一节三角函数复习课的教案
三角函数复习教案

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在实际问题中的应用;(3)熟练运用三角函数公式进行计算。
2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)通过例题解析,提高学生解决实际问题的能力;(3)培养学生运用三角函数解决几何问题的技巧。
3. 情感态度与价值观:(1)激发学生对三角函数的学习兴趣;(2)培养学生的团队合作精神;(3)鼓励学生勇于探索,提高自主学习能力。
二、教学内容1. 三角函数的定义及性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。
2. 三角函数的图像与性质(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数的值域;(3)三角函数的零点与极值。
三、教学重点与难点1. 教学重点:(1)三角函数的定义及性质;(2)三角函数的图像与性质;(3)三角函数在实际问题中的应用。
2. 教学难点:(1)三角函数的图像分析;(2)三角函数在实际问题中的运用;(3)复杂三角函数计算。
四、教学方法1. 采用讲解法,引导学生复习三角函数的基本概念;2. 利用多媒体展示三角函数的图像,帮助学生直观理解;3. 通过例题解析,培养学生解决实际问题的能力;4. 组织小组讨论,促进学生团队合作,共同探索;5. 鼓励学生提问,及时解答学生疑惑。
五、教学过程1. 导入:回顾三角函数的基本概念,引导学生进入复习状态;2. 讲解:讲解三角函数的定义及性质,引导学生理解和记忆;3. 展示:利用多媒体展示三角函数的图像,让学生直观感受;4. 例题解析:分析实际问题,运用三角函数解决问题;5. 小组讨论:学生分组讨论,共同探索三角函数的应用;6. 提问与解答:学生提问,教师解答,及时巩固知识点;7. 总结:对本节课复习内容进行总结,强调重点知识点;8. 作业布置:布置适量作业,巩固复习成果。
中考锐角三角函数复习教案

中考锐角三角函数复习教案教案标题:中考锐角三角函数复习一、教学目标:1.复习三角函数的定义及性质;2.复习与锐角三角函数相关的公式和计算方法;3.提高学生的综合应用能力。
二、教学重点:1.锐角三角函数的定义;2.锐角三角函数的性质;3.锐角三角函数的计算。
三、教学难点:1.锐角三角函数的综合应用;2.解决与锐角三角函数相关的实际问题。
四、教学流程:1.复习预习:复习三角函数的定义及性质;2.引入新知识:引入锐角三角函数的定义;3.讲解锐角三角函数的性质;4.讲解与锐角三角函数相关的公式和计算方法;5.练习锐角三角函数的计算;6.进行综合应用练习;7.提问与解答;8.作业布置。
五、教学内容详细说明:1.复习预习:复习三角函数的定义及性质,包括正弦函数、余弦函数和正切函数的定义及其周期性、奇偶性、增减性等性质。
2.引入新知识:介绍锐角三角函数的定义,包括正弦定理、余弦定理和正切函数的定义。
通过几何图形的展示和实例的计算,让学生感受到锐角三角函数在实际问题中的应用。
3.讲解锐角三角函数的性质:详细讲解正弦、余弦和正切函数的周期性、奇偶性、增减性等性质。
通过图形展示和实例计算,让学生理解和掌握这些性质。
4.讲解与锐角三角函数相关的公式和计算方法:讲解正弦、余弦和正切函数之间的关系及计算方法,包括倍角、半角、和差等公式。
通过实例计算,让学生掌握这些公式和计算方法。
5.练习锐角三角函数的计算:提供一些锐角三角函数的计算题目,让学生进行练习和巩固。
教师可以给予指导和解答,让学生通过练习提高计算能力。
6.进行综合应用练习:提供一些与锐角三角函数相关的实际问题,让学生进行综合应用练习。
学生可以通过解决这些问题来巩固所学的知识,并培养解决实际问题的能力。
7.提问与解答:教师可以进行提问,引导学生回顾和总结所学内容,回答问题和解决疑惑。
8.作业布置:布置一些与锐角三角函数相关的作业,让学生巩固所学的知识。
作业可以包括计算题目、应用题目和综合问题。
最新锐角三角函数复习教案

