列表法非常方便。
图像法则是用图形来表示函数关系。
高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。
(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。
函数的基本概念与运算

函数的基本概念与运算函数是数学中的重要概念,广泛应用于各个领域,包括物理、经济学以及计算机科学等。
在数学中,函数是一种表达两个集合之间关系的工具,通过给定一个输入值,函数可以计算出对应的输出值。
本文将介绍函数的基本概念、符号表示和常见的函数运算。
一、函数的定义与表示函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素。
设集合A和集合B,如果对于A中的每个元素a,都存在唯一的b属于B与之对应,则可以说存在一个函数f将a映射到b。
函数可以用不同的表示方法来表示,最常见的表示形式为函数符号和函数图像。
函数符号表示通常使用f(x)的形式,其中f是函数名,x是自变量。
f(x)表示函数对于输入x所对应的输出值。
例如,f(x) = 2x表示一个对应关系,将自变量x乘以2得到相应的输出值。
函数图像表示是通过绘制输入-输出对的关系来表示函数。
通过在坐标系中描绘函数图像,可以更直观地理解函数的性质和变化趋势。
二、函数的基本运算函数之间常常进行各种运算,包括加法、减法、乘法和除法等。
下面将介绍这些基本的函数运算。
1. 加法:设有函数f(x)和g(x),它们的和函数记作h(x) = f(x) + g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相加得到h(x)的输出值。
2. 减法:设有函数f(x)和g(x),它们的差函数记作h(x) = f(x) - g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相减得到h(x)的输出值。
3. 乘法:设有函数f(x)和g(x),它们的乘积函数记作h(x) = f(x) *g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相乘得到h(x)的输出值。
4. 除法:设有函数f(x)和g(x),其中g(x) ≠ 0,它们的商函数记作h(x) = f(x) / g(x),即对于相同的输入x,将f(x)和g(x)的对应的输出值相除得到h(x)的输出值。
高中数学函数基础知识

高中数学函数基础知识高中数学中,函数是一个非常重要的概念,贯穿于整个数学学科的各个领域中。
掌握函数基础知识,对于高中学生来说是至关重要的。
本文将系统地介绍高中数学函数的基础知识,帮助学生更好地理解和掌握这一概念。
1. 函数的定义函数是一种特殊的关系,即对每一个定义域中的元素,有且只有一个对应的值。
通俗地讲,函数就是一种“输入-输出”的关系,每个输入对应唯一的输出。
数学上用符号f(x) 来表示函数,其中x 表示自变量,f(x) 表示因变量。
形式化地定义,若对于每个 x∈X,存在唯一的 y∈Y,使得对于每个 x,都有唯一的 y 与之对应,则称 f 为定义在 X 上的函数,其中 X 为定义域,Y 为值域。
2. 函数的图象与性质函数的图象是函数 f(x) 在直角坐标系中的几何表示。
通过绘制函数的图象,我们可以直观地看出函数的性质,如单调性、奇偶性、周期性等。
对于一元函数 f(x),其图象通常是一条曲线或者曲线段。
通过观察函数的图象,我们可以更深入地理解函数的性质。
3. 函数的表示方法函数可以通过各种形式进行表示,常见的表示方法包括解析式表示、列表法、集合法等。
其中,解析式表示是最常见的形式,如 f(x) = x²表示一个函数关系。
此外,函数还可以通过函数图像、函数表格等形式进行表示,以便更加清晰地展示函数的性质。
4. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
这些基本函数在数学中起着重要的作用,通过熟练掌握这些基本函数的性质和图象,可以更好地理解和运用函数的相关知识。
5. 函数的运算函数之间可以进行各种运算,如加法、减法、乘法、除法、复合运算等。
通过函数的运算,可以得到新的函数,对于复杂的函数关系可以通过适当的运算进行简化和分解,便于进行进一步的分析和求解。
6. 函数的应用函数在现实生活中有着广泛的应用,如描述物体的运动规律、经济学中的供求关系、生物学中的生长模型等。
函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
函数的定义及表示

