统计学习题区间估计与假设检验
梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
生物医学研究统计方法 第5章 假设检验思考与练习参考答案

第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。
A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。
正确的结论是( E )。
A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。
A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。
A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。
答:α值是决策者事先确定的一个小的概率值。
P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。
P ≤α时,拒绝0H 假设。
2. 试述假设检验与置信区间的联系与区别。
答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。
置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。
第5章 区间估计与假设检验

分布(如t分布,F分布,正态分布, χ 2 分布等)。构造出统计
量以后,就可以利用样本数据计算出这个统计量的样本值,再 把这个样本值与给定某一显著水平的临界值进行比较,看它与 临界值是否有显著差别,从而作出判断,决定拒绝还是接受所 作的假设。
, βˆ2
+
δ
)
包含 β2 的概率
Pr(βˆ2 − δ ≤ β 2 ≤ βˆ2 + δ ) = 1−α (5.2.1)
这样的区间称为置信区间(confidence interval);1−α 称为置
信系数(confidence coefficient);而α 称为显著性水平(level of
significance)。置信区间的端点称置信限(confidence limits)也 称临界值(critical values)。
βˆ2 − δ 为置信下限(lower confidence limit)
βˆ2 + δ 为置信上限(upper confidence limit)
(5.2.1)式表示的是:随机区间包含真实 β2的概率为 1−α。
点估计与区间估计:
单一的点估计量可能不同于总体真值,即存在估计误差。点 估计既不能给出误差范围的大小,也没有给出估计的可靠程度。
进行统计假设检验,就是要制定一套步骤和规则,以使决定 接受或拒绝一个虚拟假设(原假设)。一般来说,有两种相互 联系、相互补充的方式:置信区间(confidence interval)和显 著性检验(test of significance)。
§5.6假设检验:置信区间的方法
管理统计学习题参考答案第八章

第八章1. 解:(1)假设检验的基本思想是,样本平均数与总体平均数出现差异不外乎两种可能:一是改革后的总体平均长度不变,但由于抽样的随机性使样本平均数与总体平均数之间存在抽样误差;二是由于工艺条件的变化,使总体平均数发生了显著的变化。
因此,可以这样推断:如果样本平均数与总体平均数之间的差异不大,未超出抽样误差范围,则认为总体平均数不变;反之,如果样本平均数与总体平均数之间的差异超出了抽样误差范围,则认为总体平均数发生了显著的变化。
根据样本平均数的抽样分布定理,有x Z σx μ±=或Z /σμx x ≤-。
当0=Z 时,表明样本均值等于总体均值,即μx =;当Z 很大时,表明样本均值离总体均值很远,即∆很大。
后一种情况是小概率事件。
在正常情况下,小概率事件是不会发生的,那么在一次抽样中小概率事件居然发生了,我们就有理由认为样本均值是不正常的,它与原总体相比,性质已经发生变化,应该拒绝接受原假设。
(2)假设检验的一般步骤包括:① 提出原假设和备择假设;对每个假设检验问题,一般可同时提出两个相反的假设:原假设和备择假设。
原假设又称零假设,是正待检验的假设,记为H 0;备择假设是拒绝原假设后可供选择的假设,记为H 1。
原假设和备择假设是相互对立的,检验结果二者必取其一。
接受H 0,则必须拒绝H 1;反之,拒绝H 0则必须接受H 1。
② 选择适当的统计量,并确定其分布形式;不同的假设检验问题需要选择不同的统计量作为检验统计量。
在例中,我们所用的统计量是Z ,在H 0为真时,N Z ~(0,1)。
③选择显著性水平α,确定临界值;显著性水平表示H 0为真时拒绝H 0的概率,即拒绝原假设所冒的风险,用α表示。
假设检验就是应用了小概率事件实际不发生的原理。
这里的小概率就是指α。
但是要小到什么程度才算小概率? 对此并没有统一的标准。
通常取α=0.1,0.05,0.01。
给定了显著性水平α,就可由有关的概率分布表查得临界值,从而确定H 0的接受区域和拒绝区域。
统计学习题区间估计与假设检验

第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。
为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。
下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选( A )A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A 、总体各单位标志值的差异程度B 、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。
区间估计与假设检验

"### 参数的区间估计与假设检验之间的区别
参数的区间估计和假设检验从不同的角度回答同一问 题, 它们的统计处理是相通的。 但是它们之间又有区别, 体现 以下三点: 第一, 参数估计解决的是多少 (或 范 围 ) 问题, 假设检验 则判断结论是否成立。前者解决的是定量问题, 后者解决的 是定性问题。 第二, 两者的要求各不相同。区间估计确定在一定概率 保证程度下给出未知参数的范围。 而假设检验确定在一定的 置信水平下, 未知参数能否接受已给定的值。 第三, 两者对问题的了解程度各不相同。进行区间估计 之前不了解未知参数的有关信息。 而假设检验对未知参数的 信息有所了解, 但作出某种判断无确切把握。 因而在实际应用中,究竟选择哪种方法进行统计推断, 需要根据实际问题的情况确定相应的处理方法。 否则将会产
" 拒 绝 域 为 +)J.)0!+#)(-- , 查表 %’#$#"4" 统计量 0’ ,)"" ’ & , %
得 0"$":’!$"(: , 计 算 得 0’)($A::A. 由 此 可 见 统 计 量 的 值 未 落 入 拒绝域中, 因而接受原假设, 认为符合设计要求。
(9!
