1-1线性系统的状态空间描述

合集下载

线性系统的状态空间描述

线性系统的状态空间描述

第一章 线性系统的状态空间描述 1. 内容系统的状态空间描述化输入-输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换组合系统的状态空间方程与传递函数矩阵2. 基本概念系统的状态和状态变量状态:完全描述系统时域行为的一个最小变量组。

状态变量:构成系统状态的变量。

状态向量设系统状态变量为)(,),(),(21t x t x t x n 写成向量形式称为状态向量,记为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(21t x t x t x t x n状态空间状态空间:以状态变量为坐标轴构成的n 维空间。

状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条轨迹。

3. 状态空间表达式设系统r 个输入变量:)(,),(),(21t u t u t u r m 个输出:)(,),(),(21t y t y t y m n 个状态变量:)(,),(),(21t x t x t x n例:图示RLC 电路,建立状态空间描述。

电容C 和电感L 两个独立储能元件,有两个状态变量,如图中所注,方程为)()()()()()(t i dtt du C t u t u t Ri dtt di LL c c L L ==++ )()(),()(21t u t x t i t x c L ==状态方程)(01)()(0/1/1/)()()()()()()()(212112211t u t x t x C L L R t xt x t x t xC t u t x t Rx t x L ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇔⎩⎨⎧==++⇔输出方程[]⎥⎦⎤⎢⎣⎡==)()(01)()(21t x t x t u t y c 一般定义状态方程:状态变量与输入变量之间的关系[][][]t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx r n n n n r n r n );(,),(),();(,),(),()()();(,),(),();(,),(),()()();(,),(),();(,),(),()()(212121212222121111======用向量表示,得到一阶的向量微分方程[]t t u t x f t x),(),()(= 其中n n r r n n f f f f t u t u t u t u t x t x t x t x R R R ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙=∙∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()(:)(,)()()(:)(,)()()(:)(212121输出方程:系统输出变量与状态变量、输入变量之间的关系,即[][][]t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y r n m m r n r n );(,),(),();(,),(),()();(,),(),();(,),(),()();(,),(),();(,),(),()(2121212122212111=== 用向量表示为[]t t u t x g t y ),(),()(=4系统分类:1) 非线性时变系统[][]⎩⎨⎧==t t u t x g t y t t u t x f t x ),(),()(),(),()(2) 非线性定常系统[][]⎩⎨⎧==)(),()()(),()(t u t x g t y t u t x f t x3) 线性时变系统⎪⎩⎪⎨⎧+++++=+++++=rnr n n nn n n r r n n u t b u t b x t a x t a xu t b u t b x t a x t a x)()()()()()()()(1111111111111写成向量形式即为⎩⎨⎧+=+=)()()()()()()()()()(t u t D t x t C t y t u t B t x t A t x其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t b t b t b t b t b t b t b t b t b t B t a t a t a t a t a t a t a t a t a t A nr n n r r nn n n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t d t d t d t d t d t d t d t d t d t D t c t c t c t c t c t c t c t c t c t C mr m m r r mn m m n n4) 线性定常系统⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x5 状态空间表达式的系统结构图状态和输出方程可以用结构图表示,形象地表明系统中信号传递关系。

第22 线性系统的状态空间描述

第22 线性系统的状态空间描述

其中 A(t) n×n — 系统矩阵 B(t) n×r — 输入矩阵 C(t) m×n — 输出矩阵 D(t) m×r — 前馈矩阵
D(t)
X
X
U
B(t)
C(t)
Y
A(t)
离散时间线性系统的状态空间描述
离散系统:各变量在离散时刻取值,状态空间反映离 散时刻的变量组间的因果关系和变换关系。用 k=0,1,2…表示离散时刻。 状态空间描述形式:
的因果关系,即输入和输出间的因果关系。 例如:线性定常、单输入-单输出系统,外部描述为线性常系
数微分方程。
y(t) an1 y(n1) (t) a1 y(t) a0 y(t) bm u(m) (t) bn1u(m1) (t ) b1u(t ) b0u(t )
零初始条件下,传递函数为:
输出方程/量测方程:代数方程
y1 g1 ( x1, , xn ; u1, , ur ; t)
t t0
ym gm ( x1, , xn ; u1, , ur ; t)
向量形式:
y g(x, u, t)
• 线性系统的状态空间描述
x A(t)x B(t)u
y
C(t)
x
D(t
)u
t t0
L diL dt
L diL dt
0 e
e(t)
R1
C
iC
L
iL U c R2 U R2
uc
iL
(R1
1
R2 R1
)C
L(R1 R2 )
(
R1
R1 R2 R1R2
)C
uc
iL
(
R1
1
R2 R2
)C
e

