高考复习专题10 空间向量与立体几何选择填空题(含解析)三年高考试题
高考数学压轴专题最新备战高考《空间向量与立体几何》全集汇编及答案

【最新】数学《空间向量与立体几何》专题解析一、选择题1.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】-,易证平面PAD⊥平面ABCD,平面PCD⊥平面画出该几何体的直观图P ABCDPAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面PCD⊥平面PAD,同理可证:平面PAB⊥平面PAD,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.2.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.3.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.5.若四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和为( )A .2B .25C .425+D .4【答案】B 【解析】根据四面体的三视图可知:一侧面垂直于底面,且底面是以该侧面与底面的交线为直角边的直角三角形,然后根据面面垂直的性质定理,得到与底面的另一直角边为交线的侧面为直角三角形求解. 【详解】由四面体的三视图可知:平面PAB ⊥平面ABC ,BC AB ⊥, 所以BC ⊥平面PAB ,所以BC PB ⊥, 所以,ABC PBC V V 是直角三角形, 如图所示:所以直角三角形的面积和为:11112252252222ABC PBC S S AB BC PB BC +=⨯⨯+⨯⨯=⨯⨯+=+V V 故选:B 【点睛】本题主要考查三视图的应用以及线面垂直,面面垂直的关系,还考查了运算求解的能力,属于中档题.6.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( ) A .若//a α,//b α,则//a bB .若a α⊥,//a b ,则b α⊥C .若a α⊥,a b ⊥r r,则//b αD .若//a α,a b ⊥r r,则b α⊥【答案】B 【解析】 【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解. 【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确; 若a α⊥,a b ⊥r r,则//b α或b α⊂,故C 错误;若//a α,a b ⊥r r,则//b α,或b α⊂,或b 与α相交,故D 错误.【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.7.已知正方体1111ABCD A B C D -的棱长为2,M 为1CC 的中点.若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( )A. B.4+C.D.【答案】A 【解析】 【分析】根据线面垂直确定平面α,再根据截面形状求周长. 【详解】显然在正方体中BD ⊥平面11ACC A ,所以BD ⊥ AM ,取AC 中点E, 取AE 中点O,则11tan tan AOA ACM AO AM ∠=∠∴⊥, 取A 1C 1中点E 1, 取A 1E 1中点O 1,过O 1作PQ//B 1D 1,分别交A 1B 1,A 1D 1于P ,Q 从而AM ⊥平面BDQP ,四边形BDQP 为等腰梯形,周长为2= A. 【点睛】本题考查线面垂直判断以及截面性质,考查综合分析与求解能力,属难题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为2sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为2221284433R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.10.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径323π2sin 2sin 6AB r ACB ===ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.11.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长为2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角. 【详解】解:以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则3(a A ,2a ,0),1(0C ,02)a ,13(a A 2a 2)a ,(0B ,a ,0), 13(a AC =u u u u r ,2a -2)a ,3(aAB =u u u r ,2a ,0),1(0AA =u u u r ,02)a ,设平面11ABB A 的法向量(n x =r,y ,)z ,则13·022·20a a n AB x y n AA az ⎧=-+=⎪⎨⎪==⎩u u u v v u u u v v ,取1x =,得(1n =r ,3,0), 设1AC 与侧面11ABB A 所成的角为θ,则111||31sin |cos ,|2||||23n AC a n AC n AC a θ=<>===r u u u u rr u u u u r g r u u u ur g , 30θ∴=︒,1AC ∴与侧面11ABB A 所成的角为30°.故选:A .【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.12.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .1∶3 C .1∶5 D .3∶2【答案】C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.13.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC ==, 由1132322732DE ⨯⨯⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.14.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( )A .若,与所成的角相等,则B .若,,则 C .若,,则 D .若,,则【答案】C试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则 ,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系15.已知正三棱柱111ABC A B C -的所有棱长都相等,D 是11A B 的中点,则AD 与平面11BCC B 所成角的正弦值为( )A .5B .25C .10D .15 【答案】D【解析】【分析】先找出直线AD 与平面11BCC B 所成角,然后在1B EF V 中,求出1sin EB F ∠,即可得到本题答案.【详解】如图,取AB 中点E ,作EF BC ⊥于F ,连接11,B E B F ,则1EB F ∠即为AD 与平面11BCC B 所成角.不妨设棱长为4,则1,2BF BE ==,13,25EF B E ∴=1315sin 25EB F ∴∠==. 故选:D【点睛】 本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.16.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4πC .512πD .2π 【答案】C【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x ∠=≤≤+-,,即可求出33cos 123QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果. 【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-,在正四面体A BCD -中,易知PQ MQ =,所以在等腰三角形PMQ 中,()2cos 0442QPM x x x ∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C.【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.17.一个几何体的三视图如图所示,则该几何体的体积为A.2383+B.823+C.283D.10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V=⨯⨯⨯⨯=+,故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.18.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C13D22【答案】D【解析】【分析】根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆==,22PAC S ∆=,2ABC S ∆=,故最大面的面积为22.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C【解析】【分析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。
高考数学压轴专题最新备战高考《空间向量与立体几何》全集汇编含答案解析

