高数文C1期末A卷(12级)参考答案

合集下载

高等数学c1期末考试试卷和答案

高等数学c1期末考试试卷和答案

高等数学c1期末考试试卷和答案**高等数学C1期末考试试卷**一、选择题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。

A. 0B. 1C. 2D. 32. 极限lim(x→0) (1-cosx)/x的值为()。

A. 0B. 1C. -1D. 23. 以下哪个函数是偶函数()。

A. f(x) = x^3B. f(x) = x^2C. f(x) = x^2 + xD. f(x) = x^2 - x4. 以下哪个积分是发散的()。

A. ∫(0,1) 1/x dxB. ∫(0,1) x dxC. ∫(0,1) 1/√x dxD. ∫(0,1) x^2 dx5. 以下哪个级数是收敛的()。

A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x的导数为______。

7. 函数f(x)=e^x的不定积分为______。

8. 函数f(x)=ln(x)的不定积分为______。

9. 函数f(x)=x^2+3x+2的极值点为______。

10. 函数f(x)=x^3-3x的拐点为______。

三、计算题(每题10分,共30分)11. 计算极限lim(x→∞) (x^2-3x+2)/(x^2+x-2)。

12. 计算定积分∫(0,2) (x^2-2x+1) dx。

13. 计算二重积分∬(D) x^2+y^2 dA,其中D是由x^2+y^2≤1所定义的区域。

四、证明题(每题10分,共20分)14. 证明函数f(x)=x^3在(-∞,+∞)上是增函数。

15. 证明对于任意x∈(0,1),有ln(x)<x-1。

**高等数学C1期末考试试卷答案**一、选择题1. C2. B3. B4. A5. C二、填空题6. 3x^2-37. e^x + C8. x*ln(x) - x + C9. x=-3/2 或 x=110. x=0 或x=±√3三、计算题11. 极限lim(x→∞) (x^2-3x+2)/(x^2+x-2) = 1。

10-11-3高等数学A期末考试试卷(A)参考答案及评分标准

10-11-3高等数学A期末考试试卷(A)参考答案及评分标准

共 2 页 第 1 页10-11-3高数A 期末试卷(A )参考答案及评分标准11.6.21一.填空题(本题共9小题,每小题4分,满分36分)1. 4;2. 2;3. 224()t f t π;4. π-;5. 4π;6. 2,3;7. i π;8. 12;9.2-,0. 二. 计算下列各题(本题共4小题,每小题7分,满分28分)10.解 点(1,1,1)处切线的方向向量{1,2,2}{2,2,5}{14,9,2}=-⨯-=-a ,(4分)切线方程为1111492x y z ---==-.(3分)(或223022550x y z x y z --+=⎧⎨-+-=⎩(7分)) 11.解22201d cos d cos d 2xyy x x x x y x x ===⎰⎰⎰⎰⎰.(3+2+2分) 12.解 由sin ,2sin y x y x ==(0)x π≤≤所围成的区域记为D ,利用Green 公式得2sin 220sin 033(1)d d d d d sin d 24x xCDy x xy y y x y y x x ππσπ++=-=-=-=-⎰⎰⎰⎰⎰⎰Ñ.(3+2+2分) 13. 解 补两个面2211:1x y S z ⎧+≤⎨=⎩,2224:2x y S z ⎧+≤⎨=⎩ ,分别取下侧和上侧,(1分)由12,,S S S 所围成的区域记为Ω,利用Gauss 公式得()d d ()d d Sy x z y z x z y x y -∧+-∧⎰⎰12()d (1)d d (2)d d 0S S y x v x y x y x y x y Ω=+--∧--∧=⎰⎰⎰⎰⎰⎰⎰.(3+3分)三(14).(本题满分8分)解1()n n a a ∞=∑未必收敛,例11n a n =+,10n a n ≤<,而111n n ∞=+∑发散;(2分)1()(1)nn n b a ∞=-∑未必收敛,例111(1)sin 2n n a n n ⎛⎫=+- ⎪⎝⎭,10n a n ≤<,而11(1)n n n ∞=-∑收敛,11sin n n ∞=∑发散,故1(1)11(1)sin 2n nn n n ∞=-⎛⎫+- ⎪⎝⎭∑发散;(2分)1()n c ∞=11n a n =+,10n a n ≤<,而1n ∞=发散;(2分)21()(1)n n n d a ∞=-∑必定收敛,2210n a n ≤<,共 2 页 第 2 页而211n n ∞=∑收敛,所以21(1)n n n a ∞=-∑绝对收敛,故21(1)n n n a ∞=-∑收敛. (2分) 四(15)。