线性系统理论第一章

线性系统理论第一章

第一章线性定常系统的状态空间描述及运动分析1.1 线性定常系统的传递函数描述传递函数描述局部的,有局限性的描述传递函数描述的是系统的输入--输出关系,即假定对系统结构的内部信息一无所知,只能得到系统的输入信息和输出信息,系统内部结构就像一个"黑箱"一样,因此,传递函数只能刻画系统的输入--输出特性,它被称为系统的输入--输出描述和外部描述.常用的数学工具:拉普拉斯变换主要适用于描述线性定常系统1.单变量情形回顾已知由下列常系数微分方程描述的定常系统其中 : 系统的输出 ; :系统的输入; : 时间; 均为常数 ,(希望input少,收益大)假定所有初始值(包括导数的值)全为0,对上式两边取拉普拉斯变换,得到其中为的拉普拉斯变换,则下式称为系统的传递函数 :传递函数为的真有理分式,则称系统为物理能实现的. 单输入--单输出系统的传递函数必为真有理分式.系统的特征多项式: 多项式系统的特征方程 : 代数方程系统的极点 : 特征方程的根或者说特征方程的零点系统的零点 : 多项式的零点传递函数的零点和极点 : 零极相消后剩下的系统的零点和极点 (若系统有相同的零点和极点,则称系统有零极点相消)2.传递函数矩阵考察多输入--多输出的线性定常系统.令输入变量组 : {} , 输出变量组 : {} 且假定系统的初始变量为 0 .用和分别表示和的拉普拉斯变换, 表示系统的由第个输入端到第个输出端的传递函数,其中则由系统的线性属性(即满足叠加原理) 可以导出:称由上式所定义的为系统的传递函数矩阵. 容易看出, 为的一个有理分式矩阵. 当的元传递函数除严格真还包含真有理分式时,即它的一个或一些元传递函数中分母和分子多项式具有相等的最高幂次时,称为真有理分式矩阵.通常,当且仅当为真的或严格真的时,它才是物理上可实现的.作为一个判别准则,当且仅当零阵时, 为严格真的;非零常阵传递函数矩阵为真的.1.2 线性定常系统的状态空间描述1. 状态和状态空间定义1.1 动力学系统的状态定义为完全的表征系统时间域行为的一个最小内部变量组.组成这个变量组的变量称为系统的状态变量,其中为初始时刻由初始变量构成的列向量称为系统的状态向量,简称为状态.状态空间则定义为状态向量取值的一个向量空间.几点解释:1. 状态向量组可完全的表征系统行为的属性.2. 状态变量组的最小性.3. 状态变量组在数学上的特征.4. 状态变量组包含了系统的物理特征.5. 状态变量组选取上的不唯一性定理1.1 系统任意选取的两个状态变量组之间为线性非奇异的关系2.动态系统的状态空间描述和输入--输出描述不同,状态空间描述中把系统动态过程的描述考虑为一个更加细致的过程,输入引起系统状态的变化,而状态和输入则决定了输出的变化."输入"引起"状态"的变化 ( 一个运动的过程)数学上必须采用微分方程或差分方程来表征并且称这个数学方程为系统的状态方程考虑最为一般的连续动态过程: (一个一阶非线性时变微分方程组)进而,在引入向量表示的基础上,还可将状态方程简洁的表示为向量方程的形式:其中"状态"和"输入"决定"输出"的变化 (一个变量见的转换过程)描述这种转换过程的数学表达式为变换方程,并且称之为系统的输出方程或量测方程.最一般的,一个连续的动力学系统的输出方程具有以下形式:表示为向量方程的形式为其中系统的状态空间描述由状态方程和输出方程组成.离散动态过程(离散系统)的状态空间的描述: 只在离散时刻取值,用来表示其状态空间过程描述只反映离散时刻的变量组间的因果关系和转换关系.通常,可采用两条可能的途径来组成系统的状态空间描述:一是分析途径,适用于结构和参数已知的系统;二是辨识的途径,适用于结构和参数难于搞清楚的系统.3.线性定常系统的状态空间描述限于考虑线性定常系统的连续动态过程,此时,向量函数将都具有线性的关系,且不显含时间 .从而线性定常系统的状态空间描述的表达式为其中维状态向量维控制输入向量维输出向量系统矩阵输入矩阵输出矩阵前馈矩阵以上统称为系统的系数矩阵,均为实常阵.