课题:锐角三角函数(复习课)复习目标(1)知识与技能:1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。
2.通过复习牢记特殊角的三角函数值,并能进行有关计算。
3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。
(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。
(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。
复习难点:解直角三角形的知识应用。
教学方法:讲练结合法课型:复习课教具准备:多媒体课件教学过程一、锐角三角函数的定义在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c .则∠A 的正弦:sin A=_______________ ∠A 的余弦:cos A =________ ∠A 的正切:tan A =_______________、在Rt △ABC 中,∠C=90°,a =2,B自己动手:1、在等腰△ABC 中,AB=AC=5,BC=6,求sinB ,cosB ,tanB.2、求适合下列各式的锐角α3=α3tan二、特殊角的三角函数值60-例sin22⋅4530costan练习检测:求下列各式的值:211)(sin︒︒30-30cos30tantan(452)3︒︒+2-︒60sin三、解直角三角形1、解直角三角形的定义:利用已知元素,求出未知元素的过程。
2、解直角三角形的性质:①三边间关系:②两锐角间关系:③边角间关系:3、解直角三角形条件:已知两边,或已知一边一角。
自己动手:在Rt△ABC中,∠C=90°,a、b、c分别为∠A 、∠B、∠C的对边.根据已知条件,解直角三角形.c=8,∠A =60°四、拓展升华:锐角三角函数间的关系1、从定义可以看出sin A与cos B有什么关系?sin B与cos A呢?满足这种关系的A∠与B∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A与cos A的关系吗?3、再试试看tan A与sin A和cos A存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:(1)若90A B∠+∠=那么sin A=cos B或sin B=cos A(2)22sin cos1A A+=(3)sincosA AA =4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?通过一番讨论后得出:(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三角函数复习教案_整理

三角函数复习教案_整理三角函数是高中数学中的重要内容,也是后续学习高等数学、物理等学科的基础。
为了帮助学生复习和巩固三角函数的相关知识,特别整理了以下的教案。
一、知识概述1.三角函数的定义及性质:正弦函数、余弦函数、正切函数、余切函数等。
2.三角函数的周期性及相关计算公式。
3.三角函数的图像与性质。
4.三角函数的运算:和差化积、积化和差、倍角公式、半角公式等。
二、教学目标1.熟练掌握三角函数的定义及性质。
2.能够准确绘制三角函数的图像。
3.能够灵活运用三角函数的运算公式。
三、教学重点1.熟练掌握三角函数的图像与性质。
2.掌握三角函数的运算公式及其应用。
四、教学难点能够灵活运用三角函数的运算公式,解决实际问题。
五、教学方法1.板书法:结合图表将三角函数的定义、性质及运算公式进行清晰明了的呈现。
2.演示法:通过具体的例子和解题步骤,引导学生掌握运算的方法和技巧。
3.练习法:通过大量的练习,让学生熟练运用所学的知识和方法。
六、教学内容1.三角函数的定义及性质:(1)正弦函数的定义及性质。
(2)余弦函数的定义及性质。
(3)正切函数的定义及性质。
(4)余切函数的定义及性质。
2.三角函数的周期性及相关计算公式:(1)正弦函数的周期及其计算公式。
(2)余弦函数的周期及其计算公式。
(3)正切函数的周期及其计算公式。
3.三角函数的图像与性质:(1)正弦函数的图像及性质。
(2)余弦函数的图像及性质。
(3)正切函数的图像及性质。
4.三角函数的运算:(1)和差化积公式的推导与应用。
(2)积化和差公式的推导与应用。
(3)倍角公式的推导与应用。
(4)半角公式的推导与应用。
七、教学步骤1.引入新知识,复习前置知识。
2.讲解三角函数的定义及性质。
3.探讨三角函数的周期性及计算公式。
4.分析讨论三角函数的图像及性质。
5.结合具体例子,讲解三角函数的运算公式的推导与应用。
6.练习三角函数的计算与运用。
7.总结与复习。
八、教学辅助资料1.板书及教学用具:教师应准备白板、黑板、彩笔、粉笔等教学用具,及时记录关键公式和重点内容。
三角函数的复习教案