12高数A期末一真题与答案

12高数A期末一真题与答案

淮 海 工 学 院11 - 12 学年 第 2 学期 高等数学A(2)试卷(A 闭卷)答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1.设向量(1,0,2)a =,(0,1,2)b =,则a b ⨯= --------------------------------------(C )(A )23(B )2 (C )3 (D )42.2(,)()yf x y x x y =+,则(,0)xx f x=----------------------------------------------------(B )(A )1 (B )2 (C )x (D )x23. sin cos u y x z =+-在点(0,0,1)-处沿下列哪个方向的方向导数最大-------(A ) (A )(0,1,1)-(B )(1,0,1)- (C )(1,0,1)-(D ))1,0,1( 4.二次积分x d y x f dy ee y⎰⎰10),(的另一种积分次序为-----------------------(C )(A )1ln 0(,)x dx f x y dy ⎰⎰ (B )10(,)x e dx f x y dy ⎰⎰(C )⎰⎰e xdy y x f dx 1ln 0),( (D )1(,)xe e dxf x y dy ⎰⎰5.2252(51)(1)x y x y ds +=++=⎰-----------------------------------------------------------------(D )(A )0 (B ) π (C )2π (D )6.设n u =,则级数-------------------------------------------------------------------(C )(A )11nn n u ∞∞==∑与(B )∑∞=1n nu与1n ∞=都发散(C )∑∞=1n nu收敛,而1n ∞= (D )∑∞=1n n u 发散,而1n ∞=7.设)(x f 是以π2为周期的周期函数,其在],(ππ-上的解析式为2,0(),0x x f x x x πππ⎧--<≤=⎨-<≤⎩,若记)(x f 的傅里叶级数为()S x ,则(7)S π=------(B ) (A )2π- (B )22π- (C )22π (D )2π8.微分方程28xy y y e -'''++=的一个特解可设为--------------------------------------(D ) (A )xae- (B )x axe - (C )()x ax b e -+ (D )2xax e -二、计算题(本大题共4小题,每题7分,共28分)1. 设(,)z f xy x y =+,其中(,)f u v 可微,且0,u f ≠求1()x y uz z f -. 解:x u v z yf f =+------------------------------------------------------------------------------------2y u v z xf f =+-----------------------------------------------------------------------------------2则1()x y uz z y x f -=-.---------------------------------------------------------------------3 2.设D 由,y x y ==x 轴所围成,求2231(1)Ddxdy x y ++⎰⎰. 解: :01,06D r πθ≤≤≤≤----------------------------------------------2则原式12360(1)d r rdr πθ-=+⎰⎰-----------------------------------------212320(1)(1)12r d r π-=++⎰32π=.---------------------------------33.设空间闭区域Ω{}22(,,)1,12x y z x y z =+≤-≤≤,∑是Ω的整个边界曲面的内侧,用高斯公式计算2()2()(1)x y dydz y z x dzdx z z dxdy ∑++-+-⎰⎰. 解: 2,2(),(1)P x y Q y z x R z z =+=-=+------------------------------------------1Ω是半径为1、高为3的圆柱体 ------------------------------------------------1原式=()P Q R Pdydz Qdzdx Rdxdy dxdydz x y z ∑Ω∂∂∂++=-++∂∂∂⎰⎰⎰⎰⎰--------------2 dv Ω=-⎰⎰⎰3π=-.--------------------------------------------------------------------3 4.求411x y y e x x '+=的通解. 解: 1141[]'dx dx x x xye e e x ⎰⎰=-----------------------------------------------------------------------2则4[]'xxy e =-----------------------------------------------------------------------------------2有414xxy e C =+,---------------------------------------------------------------------------2故41()xy e C x=+.--------------------------------------------------------------------------1三、计算题(8分)和建制造,乐在共享。

12级高数(i)期末考试题a卷及答案.doc

12级高数(i)期末考试题a卷及答案.doc

西南财经大学本科期末考试试卷(A)课程名称:高等数学担任教师:谢果等考试学期:2012 - 2013学年第1学期专业:全校各专业学号:年级:2012 姓名:考试时间:2012年月曰(星期)午出题教师必填:1、考试类型:闭卷[7]开卷[](____ 页纸开卷)2、本套试题共五道大题,共—页,完卷时间120分钟。