线性定常系统也叫做线性时不变系统(linear time-invariant L TI),完全由系数矩阵决定.简记为.对于线性定常系统,我们分别称系统矩阵的特征值,特征向量,若尔当标准型,特征方程,特征多项式为系统的特征值,特征向量,若尔当标准型,特征方程,特征多项式,系统的特征值也称作系统的极点.若,则此系统为单输入线性定常系统;若,此系统为单输出线性定常系统;若,此系统为单输入--单输出系统,或单变量系统.考虑线性定常离散系统的状态空间描述,其一般形式为其中维状态向量维控制输入向量维输出向量阶实常系数矩阵简记为1.3 输入输出描述导出状态空间描述------------- 系统的实现问题(第五章详解)考虑单输入--单输出线性定常系统.表征此系统动态过程的输入-输出描述,时域为或等价的频域描述即传递函数其中和分别表示和的拉普拉斯变换对于由上式描述的系统,可以引进状态变量 ,将其写成状态空间描述形式,其中为维状态变量分别为的常矩阵由"上"写成"下",称为实现问题,实现不具有唯一性1. 当时,有如下结论:定理1.2 给定单输入--单输出线性定常系统的输入输出描述如"上",当时,其对应的一个状态空间描述为:2. 当时,已知"上"求其状态空间描述.先求极限然后令为严格真,直接按的形式写出即可.3. 当时, 此时输入输出关系为此时状态空间描述形式为:1.4 由状态空间描述导出的传递函数矩阵对于多输入--多输出线性定常系统,传递函数矩阵是表征系统输入输出特性的最基本的形式.1. 传递函数矩阵的表示的基本表达式定理1.3 对应于状态空间描述的传递函数矩阵为并且 ,当时, 为真的 , 时, 为严格真的,且有2.的实用关系式有给出的关系式在理论分析上很重要,但从计算的角度而言不方便,下面给出由计算的两个实用算式.定理1.4 给定状态空间描述的系数矩阵 , 求出则相应的传递函数矩阵可表示为注: 的根 : 系统的极点 ; 分子的根 : 系统的零点推论1.1 若的最小多项式为则系统的传递函数矩阵可表示为2. 脉冲响应矩阵和状态空间描述定理1.11 线性定常系统其中的实常阵的脉冲响应矩阵为将其写作更为常用的形式定理1.12 两个代数等价的线性定常系统具有相同的脉冲响应矩阵.定理1.13 两个代数等价的线性定常系统具有相同的输出零状态响应和输出零输入响应.3. 脉冲响应矩阵和传递函数矩阵定理1.14 分别表示线性定常系统的脉冲响应矩阵和传递函数矩阵,则有推论1.2 给定两个线性定常系统 ,设两者都具有相同的输入和输出维数,状态维数不一定相同,则两系统具有相同的脉冲响应矩阵(即相同的传递函数矩阵)的充要条件为1.8 线性定常离散系统的运动分析归结为对定常的线性差分方程进行求解.1. 线性定常离散系统的运动规律对于上述系统,其状态运动的表达式为或2. 脉冲传递函数矩阵取初始状态 , 则可得到系统的输入输出关系式为其中为线性定常离散系统的传递函数矩阵, 按习惯称为脉冲传递函数矩阵.G(z) 为 z 的有理分式矩阵,通常只讨论其为真的或严格真的情况,此时 G(z) 为物理可实现的. 1.9 线性定常系统的时间离散化1. 问题的提出把连续时间系统化为等价的离散时间系统的问题. (课本P22 或百度文库)2.线性定常系统按采样周期T的离散化线性定常系统引入三点基本假设,以保证系统离散化后的描述简单,且是可复原的1. 采样器的采样方式取为以常数 T 为周期的等间隔采样. 采样瞬时为2. 保持器为零阶的.3. 采样周期的值要满足香农(Shannon)采样定理所给出的条件香农定理:离散信号可以完满地复原为原来的连续信号的条件为采样频率满足.考虑到 , 故上式可化为定理1.15 上述系统的时间离散化模型为其中注 :定理1.15提供了线性定常连续系统时间离散化的算法, 离散化系统仍为定常系统.不管A是否奇异,离散化后系统矩阵G一定是非奇异的.。