函数的定义及表示一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]yf x 称为复合函数,u 称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是y f x()x称为y的原象,映射f也可记为::f A Bx f x()f x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c d ac=+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆一.选择题(共12小题)1.(2018春•东安区校级期末)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.f:x→y=12x B.f:x→y=2﹣xC.f:x→y=23x D.f:x→y=√x2.(2018春•青山区校级期末)已知函数y=√(a−1)x2+ax+1的值域为[0,+∞),求a的取值范围为()A.a≥1B.a>1C.a≤1D.a<13.(2016秋•芗城区校级期末)下列图形中可以是某个函数的图象的是()A.B.C.D.4.(2016秋•宁城县期末)下列函数与函数y=x 相等的是( ) A .y =(√x)2 B .y =√x 2C .y =(√x 3)3D .y =x 2x5.(2016秋•湖北期末)已知函数f (x )的定义域为[﹣1,5],在同一坐标系下,函数y=f (x )的图象与直线x=1的交点个数为( ) A .0个 B .1个C .2个D .0个或者2个6.(2016秋•天门期末)已知函数f (x )的定义域为[﹣2,2],在同一坐标系下,函数y=f (x )的图象与直线x=1的交点个数为( ) A .0个 B .1个C .2个D .0个或者2个7.(2018•乌鲁木齐二模)若集合A ={x|x(x +1)≥0},B ={y|y =√x −1},则( ) A .A=B B .A ⊆B C .A ∪B=RD .B ⊆A8.(2018•乌鲁木齐二模)若集合A={x |x (x ﹣1)<0},B={y |y=x 2},则( )A .A=B B .A ⊆BC.A∪B=R D.B⊆A9.(2018•河南模拟)已知函数f(x)=5﹣1og3x,x∈(3,27],则f(x)的值域是()A.(2,4]B.[2,4)C.[﹣4,4)D.(6,9]10.(2018•济宁一模)已知函数f(x)={lnxx,x>1e x+1,x≤1,则函数f(x)的值域为()A.(0,e+1]B.(0,e+1)C.(0,1e]∪(1,e+1)D.(0,1e]∪(1,e+1]11.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x12.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32二.填空题(共4小题)13.(2017秋•杨浦区校级期末)设f(x)=x2√x−1,g(x)=√x−1x,则f(x)•g(x)=.14.(2018春•海安县校级月考)若f(2x)=3x2+1,则函数f(x)的解析式是.15.(2018•徐汇区二模)函数f(x)=lg(3x﹣2x)的定义域为.16.(2017秋•海陵区校级期中)若g(x)=x2+x,x∈{﹣1,1}的值域为.三.解答题(共2小题)17.求函数y=e x+1e x+2值域.18.求下列函数的值域.(1)y=√x−4;√x+3(2)y=2x﹣3+√13−4x;(3)y=√1+x+√1−x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ⎛⎫
⎪⎝⎭
.
设121,2,,,,,n n f i i i ⎛⎫= ⎪⎝⎭ ,12
1,2,,,,,n n g j j j ⎛⎫= ⎪⎝⎭ (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n
个整数的一个排列).定义g f 12
1,2,,,,,n n i i i ⎛⎫= ⎪⎝⎭ 121,2,,,,,n n j j j ⎛⎫
⎪⎝⎭ ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则⎪
⎪⎭
⎫
⎝⎛⎪⎪⎭⎫
⎝⎛4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟).
做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟.
题三:3,10
()((5)),10x x f x f f x x -≥⎧=⎨+<⎩
,则f (5)=
题四:集合R 到集合R 的映射f (是一个函数),满足:(1)25f x x -=+. 请问:这里的法则f 是
题五:下面的解答对吗?为什么?
(1)43-=x y 的值域是[4,5]-,则它的定义域是]3,0[. (2)432
-=x y 的值域是]5,4[-,则它的定义域是]3,3[-. 如果不对,怎么改?
题一:设二次函数f (x )=ax 2+bx +c (a ≠0).问:是否存在常数a ,b ,c ,使函数f (x )同时满足下列条件:(1) f (x )的图象过点(-1,0);(2)对一切x ∈R ,都有21
()(1)2
x f x x ≤≤
+.
题一:两家通讯公司的手机上网卡套餐资费如下表:
(注:1 M =1024KB ,1 G =1024M )
已知某人手机的月流量平均为4 G ,他最适合的套餐业务为( )
A. 甲公司130元3G
B. 乙公司130元3G
C. 甲公司200元6G
D. 乙公司180元5G 练习:
题一:已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素(
32,5
4
)在A 中的对应元素.
题二:设集合A ={2,4,6,8,10},B ={1,9,25,49,81,100},下面的对应关系f 能构成
A 到
B 的映射的是( ) A. f :x →(x -1)2 B. f :x →(2x -3)2 C. f :x →-2x -1 D. f :x →(2x -1)2
题三:根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧
c
x
,x <A ,c
A ,x ≥A
(A ,
c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )
A .75,25
B .75,16
C .60,25
D .60,16 题四:函数y =x (x -2)的定义域为[a ,b ],值域为[-1,3],则点(a ,b )的轨迹是图中的( )
A. 点H (1,3)和F (-1,1)
B. 线段EF 、GH
C. 线段EH 、FG
D. 线段EF 、EH
题五:已知函数f (x )=⎩
⎪⎨⎪⎧
3x +2,x <1,
x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.
题六:已知函数f (x )=⎩
⎪⎨⎪⎧
x 2+2ax ,x ≥2,
2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.
题七:从盛满20升纯酒精的容器里倒出1升,然后用水填满,再倒出1升混合溶液后又用水填满,这样继续进行,如果倒第k (k ≥1)次时共倒出纯酒精x 升,倒第k +1次时共倒出纯酒精f (x )升,则f (x )的函数表达式为( )
A. f (x )=
2019x B. f (x )=2019x +1 C. f (x )=20x D. f (x )=20
x
+1
题八:若函数f (x )=x
ax +b
(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.
题九:下列四个命题正确的有________.
①函数是其定义域到值域的映射; ②y =x -3+2-x 是函数;
③函数y =2x (x ∈N )的图象是一条直线;
④y =⎩
⎪⎨⎪⎧
x 2,x ≥0,-x 2,x <0的图象是抛物线.
题十:已知函数f (x )的定义域是[-1,2],则函数y =f (x )+f (-x )的定义域是( )
A.[-1,1]
B.[-2,2]
C.[-1,2]
D.[-2,1]
题十一:设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f (x -1) -f (x -2 )
2
(x >0),
试写出y =g (x )的表达式,并画出其图象.
题十二: 二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.
(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.
题十三:如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.
(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?
(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?
题十四: 动点P 从单位正方形ABCD 的顶点A 出发,顺次经过B ,C ,D 绕边界一周,当x 表示点
P 的行程,y 表示P A 的长时,求y 关于x 的解析式,并求f ⎝⎛⎭⎫
52的值.
函数的基本概念及表示法
讲义参考答案
金题精讲
题一:
1,2,3,4,5
2,4,5,3,1
⎛⎫
⎪
⎝⎭
题二:最佳时间为3.75题三:8 题四:乘2加7
题五:(1)对,(2)错,它的定义域可以是[满分冲刺
题一:
111
,,
424 a b c
===
思维拓展题一:D。