数学高考《空间向量与立体几何》试题含答案一、选择题1.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( ) A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A【解析】【分析】 D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos 2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO PO APB PD a α==∠, 同理可得: sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>. 故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.2.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B 2C .22D 3【答案】B【解析】【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D 故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u r O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅===u u u u r u u u u r u u u u r 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.3.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64 B .62C .32 D .34【答案】A【解析】【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α.【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=, ∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且113622224BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为64. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.4.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D【解析】【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果.【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值又150FAD ∠=o ,3AF =1AD =()22min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆72+本题正确选项:D【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.5.以下说法正确的有几个( )①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行;A .0个B .1个C .2个D .3个【答案】B【解析】【分析】对四个说法逐一分析,由此得出正确的个数.【详解】①错误,如空间四边形确定一个三棱锥. ②错误,直线可能和平面相交. ③正确,根据公理二可判断③正确. ④错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有1个,故选B.【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.6.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643πB .8316ππ+C .28πD .8216ππ+ 【答案】B【解析】【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可.【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l πππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.8.若四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和为( )A .2B .25+C .425+D .4【答案】B【解析】【分析】 根据四面体的三视图可知:一侧面垂直于底面,且底面是以该侧面与底面的交线为直角边的直角三角形,然后根据面面垂直的性质定理,得到与底面的另一直角边为交线的侧面为直角三角形求解.【详解】由四面体的三视图可知:平面PAB ⊥平面ABC ,BC AB ⊥,所以BC ⊥平面PAB ,所以BC PB ⊥,所以,ABC PBC V V 是直角三角形,如图所示:所以直角三角形的面积和为:11112252252222ABC PBC S S AB BC PB BC +=⨯⨯+⨯⨯=⨯⨯+=+V V 故选:B【点睛】本题主要考查三视图的应用以及线面垂直,面面垂直的关系,还考查了运算求解的能力,属于中档题.9.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D【解析】【分析】 A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.10.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC ==由1132322732DE ⨯⨯⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.11.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .441斛B .431斛C .426斛D .412斛【答案】A【解析】【分析】 由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积1171278127142V =⨯⨯⨯+⨯⨯=,∴粮仓可以储存的粟米7144411.62=≈斛.故选:A .12.已知正三棱柱111ABC A B C -的所有棱长都相等,D 是11A B 的中点,则AD 与平面11BCC B 所成角的正弦值为( )A .5B .25C .10D .15 【答案】D【解析】【分析】先找出直线AD 与平面11BCC B 所成角,然后在1B EF V 中,求出1sin EB F ∠,即可得到本题答案.【详解】如图,取AB 中点E ,作EF BC ⊥于F ,连接11,B E B F ,则1EB F ∠即为AD 与平面11BCC B 所成角.不妨设棱长为4,则1,2BF BE ==,13,25EF B E ∴=1315sin 25EB F ∴∠==. 故选:D【点睛】 本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.13.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - , 其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.14.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( )A .8πB .12πC .83πD .123π【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。
高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)一、单选题1.已知空间向量()3,4,5AB =-,则AB =( ) A .5B .6C .7D .522.设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =- B .(2,2,1)a =-,(3,2,10)b =- C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .2121D .421214.已知四棱锥P ABCD -的底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,12CM BM =,N 是PD 的中点,向量MN AB x AD y AP =-++,则( )A .13x =,12y =-B .16x =-,12y =C .13x,12y =D .16x =,12y =-5.有以下命题:①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个6.已知(2,2,3)a =--,(2,0,4)=b ,则cos ,a b 〈〉=( ) A .48585B .48585-C .0D .17.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱1111,C D A D 上的动点.给出下面四个命题①直线EF 与直线AC 平行;②若直线AF 与直线CE 共面,则直线AF 与直线CE 相交; ③直线EF 到平面ABCD 的距离为定值; ④直线AF 与直线CE 所成角的最大值是3π.其中,真命题的个数是( ) A .1B .2C .3D .48.在以下命题中:①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--,则P ,A ,B ,C 四点共面④若a ,b 是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠,则{},,a b c 构成空间的一个基底⑤若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底; 其中真命题的个数是( ) A .0B .1C .2D .39.已知向量(4,2,4),(6,3,2)a b =--=-,则下列结论正确的是( ) A .(10,5,2)a b +=- B .(2,1,6)a b -=-C .(24,6,8)a b ⋅=-D .||6a =10.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为1BB ,CD 的中点.有下列结论:①三棱锥11A MND -在平面11D DCC 上的正投影图为等腰三角形; ②直线//MN 平面11A DC ;③在棱BC 上存在一点E ,使得平面1AEB ⊥平面MNB ;④若F 为棱AB 的中点,且三棱锥M NFB -的各顶点均在同一求面上,则该球的体积为6π. 其中正确结论的个数是( ) A .0B .1C .2D .311.如图,某圆锥SO 的轴截面SAC ,其中5SA AO =,点B 是底面圆周上的一点,且2cos 3BOC ∠=,点M 是线段SA 的中点,则异面直线SB 与CM 所成角的余弦值是( )A 235B 665C 13D 312.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90BAD ∠=︒,112PA AB BC AD ====,//BC AD ,已知Q 是四边形ABCD 内部一点(包括边界),且二面角Q PD A --的平面角大小为30,则ADQ △面积的取值范围是( )A .2150,15⎛⎤ ⎥ ⎝⎦B .250,5⎛⎤⎥ ⎝⎦C .2100,15⎛⎤ ⎥ ⎝⎦D .3100,5⎛⎤ ⎥ ⎝⎦二、填空题13.已知a =(3,2,-1),b = (2,1,2),则()()2a b a b -⋅+=___________. 