3、考试用品中除纸、笔、尺子外,可另带的用具有:计算器[]字典[]__________ 等(请在下划线上填上具体数字或内容,所选[]内打钩〉考生注意事项:1、出示学生证或身份证于桌而左上角,以备监考教师查验。

2、拿到试卷后清点并检查试卷页数,如有重页、页数不足、空白页及刷模糊等举手向监考教师示意调换试卷。

3、做题前请先将专业、年级、学号、姓名填写完整。

4、考生不得携带任何通讯工具进入考场。

5、严格遵守考场纪律。

-、填空题(每小题2分,共20分)Vsinx + 1 -1 门--------------- x 01.函数/(%) = < ln(l + x) _____________ 在兀=0处连续,贝%二ax = 02. 设厂(1) = 3,则 lim /(1)7(1-力) __________________ . 2 X 3・1HB 竺fZ 1 -兀2兀2 —14. ____________________________________________ 函数门劝=—的无穷间断点为 _________________________________________________ ・— 3x + 25•设/(x)可导 y = f(e x ),则 y"=7. _____________________________________________________ 已知 f\e x) = \ + x,则/(x) = ___________________________________________________ . 8・a= ___________ , b = ____________ 时,点(1,3)是曲线y = ax 3+bx 2的拐点。

高等数学期末考试A(附答案)

高等数学期末考试A(附答案)