统计与决策 !""# 年 # 月 (下)
上述关系虽就一特例而言, 但也有普遍意义。由区间估 计可以很容易构造检验函数。 下面来说明怎样由检验函数构 造区间估计。 设 # 是问题
生不同的结论, 做出错误的统计推断。 例 ! 测试某个品牌的汽车的百公里耗油量,假设在正 常的情况下汽车百公里耗油量服从正态分布, 路况以及驾驶 员的技术符合正常要求。现对该批汽车进行测试, 随机选取
+&".!-。
概率论15区间估计与假设检验

,X , S 2分别是 样本均值和样本方差,
则有
X
S
X S
~
t n 1
n 1
n
(2)方差 2 的区间估计
10 已 知
1
2
n
(Xi
i1
)2
~ 2(n)
2的置信度为1α的置信区间是
n (Xi )2
n (Xi )2
i1
2
(n)
2
,
i 1
12
2
(n)
20 未知
(n 1)S2
解 该问题是方差未知, 对正态总体均值进行估计.
(X t (n 1) S
2
n
,
X t (n 1) S
2
) n
x 3056.67 s* 375.31 n 12 t0.025 (11) 2.201
所求区间估计为(2812.21, 3295.13).
设 X1, X 2,, X n 是总体X ~ N , 2 的样本
即 X 0 0
Z 是 衡 量H0 真 伪 的 标 准 . 2
n
如 例1中, 0.005 Z 1.96 n 6
2
0 1 x 19.503 0 20
x 0 0
0.7351.96
n
故认为 机床生产正常,即该天加工的零件直径
平均是20mm.
综述假设检验方法的基本思想是:由 样本出发,在 H 0 为真的前提下通过对被 检参数的点估计量,结合统计量的分布,构 造统计量(枢轴函数),由此结合实际,并利 用上α分位点确定小概率事件,便得检验
其中例1为参数检验,例2为非参 数检验.