14.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.15.正四棱柱1111ABCD A B C D -中,14AA =,3AB =,点N 为侧面11BCC B 上一动点(不含边界),且满足1D N CN ⊥.记直线1D N 与平面11BCC B 所成的角为θ,则tan θ的取值范围为_________.16.如图所示,在平行六面体1111ABCD A B C D -中,1111AC B D F =,若1AF xAB yAD zAA =++,则x y z ++=___________.三、解答题17.如图1,在ABC 中,90C ∠=︒,3BC =3AC =,E 是AB 的中点,D 在AC 上,DE AB ⊥.沿着DE 将ADE 折起,得到几何体A BCDE -,如图2(1)证明:平面ABE ⊥平面BCDE ;(2)若二面角A DE B --的大小为60︒,求直线AD 与平面ABC 所成角的正弦值.18.已知正方体1111ABCD A B C D -中,棱长为2a ,M 是棱1DD 的中点.求证:1DB ∥平面11A MC .19.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC中点,BS CD ⊥.(1)证明:PD ⊥平面ABCD ;(2)平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.20.如图,在多面体ABCDEF 中,AD ⊥平面ABF ,AD ∥BC ∥4EF AD =,,3,2BC AB BF EF ====,120ABF ︒∠=.(1)证明:AC DE ⊥;(2)求直线AE 与平面CDE 所成角的大小.21.如图(1),在直角梯形ABCD 中,AB CD ∥,AB BC ⊥,22CD AB BC ==,过A 点作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折叠,使得DE EC ⊥,如图(2).(1)求证:平面DAB ⊥平面DAE ; (2)求二面角D AB E --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =,PAB 为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证://AE 平面PBC ; (2)求二面角A EB C --的余弦值.23.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且2DE =,//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.24.如图,在三棱锥A BCD -中,ABD △是等边三角形,2AC =,2BC CD ==,BC CD ⊥,E 为空间内一点,且CDE 为以CD 为斜边的等腰直角三角形.(1)证明:平面ABD ⊥平面BCD ;(2)若2BE =,试求平面ABD 与平面ECD 所成锐二面角的余弦值参考答案1.D2.B3.B4.B5.A6.B7.B8.D9.D10.D11.B12.A 13.21415.13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭16.2 17.(1)证明:因为在图1中DE AB ⊥,沿着DE 将ADE 折起, 所以在图2中有DE AE ⊥,DE BE ⊥, 又AEBE E =,所以DE ⊥平面ABE , 又因为DE ⊂平面BCDE , 所以平面ABE ⊥平面BCDE ; (2)解:由(1)知,DE AE ⊥,DE BE ⊥, 所以AEB ∠是二面角A DE B --的平面角, 所以60AEB ∠=︒, 又因为AE BE =, 所以ABE 是等边三角形, 连接CE ,在图1中,因为90C ∠=︒,BC =,3AC = 所以60EBC ∠=︒,AB =因为E 是AB 的中点,所以BE BC == 所以BCE 是等边三角形. 取BE 的中点O ,连接AO ,CO , 则AO BE ⊥,CO BE ⊥,因为平面ABE ⊥平面BCDE ,平面ABE ⋂平面BCDE BE =,所以AO ⊥平面BCDE , 所以OB ,OC ,OA 两两垂直,以O 为原点,OB ,OC ,OA 为x ,y ,z 轴建系,如图所示.30,0,2A ⎛⎫ ⎪⎝⎭,3B ⎫⎪⎪⎝⎭,30,,02C ⎛⎫ ⎪⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭ 所以3322AB ⎛⎫=- ⎪ ⎪⎝⎭,330,,22AC ⎛⎫=- ⎪⎝⎭,332AD ⎛⎫=-- ⎪ ⎪⎝⎭设平面ABC 的法向量为(),,n x y z =,则0,0,n AB n AC ⎧⋅=⎨⋅=⎩即330,2330.22z y z ⎧-=⎪⎪⎨⎪-=⎪⎩取1z =,得平面ABC 的一个法向量为()3,1,1n =,所以33311125cos ,52n AD AD n n AD ⎛⎛⎫⨯+-⨯ ⎪⋅⎝⎭===⨯设直线AD 与平面ABC 所成角为θ,则5sin θ=. 18.以点D 为原点,分别以DA 、DC 与1DD 的方向为x 、y 与z 轴的正方向,建立空间直角坐标系.则()0,0,0D 、()2,0,0A a 、()0,2,0C a 、()2,2,0B a a 、()10,0,2D a 、()12,0,2A a a 、()10,2,2C a a 、()12,2,2B a a a ,M 是棱1DD 的中点得()0,0,M a ,()12,2,2DB a a a =.设面11A MC的一个法向量为(),,n x y z =,()12,0,MA a a =,()10,2,MC a a =,则1120,0,20,0,ax az n MA ay az n MC ⎧+=⋅=⎧⎪⇒⎨⎨+=⋅=⎪⎩⎩令1y =,则()1,1,2n =-.又110DB n DB n ⋅=⇒⊥,因为1DB ⊄平面11A MC ,所以1DB ∥平面11A MC .19.(1)取CD 中点为M ,则DM AB =且//DM AB , 所以四边形ABMD 为平行四边形,可得//BM AD , 所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥, 又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CDAD D =,所以PD ⊥平面ABCD .(2)延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,则()1,1,0B ,()0,0.1P ,设(),,Q x y z 且2PQ QB =,可得()()()212112x x y y z z ⎧=-⎪=-⎨⎪-=-⎩,所以221,,333x y z ===,可得241,,333CQ ⎛⎫=- ⎪⎝⎭,因为AD PD ⊥,AD CD ⊥且PD CD D ⋂=,所以AD ⊥平面PCD . 平面PCD 的法向量为()1,0,0DA =,可得2cos ,211CQ DA CQ DA CQ DA⋅===⋅⋅.即CQ 与平面PCD20.(1)因为AD∥BC∥EF,AD⊥平面ABF,所以BC⊥平面ABF,EF⊥平面ABF,所以四边形ABCD与四边形BCEF都是直角梯形,以B为坐标原点,BA BC所在直线分别为x轴、y轴,过点B且垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,则(2,0,0),(1,0,3),(1,2,3),(0,3,0),(2,4,0)A F E C D--,所以(2,3,0),(3,2,3)AC DE=-=--,所以6600AC DE⋅=-+=,所以AC DE⊥.(2)由(1)知,(3)AE=-,(2,1,0)CD=,(3,23)DE=--,,设平面CDE的法向量为(,,)n x y z=,则CD nDE n⎧⋅=⎨⋅=⎩,即203230x yx y z+=⎧⎪⎨--=⎪⎩,取=1x -,则32,3y z ==,所以31,2,3n ⎛⎫=- ⎪ ⎪⎝⎭为平面CDE 的一个法向量, 设直线AE 与平面CDE 所成的角为0,2πθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 则|||341|3sin |cos ,|2||||4343AE n AE n AE n θ⋅++=〈〉===⋅⨯,所以3πθ=, 所以直线AE 与平面CDE 所成角的大小为3π. 21.证明:(1) AE CD ⊥,AB CD ∥,∴ AE AB ⊥DE EC ⊥,AB EC ∥, ∴DE AB ⊥又AE DE E =,故:AB ⊥平面DAE ,AB ⊂平面DAB ,故:平面DAB ⊥平面DAE .(2)以E 为原点,EA 为x 轴,EC 为y 轴,ED 为z 轴,建立空间直角坐标系,如图:设2DE EC ED ===,∴ ()2,0,0A ,()0,0,2D ,()0,0,0E ,()2,2,0B ,可得:()2,0,2AD =-,()0,2,0AB =,设平面DAB 的法向量(),,n x y z =,则22020n AD x z n AB y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,1n =, 平面ABE 的法向量()0,0,1m =,设二面角D AB E --的大小为θ,则12cos 22m n m n θ⋅===⋅, ∴ 45θ=︒,∴二面角D AB E --的大小为45︒.22.(1)如图,取PC 的中点F ,连接EF ,BF ,∵PE DE =,PF CF =,∴//EF CD ,2CD EF =,∵//AB CD ,2CD AB =,∴//AB EF ,且EF AB =.∴四边形ABFE 为平行四边形,∴//AE BF .∵BF ⊂平面PBC ,AE ⊄平面PBC ,故//AE 平面PBC .(2)取AB 中点O ,CD 中点M ,以O 为原点,OM 为x 轴,AB 为y 轴,OP 为z 轴,建立空间直角坐标系:则()0,1,0A -,()0,1,0B ,()1,2,0C ,()0,0,1P ,()1,2,0D -,11,1,22E ⎛⎫- ⎪⎝⎭,则11,2,22BE ⎛⎫=- ⎪⎝⎭,()0,2,0AB =,()1,1,0BC =, 设平面ABE 的一个法向量为()111,,m x y z =,平面CBE 的一个法向量为()222,,n x y z =, 则111120112022m AB y m BE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令11x =,则()1,0,1m =-, 222220112022n BC x y n BE x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,21x =,则()1,1,5n =--, 设m 与n 的夹角为θ,则66cos 3233m n m n θ⋅===⋅,由二面角A EB C --为钝角,则余弦值为63-.23.