线性系统理论 第2章 线性系统的状态空间描述

线性系统理论 第2章  线性系统的状态空间描述
D(k )
u(k )
H (k )

x(k 1)

x(k )
单位延迟

C (k )

y(k )
G (k )
7/7,11/50
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
设系统的状态空间描述为 x f ( x, u, t ) y g ( x, u, t )
向量函数
g1 ( x, u, t ) f1 ( x, u, t ) g ( x, u , t ) f ( x, u , t ) ,g ( x, u, t ) 2 f ( x, u , t ) 2 g q ( x, u , t ) f n ( x, u , t )
和t≥t0 各时刻的任意输入变量组 u1 (t ),u2 t ,, u p (t ) 那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
3/4,3/50
(2).状态变量组最小性的物理特征: 少一个不行,多一个没用 (3). 状态变量组最小性的数学特征:极大线性无关变量组 (4). 状态变量组的不唯一性 :任意
1/18,14/50
结论1
给定单输入,单输出线性时不变系统的输入输出描述,
y ( n) an1 y ( n1) a1 y (1) a0 y bmu ( m) bm1u ( m1) b1u (1) b0u
Y (s) bm s m bm1 s m1 b1 s1 b0 g ( s) U ( s) s n an1 s n1 a1 s a0
时变系统和时不变系统
f f ( x, u ) 若向量f,g不显含时间变量t,即 g g ( x, u )

线性控制系统-现代控制理论基础

线性控制系统-现代控制理论基础

第1章 现代控制理论基础
1.1 线性系统的状态空间描述 State Space Description
设系统动态方程为
x Ax Bu y Cx Du
u Rm yRp
状态解:x(t) eA(tt0 ) x(t0 )
t e A(t ) Bu( )d
t0
转移矩阵(定义):(t t0 ) e A(tt0 )

, rank0 n (矩阵及秩)
CAn1

(2)
rank
sI

C
A

n,
s
(复域)
输出能控:线性定常系统输出完全能控的充分必要 条件是:
rank[D CB CAB
CAn1B]m(nrr) m
1.4 标准形 Standard form, Canonical form
x(t
)


xc xc
(t) (t)


A11 0
A12 A22


xc xc
(t ) (t)


B1 0

u(t
)
y(t) C1
C2


xc xc
(t ) (t)
例1: x1 1 0 0 x1 1
P1

Pc1


P1 A
,
P1 0
0

P1
An1

1
U
1 c

0
0
1 b Ab
An1b1
x Pc x Ac Pc1 APc bc Pc1b cc cPc

现代控制工程-第二章线性系统的状态空间描述

现代控制工程-第二章线性系统的状态空间描述

1 x3 s

1 s

1 x1 s
y(t )
2
3
8 64
解:第一步:化简方框图,使得整个系统只有标准积分器(1/s)、 比例器(k)及加法器组成。 第二步:将上述调整过的结构图中的每个标准积分器(1/s) 的输出作为一个独立的状态变量xi,积分器的输入端就是状态变 量的一阶导数dxi/dt。 第三步:写出每个状态变量的一阶微分方程,从而写出系统 的状态方程。
y Cx Du
图2-2 系统动态方程的方块图结构
状态空间分析法具有下列优越之处:
便于在数字计算机上求解;
容易考虑初始条件; 能了解并利用处于系统内部的状态信息; 数学描述简化;
适于描述多输入-多输出、时变、非线性、随机、离散等各类 系统,是最优控制、最优估计、辨识、自适应控制等现代控制系 统的基本描述方法。
例2.2.3求如图所示系统的动态方程。
(a)系统方块图
u(t )

s 1 s2
1 s3
1 s 2 8s 64
y(t )
(b)第一次等效变换

1 s3

u(t )