三角函数的复习教案教案标题:三角函数的复习教案教案目标:1. 复习学生对三角函数的基本概念和性质的理解。
2. 强化学生对三角函数的图像、周期、幅值和相位的掌握。
3. 提高学生解决与三角函数相关问题的能力。
4. 激发学生对数学的兴趣和学习动力。
教学资源:1. 教材:包括相关章节的教科书和练习册。
2. 多媒体设备:投影仪、电脑等。
3. 白板、彩色笔等。
教学过程:引入:1. 利用多媒体设备播放一个与三角函数相关的实际应用视频或图片,引起学生对三角函数的兴趣,并与他们讨论三角函数在现实生活中的应用。
概念复习:2. 回顾三角函数的基本定义:正弦函数、余弦函数和正切函数。
3. 通过示意图和实例,复习三角函数的图像、周期、幅值和相位的概念。
4. 引导学生回顾三角函数的性质,如奇偶性、周期性、对称性等。
图像练习:5. 在白板上绘制不同的三角函数图像,并要求学生根据图像确定函数的周期、幅值和相位。
6. 给学生一些练习题,要求他们根据函数的图像绘制出函数的表达式。
计算与问题解决:7. 给学生提供一些计算题和问题,要求他们运用三角函数的性质和公式进行计算和解决问题。
8. 强调解题过程中的思考方法和步骤,鼓励学生互相讨论和交流解题思路。
拓展应用:9. 提供一些拓展应用题,让学生运用三角函数解决实际问题,如测量高度、角度等。
10. 鼓励学生自主思考和探索,引导他们发现三角函数在不同学科和领域中的应用。
总结:11. 对本节课的内容进行总结,并强调三角函数的重要性和应用价值。
12. 鼓励学生继续深入学习和探索三角函数的更多应用和性质。
作业布置:13. 布置相关的练习题和作业,巩固学生对三角函数的理解和应用能力。
14. 鼓励学生在作业中提出问题和困惑,并在下节课中进行解答和讨论。
教案评估:15. 观察学生在课堂上的参与度和表现。
16. 收集学生完成的作业,评估他们对三角函数的掌握程度。
17. 针对学生的学习情况,进行个别辅导和指导。
高三数学总复习 专题二三角函数教学案

芯衣州星海市涌泉学校赣榆县智贤中学高三数学总复习专题二第1讲三角函数〔1〕教学案教学内容:三角函数的图象与性质〔1〕教学目的:1三角函数的图象与解析式2.利用三角函数的图象与解析式教学重点:1.求三角函数的解析式;教学难点:三角函数的图象与解析式教学过程:一、知识点复习:1.必记的概念与定理(1)同角关系:sin2α+cos2α=1,=tanα.(2)诱导公式:在+α,k∈Z的诱导公式中“奇变偶不变,符号看象限〞.(3)三角函数的图象及常用性质函数y=sinx y=cosx y=tanx图象单调性在[-+2kπ,+2kπ](k∈Z)上单调递增;在[+2kπ,+2kπ](k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在(-+kπ,+kπ)(k∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:(+kπ,0)(k∈Z);对称轴:x=kπ(k∈Z)对称中心:(,0)(k∈Z)2.记住几个常用的公式与结论对于函数y=Asin(ωx+φ)(A>0,ω>0)要记住下面几个常用结论:(1)定义域:R.(2)值域:[-A,A].当x=(k∈Z)时,y取最大值A;当x=(k∈Z)时,y取最小值-A.(3)周期性:周期函数,周期为.(4)单调性:单调递增区间是(k∈Z);单调递减区间是(k∈Z).(5)对称性:函数图象与x轴的交点是对称中心,即对称中心是(,0),对称轴与函数图象的交点纵坐标是函数的最值,即对称轴是直线x=,其中k∈Z.(6)函数y=Asin(ωx+φ)(A>0,ω>0)中,A影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;φ影响函数的初相.(7)对于函数y=Asin(ωx+φ)(A>0,ω>0)的图象,相邻的两个对称中心或者者两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一.复备栏3.需要关注的易错易混点三角函数图象平移问题(1)看平移要求:拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断挪动方向的关键点.(2)看挪动方向:在学习中,挪动的方向一般我们会记为“正向左,负向右〞,其实,这样不理解的记忆是很危险的.上述规那么不是简单地看y=Asin(ωx+φ)中φ的正负,而是和它的平移要求有关.正确地理解应该是:平移变换中,将x变换为x+φ,这时才是“正向左,负向右〞.(3)看挪动单位:在函数y=Asin(ωx+φ)中,周期变换和相位变换都是沿x轴方向的,所以ω和φ之间有一定的关系,φ是初相位,再经过ω的压缩,最后挪动的单位是||.二、根底训练:1.函数y=tan的定义域是________.解析:∵x-≠kπ+,∴x≠kπ+,k∈Z.答案:2.(2021·模拟)函数f(x)=sinxcosx的最小正周期是________.解析:由题知f(x)=sin2x,所以T==π.答案:π3.将函数y=2sinx的图象上每一点向右平移1个单位长度,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,那么f(x)的解析式为________.解析:函数y=2sinx向右平移1个单位得y=2sin(x-1)=2sin,将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),那么y=2sin,即y=2sin.答案:y=2sin4.(2021·模拟)函数f(x)=2sin,x∈[-π,0]的单调增区间为________.解析:当x-∈,k∈Z时,f(x)单调递增,又因为x∈[-π,0],故取k=0得x∈.答案:1三、例题教学:例1、(2021·模拟)假设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如下列图,这个函数的解析式为________.[解析]由题意知:周期T=2(-)=π,ω==2,设f(x)=Asin(2x+φ),点(,0)为五点作图中的第三点,所以2×+φ=π,即φ=.设f(x)=Asin(2x+),因为点(0,)在原函数的图象上,故Asin=,所以A=,综上知:f(x)=sin(2x+).[答案]f(x)=sin(2x+)变式训练:1.(2021·高考卷)函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,那么φ的值是________.解析:由题意,得sin=cos,因为0≤φ<π,所以φ=.答案:例2、2021·模拟)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象如下列图,直线x=,x =是其两条对称轴.(1)求函数f(x)的解析式并写出函数的单调增区间;(2)假设f(α)=,且<α<,求f(+α)的值.[解](1)由题意,=-=,∴T=π,又ω>0,故ω=2,∴f(x)=2sin(2x+φ),由f()=2sin(+φ)=2,解得φ=2kπ-(k∈Z),又-<φ<,∴φ=-,∴f(x)=2sin(2x-),由2kπ-≤2x-≤2kπ+(k∈Z)知,kπ-≤x≤kπ+,(k∈Z),∴函数f(x)的单调增区间为[kπ-,kπ+](k∈Z).(2)依题意得:2sin(2α-)=,即sin(2α-)=,∵<α<,∴0<2α-<,∴cos(2α-)===,f(+α)=2sin[(2α-)+],∵sin[(2α-)+]=sin(2α-)cos+cos(2α-)sin=(+)=,∴f(+α)=.稳固练习:完成专题强化训练。
中考锐角三角函数复习教案