(1)解:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则()2,0,0B ,()0,0,2D ,()1,1,2E ,()2,2,0F ,()0,2,0C ,则(2,0,2),(1,1,2),(0,2,0)DB BE BF =-=-=设平面BEF 的法向量(,,)n x y z =,则200n BE x y z n BF y ⎧⋅=-++=⎨⋅==⎩令1z =,则2x =,0y =,所以(2,0,1)n =, ∴向量DB 和()2,0,1n =所成角的余弦为2222220210212(2)DB nDB n ⋅+-=⋅++-.即BD 和面BEF 10 (2)解:因为()2,0,2DB =-,()2,2,0BC =-,所以()()2202024DB BC ⋅=⨯-+⨯+⨯-=-,22DB =,22BC =C 到直线BD 的距离()2222422622DB BC d BC DB ⎛⎫⋅-⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭⎝⎭(3)解:假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,即EP mPF =,设(),,P x y z ,即()()1,1,22,2,x y z m x y z ---=---,所以()()12122x m x y m y z mz ⎧-=-⎪-=-⎨⎪-=-⎩,解得12112121m x m m y m z m +⎧=⎪+⎪+⎪=⎨+⎪⎪=⎪+⎩集P 点坐标为12122(,,)111m m m m m +++++, 则向量12122(,,)111m m AP m m m++=+++,向量1212(,,)111m CP m m m +=-+++, 因为()2,0,2DB =-所以()()12122202011112122020111m m m m m m m m m ++⎧⨯+⨯+-⨯=⎪⎪+++⎨+-⎪⨯+⨯+-⨯=⎪+++⎩,解得12m =. 所以存在p ,求EP 与PF 的比值1224.解:(1)取BD 的中点O ,连接OC ,OA ,因为ABD △是等边三角形,2BD =,所以AO BD ⊥,且3AO =,又因为2BC CD ==,所以OC BD ⊥112CO BD ==,又2AC = 222AO OC AC AO OC ∴+=∴⊥又AO BD ⊥,因为CO BD O ⋂=,二面角A BD C --的平面角AOC ∠是直角,∴平面ABD ⊥平面BCD ;(2)由(1)以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴建立空间直角坐标系, 不妨令E 在平面BCD 上方取CD 的中点F ,连接OF ,EF ,则,OF CD EF CD ⊥⊥.OF EF F ⋂=,,OF EF ⊂平面EOF ,∴CD ⊥平面EOF ,CD ⊂平面OCD ,∴平面EOF ⊥平面OCD ,OF =,EF =, 设EFO πθ∠=-,则(0,0,0)O ,(1,0,0)C ,(0,1,0)D,A ,(0,1,0)B -11111113cos ,cos ,cos ,cos 22222222E BE θθθθθθ⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13322,cos ,sin ,244BE E θθ⎛==∴=∴=∴ ⎝⎭所以(1,1,0)CD =-,13,44CE ⎛=- ⎝⎭,设平面ECD 的一个法向量为(,,)n x y z =,则00CD n CE n ⎧⋅=⎨⋅=⎩,013044x y x y z -+=⎧⎪∴⎨-+=⎪⎩, 令1x =,则1,1,n ⎛=- ⎝⎭因为平面ABD 的一个法向量为(1,0,0)OC =,所以1|cos ,|4OC n〈〉==,即平面ABD 与平面ECD。
空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
2023年高考数学三轮复习立体几何与空间向量(解析版)

查补易混易错点05立体几何与空间向量1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,a⊂α. 2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面.积之和,易漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数133.作几何体的三视图的过程中,可见的边界轮廓线用实线表示,不可见的边界轮廓线用虚线表示.这一点不能忽视,否则易出错.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置关系与数量关系.6.几种角的范围两条异面直线所成的角:0°<θ≤90°;直线与平面所成的角:0°≤θ≤90°;平面与平面夹角:0°≤θ≤90°.7.用空间向量求角时易忽视向量的夹角与所求角之间的关系,如求直线与平面所成的角时,易把直线的方向向量与平面的法向量所成角的余弦值当成线面角的余弦值,导致出错.1.(2023·黑龙江哈尔滨·哈尔滨三中校考一模)苏轼是北宋著名的文学家、书法家、画家,在诗词文书画等方面都有很深的造诣.《蝶恋花春景》是苏轼一首描写春景的清新婉丽之作,表达了对春光流逝的叹息词的下阙写到:A.秋千绳与墙面始终平行A.6π【答案】D【解析】由三视图可知几何体为圆锥与半球的组合体,半球表面积圆锥母线长23l=所以该几何体表面积为5.(2023·河南·校联考模拟预测)已知空间四条直线a ,b ,m ,n 和两个平面α,β满足,a b α⊂,,m n β⊂,a b P = ,m n Q = ,则下列结论正确的是()A .若a m ,则a β∥B .若a β∥且m α ,则αβ∥C .若a β∥且b β∥,则m αD .若a m ⊥且b n ⊥,则αβ⊥【答案】C【解析】对于A :a 可能在平面β内,所以A 错误;对于B :a 与m 可能平行,从而α与β可能相交,所以B 错误;对于C :a β ∥且b β∥,,a b α⊂,a b P = ,βα∴∥,m β⊂ ,m α∴∥,所以C 正确;对于D :如图,由正方形沿一条对角线折叠形成,其中形成的两个平面设为,αβ,折痕设为b ,在平面α的对角线设为a ,在β内的对角线设为n ,同时作m n ⊥,此时//m b ,易知b a ⊥,则m a ⊥,但此时α与β不垂直,所以D 错误.故选:C.6.(2023·甘肃定西·统考一模)攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm由题知该圆锥的底面半径为所以该屋顶的体积约为1 3故选:D.7.(2023·北京·统考模拟预测)臑.已知鳖臑ABCD的四个顶点均在表面积为A.23B.4又POD∽PBC可得两边平方得22(416r r R R-=+将①代人②化简整理得则1r=,故选B9.(2023·安徽安庆·统考二模)图),O为底面圆的中心,距离为1,B为截面图形弧上的一点,且A.74B【答案】C【解析】圆柱半径为10.(2023·山东聊城·统考模拟预测)在三棱锥二面角P AB C--的大小为3π4.若三棱锥-P ABC的体积最大时,球O的体积为(A.3π2B.6π【答案】D【解析】设点P在平面ABC内的射影为考虑到二面角P-AB-C的大小为3π因为PH⊥平面ABC,AB⊂平面ABC所以PH AB⊥,又PA AB⊥,PA所以AB⊥平面PAH,AH⊂平面PAH所以PAH∠为二面角P AB C--的平面角的补角,11.(多选题)(2023·江苏南通·统考模拟预测)含边界)上一点,下列说法正确的是(A.存在唯一一点P,使得DP//B.存在唯一一点P,使得AP//面C.存在唯一一点P,使得1A P⊥D .存在唯一一点P ,使得1D P ⊥面11AC D【答案】AD【解析】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B A C D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-= ,因为1111AC A D A ⋂=,111,AC A D ⊂平面11ACD ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅= ,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥ 面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.12.(多选题)(2023·山东济宁二模)已知长方体1111ABCD A B C D -中,点P ,Q ,M ,N 分别是棱AB ,BC ,1CC ,11B C 的中点,则下列结论不正确的是()B 选项:如图2,连接AC ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ 所以//AC 平面1B PQ ,若//AM 平面1B PQ ,则平面//AMC 平面又平面AMC 平面111BCC B CC =,平面所以11//B Q CC ,显然不正确,故B 不正确;C 选项:如图3,若1D M ⊥平面1B PQ 则11MD B Q ⊥,又易知11C D ⊥平面BCC 则111C D B Q ⊥,又1111C D MD D = ,所以1B Q ⊥平面11C MD ,1CC ⊂平面1C 显然不正确,故C 不正确;D 选项:如图4,连接AC ,CN ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ ⊂平面所以//AC 平面1B PQ ,因为Q ,N 分别是BC ,11B C 的中点,所以所以四边形1B NCQ 是平行四边形,则CN NC ⊄平面1B PQ ,1B Q ⊂平面1B PQ ,所以NC //平面1B PQ ,且AC NC C = ,因此平面//ACN 平面1B PQ ,AN ⊂平面所以//AN 平面1B PQ ,故D 正确.故选:ABC.13.(多选题)(2023·山东泰安·统考模拟预测)如图,若113A B =,4AB =,12AA =则下列说法正确的是(A .11//AB EC B .EC ⊥平面1ADD C .1//AA 平面1CED对于C 选项,设AD 与EC 交于点所以6AM =,即11A D AM =1CED ,1AA ⊄平面1CED ,所以1//AA 平面1CED ,故C 对于D 选项,11//,A N OO OO 1A AN ∠为侧棱与底面所成的角,在所以160A AN ∠= ,故D 正确故选:BCD14.(2023·辽宁·鞍山一中校联考模拟预测)上有两个动点E 、F ,且EFA .AC BE⊥C .