-------------------------------------密-----------------------封-----------------------线---------------------------------系部___________ 班级___________ 考场_________ 姓名______________ 学号_________高等数学期末试卷(A )一、选择题(共25小题,每题2分,共计50分) 1.下列各对函数定义域相同的是( ).A.2)()(,)(x x g x x f ==B.x x g x x f ==)(,)(2C.x x g x x f lg 2)(,lg )(2== D.11)(,1)(2--=+=x x x g x x f2.下列函数在其定义域内不是奇函数的是( ). A.x y sin = B.x y cos = C.x y tan = D.x x y -=33.函数)(x f 在0x x =处有定义是0x x →时)(x f 有极限的( ). A 必要条件 B 充分条件 C 充要条件 D.无关条件 4.下列各式中正确的是( ). A.0sin lim0=→x x x B.1sin lim =∞→x x x C.e n n x =+∞→)11(lim D.e nx =+→)11(lim 05.=+→xx x 1)41(lim ( ).A.4-eB.4e C.41e D.41-e6.=→xxx 5tan 3tan lim( ). A .1 B.53 C.35D.07.设)2(x f y -=,则='y ( ).A.)2(x f 'B.)2(x f -'-C.)2(x f -'D.)2(2x f -'-8.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x ,是),(+∞-∞上的连续函数,则)(=aA. 0B.1C.1-D.2 9.下列各式错误的是( ).A.1-)(μμμx x ='B.a a a x x ln )(⋅='C.x x cos )(sin ='D.x x sin )(cos =' 10.函数)(x f 在0x 处连续是)(x f 在0x 处可导的( ).A.必要条件B.充分条件C.充要条件D.无关条件 11.函数2)(-=x x f 在点2=x 处的导数为( ). A.1 B.0 C.1- D.不存在12.设x 为自变量,当,1=x 0=∆x .1时,=)(3x d ( ). A.3.0 B.0 C.01.0 D.03.013.设)(),(x v v x u u ==都是可微函数,则=)(uv d ( ). A.vdv udu + B.du v dv u '+' C.vdu udv + D.vdu udv -14.设曲线22++=x x y 在点M 处的切线斜率为3,则点M 的坐标为( ). A.)(4,1 B.)(1,4 C.)0,1( D.)1,0( 15.已知函数⎩⎨⎧>≤-=-,0,0,1)(x e x x x f x 则)(x f 在0=x 处( ).A.间断B.连续但不可导C.1)0(-='fD.1)0(='f 16.若)(x f 在点a x =的邻域内有定义,且除去点a x =外恒有0)()()(2>--a x a f x f ,则以下结论正确的是( ).A.)(x f 在点a 的邻域内单调增加B.)(x f 在点a 的邻域内单调减少C.)(a f 为函数)(x f 的极大值D.)(a f 为函数)(x f 的极小值 17.函数)(x f y =在点0x 处取极大值,则必有( ).A.0)(0='x fB.0)(0<''x fC.0)(0='x f ,0)(0<''x fD.0)(0='x f 或)(0x f '不存在 18.下列函数在其定义域内不是单调递增的是( ).A.x x x f 2)(3+=B.)1ln()(2x x x f +-=C.x x x f cos )(+=D.3)1)(1()(+-=x x x f 19.下列极限计算正确的是( ).A.626lim )2(223lim )2(42lim 222232==--=---→→→x x x x x x x x x B.6122lim 222lim )2()22)(2(lim )2(42lim 222222232=+=-++=-++-=---→→→→x x x x x x x x x x x x x x x C.∞=--=---→→)2(223lim )2(42lim 22232x x x x x x x D.不存在2232232)2(lim )42(lim )2(42lim---=---→→→x x x x x x x x x20.当0→x 时,1)1(212-+ax与x cos 1-为等价无穷小,则=a ( ).x2A.1 B.0 C.1- D.常数21.设)(x f 是可导函数,则))(('⎰dx x f 为( ). A.)(x f B.C x f +)( C.)(x f ' D.C x f +')( 22.下列等式中成立的是( ).A.⎰=)()(x f dx x f dB.⎰=dx x f dx x f dxd)()(C.⎰+=c x f dx x f dxd)()( D.dx x f dx x df )()(= 23.在区间),(b a 内,如果)()(x g x f '=',则下列各式中一定成立的是( ). A.)()(x g x f = B.1)()(+=x g x f C.))(())(('='⎰⎰dx x g dx x f D.⎰⎰'='dx x g dx x f )()( 24.)(x f 在区间[]b a ,上连续,则⎰⎰-babadt t f dx x f )()(( ).A. 小于零B.等于零C.大于零D.不确定25.用定积分表示右图x y 2=,2=x 和x 轴围成的面积,正确的是( A.⎰212xdx B.⎰22xdx C.⎰xtdt 02 D.⎰22xtdt二、填空题(共5小题,每题2分,共计10分) 26.(=dx ))32(x d - )()(xxe d dx e --=.27.设n n n n a x a x a x a x f ++++=--1110)( ,则[]=')0(f .28.若函数bx ax x f +=2)(在点1=x 处取极大值2,则=a ,=b .29.设⎰=xx e dt t f 02)(,则=)(x f .30.判断下列两个定积分的大小,⎰12dx x⎰13dx x . 三、判断题(共5小题,每题2分,共计10分) 31.驻点一定是极值点.( )32.可导一定连续,连续不一定可导.( )33.设函数)(x f 在0x 处具有二阶导数,且0)(,0)(00≠''='x f x f ,则当0)(0<''x f 时,)(x f 在点0x 处取极大值.( )34.若函数)(x f 在[]b a ,上连续,在),(b a 内可导,则在),(b a 内至少存在一点)(b a <<ξξ,使得0)(='ξf .( )35.1)21(211122222-=-+-=⎥⎦⎤⎢⎣⎡-=⎰--x dx x .( )四、求下列各式的极限(共2小题,每题4分,共计8分)36.xe e xx x 20lim-→- 37.xdt txa tx ⎰++∞→)11(lim )0(>a五、计算下列不定积分(共2小题,每题4分,共计8分) 38.⎰+dx x )23sin( 39.⎰xdx x cos六、计算下列定积分(共1小题,共计4分)40.⎰-17)12(dx x七、综合题(共1小题,共计10分)41.平面图形D 由抛物线2x y =,1=x 和x 轴组成,请 (1)画出D 的草图 (2)求D 的面积答案:一、选择题(共25小题,每题2分,共计50分)1.B 2.B 3.D 4.C 5.B 6.B 7.D 8.B 9.D 10.A. 11.D 12.A 13.C 14.A 15.C 16.D 17.D 18.D 19.C 20.A 21.A. 22.D 23.C 24.B 25.B二、填空题(共5小题,每题2分,共计10分)26.31- - 27.0 28.=a -2 =b 4 29.=)(x f x e 22 30.>三、判断题(共5小题,每题2分,共计10分) 31.× 32.√ 33.√ 34.× 5.× 四、求下列各式的极限(共2小题,共计8分)36.x e e xx x 20lim -→-=1)2(lim 20x e e x x x ---→————3分=1————————————1分37.x dt t xa t x ⎰++∞→)11(lim )0(>a =1)11(lim x x x ++∞→——3分 =e ————1分五、计算下列不定积分(共2小题,共计8分) 38.⎰+dx x )23sin(=⎰++)23()23sin(31x d x ——2分 =C x ++-)23cos(31————2分39.⎰xdx x cos =⎰x xd sin ——2分=⎰-xdx x x sin sin ————1分 =C x x x ++cos sin ————1分六、计算下列定积分(共1小题,共计4分)40.⎰-107)12(dx x =⎰--107)12()12(21x d x ——2分=108])12(81[21-⋅x ————1分 =0]11[161=-————1分七、综合题(共1小题,共计10分) 41.(1)略————5分(2)⎰=12dx x D ————3分=10331⎥⎦⎤⎢⎣⎡x ————1分 =31——————1分。