二 假设检验的基本思想
例1 用机床加工圆形零件,正常情况下 零件的直径X服从正态分布N(20,1)(单 位:mm), 某日开工后为检查机床是否 正常,随机抽取6个,测得直径分别为
区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。
它们虽然都属于推断统计,但也有明显的不同之处。
区间估计的主要目的是估计总体参数的值,也可以称作参数估计。
根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。
估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。
假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。
假设检验涉及两个立场:备择假设和原假设。
假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。
从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。
总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。
两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。
为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克.下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P 应选( A )A、85%B、87。
7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A 、总体各单位标志值的差异程度B 、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格.根据抽样结果进行推断,下列说法正确的有( ADE )A 、n=200B 、n=30C 、总体合格率是一个估计量D 、样本合格率是一个统计量E 、合格率的抽样平均误差为2。
52%3、用样本成数来推断总体成数时,至少要满足下列哪些条件才能认为样本成数近似于正态分布( BCE )A 、np ≤5B 、np ≥5C 、n (1–p)≥5D 、p ≥1%E 、n ≥30三、填空题1、对某大学学生进行消费支出调查,采用抽样的方法获取资料.请列出四种常见的抽样方法: 、 、 、 ,当对全校学生的名单不好获得时,你认为 方法比较合适,理由是 。
四、简答题1、分层抽样与整群抽样有何异同?它们分别适合于什么场合?2、解释抽样推断的含义。
五、计算题1、某糖果厂用自动包装机装糖,每包重量服从正态分布,某日开工后随机抽查10包的重量如下:494,495,503,506,492,493,498,507,502,490(单位:克).对该日所生产的糖果,给定置信度为95%,试求: (1)平均每包重量的置信区间,若总体标准差为5克; (2)平均每包重量的置信区间,若总体标准差未知; (8125.1,8331.1,2281.2,2622.210,05.09,05.010,025.09,025.0====t t t t );2、某广告公司为了估计某地区收看某一新电视节目的居民人数所占比例,要设计一个简单随机样本的抽样方案.该公司希望有90%的信心使所估计的比例只有2个百分点左右的误差。
为了节约调查费用,样本将尽可能小,试问样本量应该为多大?3、为调查某单位每个家庭每天观看电视的平均时间是多长,从该单位随机抽取了16户,得样本均值为6.75小时,样本标准差为2.25小时。
(1)试对家庭每天平均看电视时间进行区间估计。
(2)若已知该市每个家庭看电视时间的标准差为2.5小时,此时若再进行区间估计,并且将边际误差控制在(1)的水平,问此时需要调查多少户才能满足要求?(α=0。
05)答案:一、B ,D,C,A ,C ;C ,B ,D ,A ,A 。
二、ADE ,ADE ,BCE.三、简单随机抽样,分层抽样,等距抽样,整群抽样,分层抽样,不用调查单位的名单,以院系为单位,而且各院系的消费差异也大,不宜用整群抽样。
四、1、答:都要事先按某一标志对总体进行划分的随机抽样。
不同在于:分层抽样的划分标志与调查标志有关,而整群抽样不是;分层抽样在层内随机抽取一部分,而整群抽样对一部分群做全面调查。
分层抽样用于层间差异大而层内差异小,以及为了满足分层次管理决策时;而整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时。
2、答:简单说,就是用样本中的信息来推断总体的信息。
总体的信息通常无法获得或者没有必要获得,这时我们就通过抽取总体中的一部分单位进行调查,利用调查的结果来推断总体的数量特征. 五、1、解:n=10,小样本(1)方差已知,由x ±z α/2nσ得,(494.9,501.1)(2)方差未知,由x ±t α/2ns 得,(493。
63,502.37)2、解:n=222/1xp p z ∆-⨯⨯)(α=2202.05.05.01.6448⨯⨯=16913、解:(1)x ±t α/2ns =6.75±2。
131×1625.2=(5。
55,7。
95)(2)边际误差E= t α/2ns =2.131×1625.2=1。
2n=2222/E z σα⨯=2222.15.21.96⨯=17第六章假设检验练习题一、单项选择题1、按设计标准,某自动食品包装及所包装食品的平均每袋中量应为500克。