三棱锥A BEF -的体积为定值【答案】ABC【解析】对于A 选项,连接因为四边形ABCD 为正方形,则1BB ⊥ 平面ABCD ,AC 11,,BD BB B BD BB = 所以AC ⊥平面11BB D D ,因为BE ⊂平面11BB D D ,因此对于B 选项,因为平面所以//EF 平面ABCD ,对于C 选项,因为△点A 到平面BEF 的距离为定值,故三棱锥对于D 选项,设AC 由A 选项可知,AC ⊥11B D ⊂Q 平面11BB D D ,则因为11//BB DD 且1BB DD =则11//BD B D 且1BD B D =因为M 、O 分别为1B D DD MO故选:ABC.15.(2023·广东·统考一模)在四棱锥若SD AD=,则()A.AC SD⊥B.AC与SB所成角为60︒C.BD与平面SCD所成角为D.BD与平面SAB所成角的正切值为【答案】ACD【解析】选项A,因为SD⊥因为四边形ABCD是正方形,所以面SBD,又SB⊂面SBD,所以AC SB⊥选项B,因为AC⊥平面SBD选项C,因为SD⊥底面ABCD因为四边形ABCD是正方形,所以所以BC⊥平面SCD,所以BD与平面SCD所成角为选项D,如图,取SA中点K故选:ACD16.(2023·广东江门·统考一模)则坐标原点O 到直线l 的距离【答案】3【解析】由题知,直线l 过点所以()1,2,0AO =--,所以点()0,0,0O 到l 的距离为()225AO m d AO m ⎛⎫⋅⎛ ⎪=-=- ⎪⎝⎝⎭17.(2023·广东广州·广州市第二中学校考模拟预测)设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为【答案】4【解析】由三视图可得该几何体为三棱锥,如图所示,其中棱锥的高为2m ,底面三角形的底边长为则该几何体的体积为114332⨯⨯⨯⨯18.(2023·河北衡水中学预测)冰激凌是以饮用水、牛乳、奶粉、奶油(或植物油脂)等为主要原料,加入适量食品添加剂,经混合、灭菌、均质、老化、凝冻、硬化等工艺制成的体积膨胀的冷冻食品.如图所示的冰激凌的下半部分可以看作一个圆台,上半部分可以近似看作一个圆锥,若圆台的上底面半径、圆台的高与圆锥的高都为3.6cm ,则此圆锥的体积与圆台的体积的比值为【答案】100271【解析】圆锥的体积214π43V ⨯=,根据圆台的体积公式(13V S =+上h 为台体的高),得圆台的体积(224π44 3.63V =+⨯+(1)证明:平面QAD(2)若点P为四棱锥积为43,求BP与平面【解析】(1)取AD因为QA QD=,OA而2AD=,5QA=在正方形ABCD中,因为因为3QC=,故QC因为OC AD O=,且故QO⊥平面ABCD因为QO⊂平面QAD (2)在平面ABCD(1)证明:PB AC⊥;(2)再从条件①、条件到平面BPC的距离.①22AC=;②PO⊥【解析】(1)证明:连接因为AB BC =,所以OB 又因为PO OB O = ,PO 所以AC ⊥平面POB ,因为所以AC PB ⊥.(2)选择①,由题222AB BC AC +=,所以则2OP OB ==,2PO +所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =-- 所以A 到平面BPC 的距离为选择②由(1)得,PO AC ⊥,PO ⊥则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =--所以A 到平面BPC 的距离为。
数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)平面几何是3维欧氏空间的几何的传统称号,下面是平面几何与空间向量专题温习检测,请考生练习。
一、选择题1.(2021武汉调研)一个几何体的三视图如下图,那么该几何体的直观图可以是()解析 A、B、C与仰望图不符.答案 D2.将长方体截去一个四棱锥,失掉的几何体如下图,那么该几何体的侧(左)视图为()解析抓住其一条对角线被遮住应为虚线,可知正确答案在C,D中,又结合直观图知,D正确.答案 D3.(2021安徽卷)一个多面体的三视图如下图,那么该多面体的外表积为()A.21+3B.18+3C.21D.18解析由三视图知,该多面体是由正方体割去两个角所成的图形,如下图,那么S=S正方体-2S三棱锥侧+2S三棱锥底=24-231211+234(2)2=21+3.答案 A4.S,A,B,C是球O外表上的点,SA平面ABCD,ABBC,SA=AB=1,BC=2,那么球O的外表积等于()A.4B.3C.2解析如下图,由ABBC知,AC为过A,B,C,D四点小圆直径,所以ADDC.又SA平面ABCD,设SB1C1D1-ABCD为SA,AB,BC为棱长结构的长方体,得体对角线长为12+12+22=2R,所以R=1,球O的外表积S=4.故选A.答案 A5.(2021湖南卷)一块石材表示的几何体的三视图如下图.将该石材切削、打磨,加工成球,那么能失掉的最大球的半径等于()A.1B.2C.3D.4解析由三视图可得原石材为如下图的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.假定要失掉半径最大的球,那么此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.应选B.答案 B6.点A,B,C,D均在同一球面上,其中△ABC是正三角形,AD平面ABC,AD=2AB=6,那么该球的体积为()A.323B.48C.643D.163解析如下图,O1为三角形ABC的外心,过O做OEAD,OO1面ABC,AO1=33AB=3.∵OD=O A,E为DA的中点.∵AD面ABC,AD∥OO1,EO=AO1=3.DO=DE2+OE2=23.R=DO= 23.V=43(23)3=323.答案 A二、填空题7.某四棱锥的三视图如下图,该四棱锥的体积是________. 解析由三视图可知,四棱锥的高为2,底面为直角梯形ABCD.其中DC=2,AB=3,BC=3,所以四棱锥的体积为132+3322=533. 答案 5338.如图,在三棱柱A1B1C1-ABC中,D,E,F区分是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC 的体积为V2,那么V1V2=________.解析设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,那么V1=1314S12h=124Sh=124V2,即V1V2=124. 答案 1249.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,那么四面体ABCD的外接球的外表积为________.解析结构一个长方体,使得它的三条面对角线区分为4、5、6,设长方体的三条边区分为x,y,z,那么x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772. 答案 772三、解答题10.以下三个图中,左边是一个正方体截去一个角后所得多面体的直观图.左边两个是其正(主)视图和侧(左)视图. (1)请在正(主)视图的下方,依照画三视图的要求画出该多面体的仰望图(不要求表达作图进程).(2)求该多面体的体积(尺寸如图).解 (1)作出仰望图如下图.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)失掉的,所以截去的三棱锥体积VE-A1B1D1=13S△A1B1D1A1E=1312221=23,正方体体积V正方体AC1=23=8,所以所求多面体的体积V=8-23=223.11.(2021安徽卷)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过 A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分红上下两局部的体积之比.解 (1)证明:由于BQ∥AA1,BC∥AD,BCBQ=B,ADAA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点.(2)如图,衔接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分红上下两局部的体积区分为V上和V下,BC=a,那么AD=2a.VQ-A1AD=13122ahd=13ahd,VQ-ABCD=13a+2a2d12h=14ahd,所以V下=VQ-A1AD+VQ-ABCD=712ahd,又V四棱柱A1B1C1D1-ABCD=32ahd,所以V上=V四棱柱A1B1C1D1-ABCD-V下=32ahd-712ahd=1112ahd.故V上V下=117.B级才干提高组1.(2021北京卷)在空间直角坐标系Oxyz中,A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).假定S1,S2,S3区分是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,那么()A.S1=S2=S3B.S2=S1且S2S3C.S3=S1且S3 S2D.S3=S2且S3S1解析作出三棱锥在三个坐标平面上的正投影,计算三角形的面积.如下图,△ABC为三棱锥在坐标平面xOy上的正投影,所以S1=1222=2.三棱锥在坐标平面yOz上的正投影与△DE F(E,F 区分为OA,BC的中点)全等,所以S2=1222=2.三棱锥在坐标平面xOz上的正投影与△DGH(G,H区分为AB,OC 的中点)全等,所以S3=1222=2.所以S2=S3且S1S3.应选D. 答案 D2.(2021山东卷)三棱锥P-ABC中,D,E区分为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,那么V1V2=________.解析由于VP-ABE=VC-ABE,所以VP-ABE=12VP-ABC,又因VD-ABE=12VP-ABE,所以VD-ABE=14VP-ABC,V1V2=14.答案 143.(理)(2021课标全国卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.解 (1)衔接BD交AC于点O,衔接EO.由于ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO平面AEC,PB平面AEC,所以PB∥平面AEC.(2)由于PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|PA|为单位长,树立空间直角坐标系A-xyz.那么D(0,3,0),E0,32,12, AE=0,32,12.设B(m,0,0)(m0),那么C(m,3,0),AC=(m,3,0),设n1=(x,y,z)为平面ACE的法向量,那么n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.又n2=(1,0,0)为平面DAE的法向量,由题设|cos〈n1,n2〉|=12,即 33+4m2=12,解得m=32.由于E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体积V=131233212=38.3.(文)如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF 的位置(点A与P重合),使得PEB=30.(1)求证:EF(2)试问:当点E在何处时,四棱锥P-EFCB的正面PEB的面积最大?并求此时四棱锥P-EFCB的体积.解 (1)证明:∵AB=BC,BCAB,又∵EF∥BC,EFAB,即EFBE,EFPE.又BEPE=E,EF平面PBE,EFPB.(2)设BE=x,PE=y,那么x+y=4.S△PEB=12BEPEsinPEB=14xy14x+y22=1.当且仅当x=y=2时,S△PEB的面积最大.此时,BE=PE=2.由(1)知EF平面PBE,平面PBE平面EFCB,在平面PBE中,作POBE于O,那么PO平面EFCB.即PO为四棱锥P-EFCB的高.又PO=PEsin30=212=1.S梯形EFCB =12(2+4)2=6.VP-BCFE=1361=2.平面几何与空间向量专题温习检测及答案的全部内容就是这些,查字典数学网预祝考生可以取得更好的效果。