中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。
二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。
三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。
四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。
2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。
其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。
- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。
- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。
(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。
3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。
-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。
(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。
- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。
(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。
4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。
(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。
高三数学三角函数复习教案

高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教诲学生,今天作者在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面知道函数单调性的概念,学会利用函数图像知道和研究函数的性质,初步掌控利用函数图象和单调性定义判定、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生视察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究进程培养学生仔细视察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一样,从感性到理性的认知进程.【教学重点】函数单调性的概念、判定及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际运用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判定或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判定或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用以下(1)函数的单调性起着承前启后的作用。
一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准肯定义,明确指出函数的增减性是相对于某个区间来说的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一节三角函数复习课的教案
徐愈男
一、教材分析
1、本课的地位与作用。
高中数学第四章。
本节是在学习了三角公式之后编排的。
通过本节课的学习,主要是要求学生对三角公式灵活应用,同时为下节课研究三角函数性质做铺垫。
总体上起个承上启下的作用。
2、教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:a.掌握三角公式:降幂公式,逆用二倍角,两角和差,及辅助角公式
b.三角函数的周期及最值.
(2)能力目标:培养学生观察,探索,抽象,分析问题的能力,提高学生的学习兴趣
(3)情感目标:培养学生集体荣誉感和集体参与协作的意识。
3、教学的重点和难点:掌握三角公式
二、教法学法与教学手段
1、教学方法:学生分组学习时学生自己发现问题,解决问题;解决
不了的老师引导,提前布置学案,交待重点要学什么。
2、学习方法:分组讨论学习,把问题留给学生自己解决。
出现问题
自己解决,不能解决的分组解决,再不能老师在讲解。
3、教学手段:学生板书;学生讲解。
四、 教学程序设计
为了完成本节的教学目标,我是这样安排的:
提前布置学案,要求学生自己找能够化简成sin()y A x ωϕ=+的形式的题型。
然后,学生以小组形式在黑板上写出自己组找的题,接着,学生每组派一个代表上来找一道不是自己组出的题做,下面的同学做自己组员找到的题,先自己完成,然后组里协助得出正确答案。
这个过程,老师一直都是引导学生,参与讨论。
接着,大家都完成以后,顺次每一组谁出的题,谁上来讲解评判。
在这个学生为主导的过程中,有问题大家一起发现一起解决。
最后,学生一起总结,让学生自己说重点是什么。
课堂主要的教学就这么多,但是学生的课堂表现比我预计的要好,所以,我又加入了sin()y A x ωϕ=+的周期和最值。
既然引出最值,就不可能只有这样的一种形式,所以,下节课的内容就是布置学生分组完成最值的题型学习。
课堂小结:1、通过公式化简到同角正余弦相加减的形式,从而利用辅助角公式达到sin()y A x ωϕ=+的形式,进而研究它的相关性质。
2、引入最值,在R 上的值域利用有界性可知,给定区间的可利用三角函数图像或是三角函数线解决问题。
布置作业:以小组为单位完成三角函数求最值类型题的总结。