1 s2

1 s( s 8)
y(t )
64
(c)由标准积分器组成的等效方块图
u(t )

1 x4 s


(2-5)
y t cx t du(t )
,cn ,d为直接联系输入量、输出量 其中 c c1,c2, 的前向传递(前馈)系数,又称前馈系数。
多输入-多输出(含q个输出变量)线性定 常连续系统的输出方程一般表达形式为:
y1 c11 x1 c1n xn d11u1 d1 pu p yq cq1 x1 cqn xn d q1u1 d qp u p

第2章 线性系统的状态空间描述

第2章 线性系统的状态空间描述
特征多项式 定义2.4 [特征矩阵] 特征矩阵] 定义
定义2.5 [特征多项式] 特征多项式] 定义
2.4 线性时不变系统的特征结构
特征多项式α(s)的计算方法 的 特征多项式
莱弗勒(Leverrier)递推算法 递推算法 莱弗勒
2.4 线性时不变系统的特征结构
α ( s ) = s n + α n −1s n −1 + L + α1s + α 0
0 1 0 A = 0 0 1 0 −1 −1
5,化下列各状态方程为对角线规范型或约当规范型 化下列各状态方程为对角线规范型或约当规范型
8 −8 −2 2 3 & x = 4 −3 −2 x + 1 5 u 3 −4 1 7 1
0 1 4 & x= x + 2 u −9 −6
作 业
6,计算下列状态空间描述的传递函数 计算下列状态空间描述的传递函数 −5 −1 2 & x= x + 5 u 3 −1 y = [1 2] x + 4u 7,给定反馈系统如下图所示 给定反馈系统如下图所示
& 为 x1 = y , x2 = y ,列出系统的状态方程和输
出方程
u
+ −
&& y
+

by 2
& y
二次部件

y
+ + +
a (t )
k
作 业
2,试求出下列各个输入输出描述的一个状态空间描述 试求出下列各个输入输出描述的一个状态空间描述
&&& + 2&& + 6 y + 3y = 5u y y & &&& + 2&& + 6 y + 3 y = 7u + 5u & y y & & & 3&&& + 6 && + 12 y + 9 y = 6u + 3u y y

线性控制系统的状态空间描述.doc

线性控制系统的状态空间描述.doc

duc dt
=

(
R1
1 + R2
)C
uc

(R1
R1 + R2
)
iL
+1 (R1 + R2 )C
e(t)
diL dt
=−
L(
R1 R1 +
R2
)
uc

L(
R1 R1
R2 + R2
)
iL
+
R2 e(t) L(R1 + R2 )
写成矩阵形式
⎡ ⎢ ⎢
任何时刻的行为就完全确定了。最小变量组中的每个变量称为状态变量,而以这组状态变量 组成的向量称为状态向量。状态实际上是状态向量的简称。
设 x1 (t), x2 (t), , xn (t) 是系统的一组状态变量,则状态向量就是以这组状态变量为分
量的向量,记为
x(t) = [x1(t) x2 (t)
xn (t)]T

bnr
(t
)
⎥ ⎦
3
⎡ c11(t)
C
(t
)
=
⎢ ⎢ ⎢
c21
(t
)
⎢ ⎣
cm1
(t
)
c12 (t) c22 (t)
cm2 (t)
c1n (t) ⎤
⎡ d11(t)
c2n
(t
)
⎥ ⎥