高考数学压轴专题南充备战高考《空间向量与立体几何》知识点训练及答案
数学高考《空间向量与立体几何》试题含答案一、选择题1.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.2.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.3.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥l B .若m ∥l ,则m ∥β C .若m ⊥β,则m ⊥l D .若m ⊥l ,则m ⊥β【答案】D 【解析】 【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 故选:D. 【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.4.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C 【解析】 【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积. 【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C. 【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.5.如图,在正方体1111ABCD A B C D - 中,,E F 分别为111,B C C D 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠ 的最大值是( )A .2B .2C .22D .32【答案】C 【解析】分析:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,则AO =P PM ,从而A 1P=C 1M ,由此能求出tan ∠APA 1的最大值.详解:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,设正方形ABCD ﹣A 1B 1C 1D 1中棱长为1,∵在正方形ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为B 1C 1,C 1D 1的中点, 点P 是底面A 1B 1C 1D 1内一点,且AP ∥平面EFDB , ∴AO =P PM ,∴A 1P=C 1M=244AC =, ∴tan ∠APA 1=11AA A P242. ∴tan ∠APA 1的最大值是2. 故选D .点睛:本题考查角的正切值的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查运算求解能力,是中档题.6.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.7.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169π B .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.8.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B .3 C .223D .63【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u u r r ,即可得出答案. 【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r ru u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以222cos 1sin 3θθ=-= 故选:C 【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.9.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C 【解析】 【分析】根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小. 【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等, 所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SOOMγ=,如下图(3)所示:因为,,SN SO OE OM ≥≥ 所以tan tan tan αγβ≥≥, 而,,αβγ均为锐角, 所以,αγβ≥≥故选:C. 【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.10.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.11.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB 3C .4πD 3 【答案】A 【解析】 【分析】设BC 的中点是E ,连接DE ,由四面体A′BCD 的特征可知,DE 即为球体的半径. 【详解】设BC 的中点是E ,连接DE ,A′E , 因为AB =AD =1,BD 2 由勾股定理得:BA ⊥AD又因为BD ⊥CD ,即三角形BCD 为直角三角形所以DE 为球体的半径3DE =234()3S ππ== 故选A 【点睛】求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.12.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( ) A .36π B .64πC .100πD .144π【答案】C 【解析】 【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解. 【详解】 解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732DE ⨯⨯=,解得9DE =, 则21AE EF DE==.∴球O 的直径为10DE EF +=, 则球O 的半径为11052⨯=.∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.13.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8πB .12πC .83πD .123π 【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。
立体几何与空间向量综合测试卷(新高考专用)(解析版)-高中数学
立体几何与空间向量综合测试卷(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(2024·湖南·三模)已知m,n是两条不重合的直线,α,β是两个不重合的平面,下列命题正确的是()A.若m//α,n//β,α//β,则m//nB.若m⊂α,n⊂α,m//β,n//β,则α//βC.若m⊥α,m//n,α⊥β,则n⊥βD.若m⊥α,n⊥β,m⊥n,则α⊥β【解题思路】利用空间线线的关系、面面平行、面面垂直的判定定理和性质逐一判定各选项,即可得出结论.【解答过程】对于A,若n//β,α//β,则n//α或n⊂α,则m,n相交、平行、异面都有可能,A错误;对于B,若m⊂α,n⊂α,m//β,n//β,则α与β相交或平行,B错误;对于C,若m⊥α,m//n,则n⊥α,又α⊥β,则n//β或n⊂β,C错误;对于D,由m⊥α,m⊥n,得n//α或n⊂a,若n//α,则存在过n的平面与α相交,令交线为l,则n//l,而n⊥β,于是l⊥β,α⊥β;若n⊂a,而n⊥β,则α⊥β,因此α⊥β,D正确.故选:D.2.(5分)(2024·浙江嘉兴·模拟预测)设x,y∈R,a=(1,1,1),b=(1,y,z),c=(x,―4,2),且a⊥c,b∥c,则|2a+b|=()A.B.0C.3D.【解题思路】根据向量的垂直和平行,先求出x,y,z的值,再求所给向量的模.【解答过程】由a⊥c⇒a⋅c=0⇒x―4+2=0⇒x=2,由b∥c⇒12=y―4=z2⇒y=―2,z=1.所以|2a+b|=|2(1,1,1)+(1,―2,1)|=|(3,0,3)|=故选:D.3.(5分)(2024·新疆乌鲁木齐·三模)三棱锥A―BCD中,AD⊥平面ABC,∠BAC=60°,AB=1,AC=2,AD=4,则三棱锥A―BCD外接球的表面积为()A.10πB.20πC.25πD.30π【解题思路】利用余弦定理先求出底面三角形ABC的外接圆半径r,再利用R2=r2+(ℎ2)2(ℎ为三棱锥的高,R为外接球半径),即可求解.【解答过程】在△ABC中,∠BAC=60°,AB=1,AC=2,由余弦定理可得BC2=AB2+AC2―2AB⋅AC⋅cos∠BAC,即BC2=1+4―2×1×2×cos60°=3,所以BC=设△ABC的外接圆半径为r,则2r=BCsin∠BAC==2,所以r=1,AD⊥平面ABC,且AD=4,设三棱锥A―BCD外接球半径为R,则R2=r2+(12AD)2,即R2=1+4=5,所以三棱锥A―BCD外接球的表面积为4πR2=20π.故选:B.4.(5分)(2024·辽宁沈阳·模拟预测)已知直三棱柱ABC ―A 1B 1C 1中,∠ABC =120°,AB =CC 1=2,BC =1,则异面直线AB 1与BC 1所成角的余弦值为( )A B C D 【解题思路】根据空间向量法求线线角即可.