若要检验该机实际运行状况是否符合设计标准,应该采用( C ).A 、左侧检验B 、右侧检验C 、双侧检验D 、左侧检验或右侧检验2、假设检验中,如果原假设为真,而根据样本所得到的检验结论是否定元假设,则可认为( C )。
A、抽样是不科学的B、检验结论是正确的C、犯了第一类错误D、犯了第二类错误3、当样本统计量的观察值未落入原假设的拒绝域时,表示(B )。
A、可以放心地接受原假设B、没有充足的理由否定与原假设C、没有充足的理由否定备择假设D、备择假设是错误的4、进行假设检验时,在其它条件不变的情况下,增加样本量,检验结论犯两类错误的概率会( A )。
A、都减少B、都增大C、都不变D、一个增大一个减小5、关于检验统计量,下列说法中错误的是(B ).A、检验统计量是样本的函数B、检验统计量包含未知总体参数C、在原假设成立的前提下,检验统计量的分布是明确可知的D、检验同一总体参数可以用多个不同的检验统计量二、多项选择题1、关于原假设的建立,下列叙述中正确的有( CD )。
A、若不希望否定某一命题,就将此命题作为原假设B、尽量使后果严重的错误成为第二类错误C、质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)”D、若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假设E、可以随时根据检验结果改换原假设,以期达到决策者希望的结论2、在假设检验中,α与β的关系是( CE )。
A、α和β绝对不可能同时减少B、只能控制α,不能控制βC、在其它条件不变的情况下,增大α,必然会减少βD、在其它条件不变的情况下,增大α,必然会增大βE、增大样本容量可以同时减少α和β三、判断分析题(判断正误,并简要说明理由)1、对某一总体均值进行假设检验,H0:X=100,H1:X≠100。
检验结论是:在1%的显著性水平下,应拒绝H0.据此可认为:总体均值的真实值与100有很大差异。
2、有个研究者猜测,某贫困地区失学儿童中女孩数是男孩数的3倍以上(即男孩数不足女孩数的1/3)。
为了对他的这一猜测进行检验,拟随机抽取50个失学儿童构成样本。
那么原假设可以为:H0:P≤1/3。
四、简答题1、采用某种新生产方法需要追加一定的投资。
但若根据实验数据,通过假设检验判定该新生方法能够降低产品成本,则这种新方法将正式投入使用。
(1)如果目前生产方法的平均成本是350元,试建立合适的原假设和备择假设。
(2)对你所提出的上述假设,发生第一、二类错误分别会导致怎样的后果?五、计算题1、某种感冒冲剂的生产线规定每包重量为12克,超重或过轻都是严重的问题。
从过去的资料知σ是0。
6克,质检员每2小时抽取25包冲剂称重检验,并做出是否停工的决策。
假设产品重量服从正态分布。
(1)建立适当的原假设和备择假设。
(2)在α=0.05时,该检验的决策准则是什么? (3)如果x =12。
25克,你将采取什么行动? (4)如果x =11。
95克,你将采取什么行动?答案:一、1、C 2、C 3、B 4、A 5、B 二、1、CD 2、CE三、1、错误.“拒绝原假设”只能说明统计上可判定总体均值不等于100,但并不能说明它与100之间的差距大。
2、错误。
要检验的总体参数应该是一个比重,因此应该将男孩和女孩的人数的比率转换为失学儿童中女孩所占的比例P(或男孩所占的比例P*)所以原假设为:H 0:P=3/4(或P ≤3/4);H 1:P >3/4。
也可以是:H 0:P*=1/4(或P ≥1/4);H 1:P *<1/4. 四、1、(1)H 0:x ≥350;H 1:x <350。
(2)针对上述假设,犯第一类错误时,表明新方法不能降低生产成本,但误认为其成本较低而被投入使用,所以此决策错误会增加成本.犯第二类错误时,表明新方法确能降低生产成本,但误认为其成本不低而未被投入使用,所以此决策错误将失去较低成本的机会。
五、1、(1)H 0:μ=120;H 1:μ≠12。
(2)检验统计量:Z=nx /0σμ-.在α=0.05时,临界值z α/2=1。
96,故拒绝域为|z |>1。
96。
(3) 当x =12。
25克时,Z=nx /0σμ-=25/0.61212.25-=2。
08。
由于|z|=2。
08>1.96,拒绝H 0:μ=120;应该对生产线停产检查。
(4) 当x =11.95克时,Z=nx /0σμ-=25/0.61211.95-=-0。
42。
由于|z |=-0.42<1.96,不能拒绝H 0:μ=120;不应该对生产线停产检查。
第七章相关与回归分析一、单项选择题1、下面的关系中不是相关关系的是( D )A 、身高与体重之间的关系B 、工资水平与工龄之间的关系C 、农作物的单位面积产量与降雨量之间的关系D 、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是( A )A 、一个变量的取值不能由另一个变量唯一确定B 、一个变量的取值由另一个变量唯一确定C 、一个变量的取值增大时另一个变量的取值也一定增大D 、一个变量的取值增大时另一个变量的取值肯定变小 3、下面的假定中,哪个属于相关分析中的假定( B )A 、两个变量之间是非线性关系B 、两个变量都是随机变量C 、自变量是随机变量,因变量不是随机变量D 、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为( A )A 、完全相关关系B 、正线性相关关系C 、非线性相关关系D 、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C )A 、–0.86B 、0.78C 、1。