2012-13-1高等数学试题参考答案及评分标准(A卷)

2012-13-1高等数学试题参考答案及评分标准(A卷)

2012-13-1高等数学(A )期末考试参考答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、()2,3--2、()0f x '-3、04、()()x x f e e f x ----5、8π 二、选择题 (本大题共5小题,每小题4分,共20分)1、C2、A3、C4、D5、B三、解答下列各题(本大题共3小题,每小题6分,共18分) 1、解:原式=tan 2tan 00011sec 1lim lim lim sin cos sin x x xx x x x x e x e e x x x x x --→→→=--⋅=⋅-……………每步2分 2、解:令sin x t =,则cos dx tdt =, 原式2sin cos cos t tdt t=⎰………………………………………………………………………2分 21cos 211sin sin 2222t tdt dt t t c -⎡⎤===-+⎢⎥⎣⎦⎰⎰………………………………………4分 [].1arcsin 212c x x x +--=…………………………………………………………6分 3、解:1(),P x x =sin (),x Q x x =于是所求通解为: 11sin dx dx x x x y e e dx C x -⎛⎫ ⎪ ⎪⎝⎭⎰⎰=⋅+⎰ln ln sin x x x e e dx C x -⎛⎫ ⎪⎝⎭=⋅+⎰1(cos ).x C x =-+……每步2分 四、解答下列各题(本大题共3小题,每小题7分,总计21分)1、解:当000x t y ===,,,()1(0)2t x t e x ''=+= ………………………………3分cos sin 0,(0)0y y e y t e t y y '''-+==…………………………………………6分 故,00x dy dx ==……………………………………………………………………7分 2、证明:()()()a TT a T a aT f x dx f x dx f x dx ++=+⎰⎰⎰………………………………………2分 00()()()a Ta a T x t T f x dx f t T dt f t dt +=+=+=⎰⎰⎰对后者,令,=⎰f x dx a ()0…………5分 所以,f x dx f x dx f x dx a a T a T a ()()()+⎰⎰⎰=+0=⎰f x dx T()0。

12-13(上)高数期末试题A参考答案

12-13(上)高数期末试题A参考答案

12-13(上)高数试题参考答案及评分标准一、单项选择题(本大题共7小题,每小题2分,共14分)。

二、填空题(本大题共11小题,每小题2分,共22分)1.[0,2)2.高3. 4(0)f '4.2(2sin )cos (2sin )sin y f x x f x x '''''=+-+ 5.2211()2x e x x o x =+++ 6. 2 7.9811(1)(1)98x x c +-++8.()43f π'=-9. 发散 10. 导数 11.x y Axe *-= 三、求解下列各题(本大题共7小题,每小题7分,共49分)。

1.求20tan limln(1)x x xx x →-+2300220220220tan tan limlim (1)ln(1)1sec lim (2)3tan lim (1)31lim (3)33x x x x x x x x xx x xx x x x x x →→→→→--=+-=-=-==- 解:分分分分2. 221cos sin .y x dy x=⋅求函数 () 的微分 22222222222211[cos()]sin cos [sin ](2)1122sin()sin cos sin (4)112[2sin()sin cos sin ](1)dy d x x d x x x x dx x dx x x x x x x dx x x x=⋅+⋅=-⋅⋅-⋅⋅=-⋅-⋅ 解:()分()分()分3.222x d yy xe dx=设,求222222222232(3)2422(3)(64)(1)x x x x x x dye x e dx d y xe xe x e x dx x x e =+=++=+ 解:分分分4.计算2(31)ln x xdx +⎰33233ln ()(2)()ln (1)(3)1()ln (2)3xd x x x x x x dx x x x x x c =+=+-+=+--+⎰⎰ 解:原式分分分 5.设201()1x f x x e ⎧<≤⎪⎪=⎨<<,求20()e f x dx ⎰2222221001111110001011()()()(1)2112112[ln(1)]22ln 2(3)(1ln )2(2)e e e e ef x dx f x dx f x dxt t dt dtt t t t x =+=++-=++=-+=-=+==∴⎰⎰⎰⎰⎰⎰⎰⎰⎰ 解:分而 分又 分原式(1)分 6.求微分方程 22x y xy e -'+=的通解。