【解答过程】以B 为原点,在平面ABC 内过B 作BC 的垂线交AC 于D ,以BD 为x 轴,以BC 为y 轴,以BB 1为z 轴,建立空间直角坐标系,因为直三棱柱ABC ―A 1B 1C 1中,∠ABC =120°,AB =CC 1=2,BC =1,所以―1,0),B 1(0,0,2),B(0,0,0),C 1(0,1,2),所以AB 1=(―BC 1=(0,1,2),设异面直线AB 1与BC 1所成角为θ,所以cos θ=|AB 1⋅BC ||AB 1|⋅|BC 1|==故选:C.5.(5分)(2024·贵州·模拟预测)为了美化广场环境,县政府计划定购一批石墩.已知这批石墩可以看作是一个圆台和一个圆柱拼接而成,其轴截面如下图所示,其中AB =2CE =2EF =40cm ,AC =,则该石墩的体积为( )A .10000π3cm 3B .11000π3cm 3C .4000πcm 3D .13000π3cm 3【解题思路】过点C 作CM ⊥AB 于M ,根据条件,求出圆台的高,再利用圆台与圆柱的体积公式,即可求出结果.【解答过程】如图,过点C 作CM ⊥AB 于M ,因为|AB |=2|CE |=2|EF |=40cm ,|AC |=,所以|AM |=10,|CM |===10,所以圆台的体积为V =13(S 上+S 下+=13(π×102+π×202+×10=7000π3(cm 3),又圆柱的体积为V 1=Sℎ=π×102×20=2000π(cm 3),所以该石墩的体积为7000π3+2000π=13000π3(cm 3),故选:D.6.(5分)(2024·江西赣州·二模)已知球O 内切于正四棱锥P ―ABCD ,PA =AB =2,EF 是球O 的一条直径,点Q 为正四棱锥表面上的点,则QE ⋅QF 的取值范围为( )A .[0,2]B .[4―C .[0,4D .[0,4―【解题思路】根据给定条件,利用体积法求出球O 半径,再利用向量数量积的运算律计算即得.【解答过程】令H 是正四棱锥P ―ABCD 底面正方形中心,则PH ⊥平面ABCD ,而AH =则PH ==P ―ABCD 的体积V =13×22×=正四棱锥P ―ABCD 的表面积S =422+22=,显然球O 的球心O 在线段PH 上,设球半径为r ,则V =13Sr ,即r =3VS=在△POA 中,∠PAO <45∘=∠APO ,于是OA >OP ,又EF 是球O 的一条直径,因此QE ⋅QF =(QO +OE )⋅(QO ―OE )=QO 2―OE 2=QO 2―OH 2,显然OH ≤QO ≤AO ,则(QE ⋅QF )min =0,(QE ⋅QF )max =AO 2―OH 2=AH 2=2,所以QE ⋅QF 的取值范围为[0,2].故选:A.7.(5分)(2024·陕西榆林·模拟预测)在正方体ABCD―A1B1C1D1中,E,F分别是DD1,BC1的中点,则()A.EF//BD B.FD1//平面BCEC.EF⊥BC1D.AF⊥平面BCC1B1【解题思路】对于A,说明EF,BD异面即可判断;对于B,说明平面BCE//平面GHD1即可判断;对于C,可以用反证法导出矛盾,进而判断;对于D,显然不垂直.【解答过程】对于A,设G为BB1中点,则EG//BD,但EG,EF相交,所以EF,BD异面,故A错误;对于B,设CC1的中点为H,则BC//GH,BE//GD1,因为GH⊄平面BEC,BC⊂平面BEC,GD1⊄平面BEC,BE⊂平面BEC,所以GH//平面BEC,GD1//平面BEC,又因为GH∩GD1=G,GH,GD1⊂平面GHD1,故平面BCE//平面GHD1,又FD1⊂平面GHD1,故FD1//平面BCE,选项B正确.对于C,在△EBC1中,BE≠EC1,BF=FC1,故EF与BC1不可能垂直(否则EF垂直平分BC1,会得到EB=EC1,这与BE≠EC1矛盾),C选项错误.对于D ,易知AB ⊥平面BCC 1B 1,又AB ∩AF =A ,故D 选项错误.故选:B.8.(5分)(2024·山东临沂·二模)已知正方体ABCD ―A 1B 1C 1D 1中,M ,N 分别为CC 1,C 1D 的中点,则( )A .直线MN 与A 1CB .平面BMN 与平面BC 1D 1C .在BC 1上存在点Q ,使得B 1Q ⊥BD 1D .在B 1D 上存在点P ,使得PA //平面BMN【解题思路】以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为1,由空间向量计算异面直线所成角,二面角和线线垂直可判断ABC ;由N,M,B,A 四点共面,而A ∈平面BMN 可判断D.【解答过程】以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为1,所以A (1,0,0),D (0,0,0),B (1,1,0),C (0,1,0),A 1(1,0,1),D 1(0,0,1),B 1(1,1,1),C 1(0,1,1),M0,1,0,12对于A ,MN =0,―12,0,A 1C =(―1,1,―1),直线MN 与A 1C 所成角的余弦值为|cos ⟨MN ,A 1C ⟩|=|MN⋅A C ||MN ||A 1C |=1=A 错误;对于B ,MN =0,―12,0,BM =―设平面BMN 的法向量为n =(x,y,z ),则n ⋅MN =―12y =0n ⋅BM =―x +12z =0,取x =1,可得y =0,z =2,所以n =(1,0,2),C 1D 1=(0,―1,0),BC 1=(―1,0,1),设平面BC 1D 1的法向量为m =(x 1,y 1,z 1),则n ⋅C 1D 1=―y 1=0n ⋅BC 1=―x 1+z 1=0,取x 1=1,可得y 1=0,z 1=1,所以m =(1,0,1),平面BMN 与平面BC 1D 1夹角的余弦值为:cos⟨m,n⟩=m⋅n==B错误;对于C,因为Q在BC1上,设Q(x0,1,z0),所以C1Q=λC1B,0≤λ≤1,则C1Q=(x0,0,z0―1),C1B=(1,0,―1),所以x0=λ,z0=―λ+1,所以Q(λ,1,―λ+1),B1Q=(λ―1,0,―λ),BD1=(―1,―1,1),.所以B1Q⋅BD1=1―λ―λ=0,解得:λ=12故BC1上存在点B1Q⊥BD1,故C正确;对于D,因为MN//DC//AB,所以N,M,B,A四点共面,而A∈平面BMN,所以B1D上不存在点P,使得PA//平面BMN,故D错误.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
高考数学试题-立体几何选择填空含答案解析
选填训练4答案一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项) 1. 如图,在四面体O −ABC 中,G 是底面△ABC 的重心,且OG ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则log 3|xyz|等于 ( )A. −3B. −1C. 1D. 3【答案】A 解:连结AG ,OG ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ +13(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,∴x =y =z =13, 则log 3|xyz|=log 3127=−3.2. 在△ABC 中A =30°,AC =4,BC =a ,若△ABC 仅一个解时,则a 的取值范围是( )A. a ≥4B. a =2C. a ≥4或a =2D. 无法确定【答案】C解:当a =ACsin30°=4×12=2时,以C 为圆心,以a =2为半径画弧,与射线AD 只有唯一交点, 此时符合条件的三角形只有一个,当a ⩾4时,以C 为圆心以a 为半径画弧时,在从垂足到A 点之间得不到交点,交点只能在垂足外侧,三角形也是唯一的, ∴a ≥4或a =2,故选C .3. 设两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 满足|e 1⃗⃗⃗ |=2,|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 之间的夹角为60°,若向量2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ 与向量e 1⃗⃗⃗ +t e 2⃗⃗⃗ 的夹角为钝角,则实数t 的取值范围是( )A. (−7,−12)B. (−7,−√142)∪(−√142,−12) C. (−7,−√142)D. (−√142,−12)【答案】B解:由题意知(2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ )·(e 1⃗⃗⃗ +t e 2⃗⃗⃗ )<0,即2t 2+15t +7<0,解得−7<t <−12.又由2t ·t −7≠0,得t ≠±√142,∴t ∈(−7,−√142)∪(−√142,−12). 故选B .4. 已知向量a ⃗ =(1,2),a ⃗ ·b ⃗ =10,|a ⃗ +b ⃗ |=5√2,b ⃗ 方向上的单位向量为e⃗ ,则向量a ⃗ 在 向量b ⃗ 上的投影向量为( ) A. 12e ⃗ B. 2e ⃗ C.125e⃗ D. 52e⃗ 【答案】B解:由a ⃗ =(1,2)可得:|a ⃗ |=√12+22=√5,由|a ⃗ +b|⃗⃗⃗ =5√2两边平方得:|a ⃗ |2+2a ⃗ ·b ⃗ +|b⃗ |2=(5√2)2=50,即:5+2×10+|b⃗ |2=50,解得:|b ⃗ |=5, 设a ⃗ 和b ⃗ 的夹角为θ,则cosθ=a⃗ ·b ⃗|a ⃗ |·|b⃗ |=10√5×5=2√55, 所以向量a ⃗ 在向量b ⃗ 上的投影向量为:|a ⃗ |cosθ·b⃗ |b ⃗ |=√5×2√55e ⃗ =2e ⃗ .故选B .5. 如图所示,在直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =3,AC =AA 1=4,一只蚂蚁由顶点A 沿棱柱侧面经过棱BB 1爬到顶点C 1,蚂蚁爬行的最短距离为( )A. 4B. 4C.D.+【答案】B解:如图所示,把侧面展开,矩形对角线即为蚂蚁爬行的最短距离,∵AB ⊥AC ,AB =3,AC =AA 1=4,∴BC =√AB 2+AC 2=√32+42=5,由题已知AA 1=CC 1=4,∴蚂蚁爬行的最短距离=√(AB +BC )2+(CC 1)2=√(3+5)2+42=4√5,所以最小值为4√5,故选B .6.在四棱锥P−ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为( )A. B. C. D.