D(t)
=
⎢ ⎢
d21
(t
)

cmn
(t
)
⎥ ⎦
⎢ ⎣
dm1
(t
)
线性系统的状态空间的描述的结构图如图 1-3 所示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息的选取原则决定了状态变量具有以下特性: 1).线性无关; 2).个数唯一;3).状态不唯一。
注意:1)、状态变量的选取具有非唯一性,既可用某一组 又可用另一组数目最少的变量作为状态变量;
相互独立, 其个数等于微分方程的阶数 ∵ 微分方程阶数取决于独立储能元件的个数
∴ 状态变量的个数应等于独立储能元件的个数
分析方法:从传递函数的零极点分布得出系统定性特 性,并已建立起一整套图解分析设计法,至今仍得到 广泛成功的应用。
现代控制理论描述控制系统数学模型 的方法

内部描述:一阶微分方程或差分方程
Ax Bu x y Cx Du

分析方法:利用状态分析方法,对系统进行一系 列特性分析,来设计状态反馈和输出反馈。
x(t ) x1 (t ), x2 (t ), , xn (t )
或:
四、状态空间和状态轨迹
状态空间:以状态变量 x1 (t ), x2 (t ), xn (t ) 作为坐标 轴所构成的n维空间称为状态空间。 状态轨迹:以初始时刻的状态为初始点,随着 时间的推移,系统状态变化,便在状态空间中 描绘出一条轨迹,称为状态轨线。
一、系统描述
u1 u2

系统内部
y1 y2
yq

up
系统是由若干个部分相互联系来构成的有机整体。 系统的内部可分为两部分: 系统内部信息:系统内部的行为和状况; 系统内部的结构:系统内部信息的相互联系。
问题:如何选取系统内部信息?
R + u

L
C
uc
系统内部信息选择的不同,那么系统内部描述就 会出现差异,直接影响到整个系统的数学描述。
输出方程为:
y c1 x1 c2 x2 cn xn
状态空间表达式为 :
1 a11 x x 2 a21 n an1 x
a1n x1 b1 x b a22 a2 n 2 2u an 2 ann xn bn a12

状态、状态变量 状态向量 状态空间、状态轨迹 状态方程 输出方程 状态空间表达式
本章主要内容(二)

状态空间表达式建立的多种方法 由系统的物理或化学机理出发推导状态空 间表达式 由控制系统的输入输出关系求出状态空间 表达式

由微分方程求状态空间表达式 由传递函数求状态空间表达式

由系统的结构图导出状态空间表达式
多输入-多输出系统状态空间表达式的矢量形式为:
1 a11 x x 2 a 21 n a n1 x y1 c11 y c 2 21 y m c m1
a1n x1 b11 x b a 22 a 2 n 2 21 a n 2 a nn x n bn1 c12 c1n x1 d11 x d c 22 c 2 n 2 21 c m 2 c mn x n d m1 a12
本章主要内容(三)

系统状态方程的线性变换 基本知识及概念 状态方程的两种标准形式

对角式(重点) 约旦式(了解)

将状态方程化为标准形式 离散系统的状态空间表达式(一般了解) 差分方程的输入函数中不包含差分的情况 差分方程的输入函数中包含差分的情况

经典控制理论描述系统数学模型的方 法
对于一个具有r 个输入﹑m 个输出的复杂系统,其 状态方程为:
1 a11 x1 a12 x 2 a1n x n b11u1 b12 u 2 b1r u r x 2 a 21 x1 a 22 x 2 a 2 n x n b21u1 b22 u 2 b2 r u r x n a n1 x1 a n 2 x 2 a nn x n bn1u1 bn 2 u 2 bnr u r x
第一章
线性系统的状态空间描述
本章主要内容

状态空间描述的基本概念 线性系统的状态空间描述(机理分析法) 从微分方程模型推导状态空间表达式 由控制系统的结构图导出状态空间表达式 系统状态方程的线性变换 离散时间系统的状态空间表达式
本章主要内容(一)
状态空间描述的基本概念


u( t) B( t)
x (t )