2012学年第一学期期末 试卷+答案

2012学年第一学期期末 试卷+答案

华南农业大学期末考试试卷(A 卷)2012~2013学年第1 学期 考试科目:高等数学A Ⅰ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.函数1y x=的定义域是 。

2.10lim(14)xx x →+= 。

3.设ln(sin )y x =,则dy = 。

4.不定积分1ln x xdx ⎰= 。

5.反常积分211dx x +∞-∞+⎰= 。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.设1sin ,0(),0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在点0x =处必定 ( ) A .连续但不可导 B .连续且可导C .不连续但可导D .不连续,故不可导2.曲线1y x =在点1(,2)2处的切线方程是 ()A .440y x -+=B .440x y +-=C .440y x --=D .440x y --=3.设()f x 为连续函数,则()d f x dx =⎰ ( ) A .()f x B .()f x dx C .()f x C + D .'()f x dx 4.设0()(1)(2)xx t t dt Φ=--⎰,则'(0)Φ= ( )A .2-B .1-C .1D .25.若函数()(),()f x f x x -=-∞<<+∞,在(,0)-∞ 内()'0f x >,且()''0f x <,则在(0,)+∞内有 ( ) A .'()0,''()0f x f x >< B .'()0,''()0f x f x >> C .'()0,''()0f x f x << D .'()0,''()0f x f x <>三、计算题(本大题共7小题,每小题7分,共49分)1. 求极限 0sin lim x xx e e x-→-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y' (1 y' )e
x y ……3
e y ……3 分 x y 1 e 1 y
5、解:原式=
x
2
1 1 dx 2 d ( x 2 1) ……3 分, 1 x 1
arctanx ln(x2 1) C ……3 分
( x a) ( x) lim ( x) (a ) ……3 分 xa xa xa 1 6、解:原式 xd sin 2 x ……2 分, 2 1 ( x sin 2 x sin 2 xdx ) ……2 分, 2 1 1 x sin 2 x cos 2 x C ……2 分 2 4 lim
高等数学 C1 期末 A 卷参考答案及评分标准
2012~2013 第一学期 一、单项选择(共 10 小题,每小题 2 分,共 20 分)
题号 答案 1 2 3 4 5 6 7 8
C
D
A
1 4 x
A
D
C
二、填空题(共 8 空,每空 2 分,共 16 分)
1、 2
x
。 2、 1 。
3、e 。 4、3 。 5、0。6、250。7、
左=

0
1
(1 t )2 t10dt (1 t )2 t10dt x10 (1 x)2 dx =右……3 分
0 0
1
1
-1-
。8、 ex (2x2 1) C 。
2
三、计算题(共 9 小题,每小题 6 分,共 54 分)
1、解:
lim sin x x lim x0
sin x x ……2 分, x2
x sin x
x 0
lim
……4 分 cos x 1 sin x lim 0 x 0 x 0 2x 2
1 0 2 1 x
四、证明题(共 2 小题,每小题 5 分,共 10 分) 1 x) x 1、证:设 f ( x) ln(
x 0 ( x 0) ,则 f ( x) 在 [0,) 上单减……3 分, 1 x 故方程 x 0 ,有 f ( x) f (0) ,即 ln(1 x) x 。……2 分 2、证:对等式左边,令 t 1 x ,有……2 分 f ' ( x)
sin xe cos x 2、解: lim (3分) x 0 2x 2 sin x e cos x 1 lim lim (3分) x 0 x 0 x 2 2e
分, 4、解: f ' (a ) lim
xa
2
3、解:l 两边同时对 x 求导 解得 y '
x y
令 x 1 ,有
0
2 1 1 sin 3 x 3 3 0

……3 分
1 ……3 分, 1 x

1
x3 7 x 1 e1 (4分) 9、解: f ( x)dx (1 x )dx e dx(2分) ( x ) e 0 1 1 0 3 1 3
8、解:对已知等式两边求导得:
f ( x) f (a) ……3 分, xa
2 7、解:原式 2 sin xd sin x ……3 分, 0

f ( x) xf ( x) 1 ,解得 f ( x)
1 dx 1 C 0 x 1 解得 C ln 2 1 ……3 分
相关文档
最新文档