【答案】A解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”,设AB的中点为N,因为侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊥AD,AB⊂底面ABCD,所以AB⊥侧面PAD,又PA⊂侧面PAD,所以AB⊥PA,根据题目条件可知△PAN≌△CBN,∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”,故动点M的轨迹肯定过点D和点N,而到点P与到点C的距离相等的点为线段PC 的垂直平分面,线段PC的垂直平分面与平面ABCD的交线是一直线.故选A.7.如图,直角梯形ABCD,AB//CD,∠ABC=90°,CD=2,AB=BC=1,E是边CD中点,△ADE沿AE翻折成四棱锥D′−ABCE,则点C到平面ABD′距离的最大值为( )A. 12B. √3−1 C. √22D. √63【答案】C解:直角梯形ABCD ,AB//CD ,∠ABC =90°,CD =2,AB =BC =1,E 是边CD 中点,△ADE 沿AE 翻折成四棱锥D′−ABCE ,当D′E ⊥CE 时,点C 到平面ABD′距离取最大值,∵D′E ⊥AE ,CE ∩AE =E ,CE ,AE ⊂平面ABCE ,∴D′E ⊥平面ABCE , 以E 为原点,EC 为x 轴,EA 为y 轴,ED′为z 轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),D′(0,0,1),B(1,1,0), AB ⃗⃗⃗⃗⃗ =(1,0,0),AC ⃗⃗⃗⃗⃗ =(1,−1,0),AD′⃗⃗⃗⃗⃗⃗⃗ =(0,−1,1), 设平面ABD′的法向量n⃗ =(x,y,z),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =x =0n ⃗ ⋅AD′⃗⃗⃗⃗⃗⃗⃗ =−y +z =0,取y =1,得n ⃗ =(0,1,1),∴点C 到平面ABD′距离的最大值为d =|AC ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=1√2=√22.故选C .8. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值【答案】D解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得R 1=12×DE sin∠DME,R 2=12×DFsin∠DMF ,又DE =DF ,sin∠DME =sin∠DMF , 可得R 1=R 2,可得λ=1.故选D .二、多选题(本大题共4小题,共20.0分。
十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)
专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O 的体积为()A.8πB.4πC.2πD.π4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.27.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.812.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ114.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1615.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.416.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.1617.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.321.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.223.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD,BE,∴BM a,EN a,∴BM≠EN,故选:B.2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【解答】解:对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.故选:B.3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即27,高为6,则该柱体的体积是V=27×6=162.故选:B.5.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【解答】解:方法线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosαcosβ,可得β<α;tanγtanβ,可得β<γ,方法由最大角定理可得β<γ'=γ;方法易得cosα,可得sinα,sinβ,sinγ,故选:B.6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.7.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),(﹣1,0,),(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ,∴异面直线AD1与DB1所成角的余弦值为.故选:C.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.11.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V.故选:C.12.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1,tanθ3,SN≥SO,∴θ1≥θ3,又sinθ3,sinθ2,SE≥SM,∴θ3≥θ2.故选:D.14.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.15.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:P A⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△P AB,△PBC,△P AD.故选:C.16.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.17.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10•π•32×6=63π,故选:B.18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC =CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN AB1,NP BC1;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×()=7,∴AC,∴MQ;在△MQP中,MP;在△PMN中,由余弦定理得cos∠MNP;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1,BD,C1D,∴BD2,∴∠DBC1=90°,∴cos∠BC1D.故选:C.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r,∴该圆柱的体积:V=Sh.故选:B.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为π×12×331,故选:A.21.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,,(0,3,6),(,6,0),,.设平面PDR的法向量为(x,y,z),则,可得,可得,取平面ABC的法向量(0,0,1).则cos,取α=arccos.同理可得:β=arccos.γ=arccos.∵.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα.同理可得:tanβ,tanγ.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为P A,即P A=2,故选:B.23.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1;故答案为:24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCDAB×BC×DD1=10.故答案为:10.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2.故答案为:.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB.△SAB的面积为5,可得sin∠ASB=5,即5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:2.则该圆锥的侧面积:π=40π.故答案为:40π.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:.故答案为:.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则.故答案为:.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h,3,则V,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b(x)=5x4,则,令b′(x)=0,则4x30,解得x=4,∴(cm3).故答案为:4cm3.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量(0,1,0),||=1,直线b的方向单位向量(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,(cosθ,sinθ,﹣1),||,设与所成夹角为α∈[0,],则cosα|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ|cosθ|,当与夹角为60°时,即α,|sinθ|,∵cos2θ+sin2θ=1,∴cosβ|cosθ|,∵β∈[0,],∴β,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R,则球的体积Vπ•()3;故答案为:.。