1/s
x(t )
C( t)
y (t)
A(t)
y Cx Du
b1r u1 u b22 b2 r 2 bn 2 bnr u r d12 d1r u1 u d 22 d 2 r 2 d m 2 d mr u r b12
设单输入-单输出线性定常连续系统,其状态变量为: x1 (t ), x2 (t ), xn (t ) ,则状态方程的一般形式为:
1 a11 x1 a12 x 2 a1n x n b1u x 2 a 21 x1 a 22 x 2 a 2 n x n b2 u x n a n1 x1 a n 2 x 2 a nn x n bn u x

y uc y x1
x1 矩阵表示式为: y 1 0 x2 y cx 或:
七、状态空间表达式 状态方程和输出方程的组合称为状态空间 表达式。
说明:1、状态空间表达式是对系统的一种完全的描
述,因为它既表征了输入对于系统内部状 态的因果关系,又反映了内部状态对于外 部输出的影响。 2、状态空间表达式是非唯一的,因为系统状 态变量的选择是非唯一的。
外部描述:时域内为高阶微分方程,复频域内为输 入-输出关系的传递函数。
a0 y bnu ( n) bn1u ( n1) b1u b0u y ( n) an1 y ( n1) a1 y
Y ( s) bn s n bn1s n1 b1s b0 G( s) n U (s) s an1s n1 a1s a0
Ax Bu 可简写为: x
系统矩阵或系数矩阵: 表示系统内部状态的 联系,为 n n 方阵
nr
控制矩阵
m 维输
出矢量
Ax Bu x y Cx Du
r维输入矢量
(控制矢量)
m n
输出矩阵
其状态空间结构图为:
n维状态
变量
D(t)
m r 直接传递输
入矩阵 (关联矩阵 )
2)、状态变量不一定在物理上可量测,有时只具 有数学意义
三、状态向量(状态矢量)
若描述系统状态n个状态变量用x1 (t ), x2 (t ), xn (t ) 表示,并把这些状态变量看作是向量(矢量)x(t ) 的分量,则向量 x(t ) 称为n维状态向量,记作 x1(t ) ﹕ T
x ( t ) 2 x( t ) x n (t )
即:
1 ห้องสมุดไป่ตู้ x 1 x 2 LC
1 x 0 R 1 1 u x2 L LC
状态变量选取的不同, 状态方程也不同
六、输出方程 系统输出量与状态变量﹑输入量的关系称为 输出方程。
由系统任务确 定或给定 指定 x1 u c 作为输出 ,则: 用y 表示
y c1 c2
x1 x cn 2 xn
系统矩阵或系数矩阵: 输入矩阵或控制矩阵, 表示系统内部状态的 为输入对状态的作用, n 1 联系,为 n n 方阵 的列阵
简记为:
1 n 输出矩阵
Ax bu x y cx n维状态变量
0 x1 x , A 1 x2 L
1 0 C ,b R 1 L L
c c作为两个状态变量,令: x1 uc , x2 u 若改选 uc 和 u 则该系统的状态方程为:
1 x 2 x 1 R 1 2 x x1 x 2 u LC L LC



系统内部信息选择的原则: 由控制任务来决定:针对不同的系统有不同的 控制任务; 信息选择要全面:信息要覆盖系统的内部; 信息量要恰到好处:“少一个不全面,多一个 多余”,在数学上就是“线性无关”。
二、状态和状态变量
1、状态:表征系统运动的信息和行为。 2、状态变量:足以完全表征系统运动状态的 最小个数的一组变量。
1 x2 C 1 R 1 2 x1 x 2 u x L L L 1 x
写成向量矩阵形式为:
简记为:
Ax bu x
1 0 x x 2 1 L
1 0 C x1 u 1 R x2 L L
经典控制理论模型描述方法的不足之处

系统模型为单输入单输出系统; 忽略初始条件的影响; 不包含系统的所有内部信息; 无法利用系统的内部系统来改变系统的性能。 复杂的时变、非线性、多输入多输出系统的问 题,需要用对系统内部进行描述的新方法—— 状态空间分析法。
1.1状态空间描述的基本概念
输出方程的一般形式为:
y1 c11 x1 c12 x2 c1n xn d11u1 d12u2 d1r ur y2 c21 x1 c22 x2 c2 n xn d 21u1 d 22u2 d 2 r ur ym cm1 x1 cm 2 x2 cmn xn d m1u1 d m 2u2 d mr ur
说明:系统在任一时刻的状态,在状态空间中用一点 表示。
相关文档
最新文档