初三三角函数复习教案-

合集下载

三角函数复习教案

三角函数复习教案

三角函数复习教案整理第一章:三角函数的基本概念1.1 角的概念复习角度的定义和分类:锐角、直角、钝角、周角。

介绍弧度和度的转换关系。

1.2 正弦函数、余弦函数和正切函数复习正弦函数、余弦函数和正切函数的定义。

解释正弦函数、余弦函数和正切函数的图像和性质。

1.3 特殊角的三角函数值复习30°、45°、60°等特殊角的三角函数值。

第二章:三角函数的图像和性质2.1 正弦函数的图像和性质复习正弦函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

2.2 余弦函数的图像和性质复习余弦函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

2.3 正切函数的图像和性质复习正切函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

第三章:三角函数的运算3.1 三角函数的加减法复习三角函数的加减法运算规则。

3.2 三角函数的乘除法复习三角函数的乘除法运算规则。

3.3 三角函数的复合复习三角函数的复合运算规则,包括正弦函数、余弦函数和正切函数的复合。

第四章:三角函数的应用4.1 三角函数在直角三角形中的应用复习三角函数在直角三角形中的应用,包括正弦定理、余弦定理。

4.2 三角函数在三角形测量中的应用复习三角函数在三角形测量中的应用,包括角度测量、距离测量。

4.3 三角函数在物理学中的应用复习三角函数在物理学中的应用,包括振动、波动、声音等。

第五章:三角函数的进一步研究5.1 三角函数的导数复习三角函数的导数,包括正弦函数、余弦函数和正切函数的导数。

5.2 三角函数的积分复习三角函数的积分,包括正弦函数、余弦函数和正切函数的积分。

5.3 三角函数的限制条件和极端值复习三角函数的限制条件和极端值,包括最大值、最小值、临界点。

第六章:三角恒等式6.1 三角恒等式的基本形式复习基本的三角恒等式,如和差化积、积化和差、倍角公式、半角公式等。

6.2 三角恒等式的证明学习并证明一些基本的三角恒等式,如正弦定理、余弦定理等。

初中数学 三角函数 复习教案

初中数学 三角函数 复习教案


5
7.在 Rt△ ABC 中,∠C=900,AC=1,sinA= 3 ,求 tanA,BC. 2
8.在△ ABC 中,AD⊥BC,垂足为 D,AB= 2 2 ,AC=BC= 2 5 ,求 AD 的长.
A
BD
C
9. 去年某省将地处 A、B 两地的两所大学合并成一所综合性大学第,8为题了图方便两地师生
9. 计算 2sin30°+2cos60°+3tan45°=_______.
10. 已知锐角α,且 sin28°=cosα,则α=________.
11. 在直角三角形中,各边的长度都扩大 3 倍,则锐角 A 的三角函数值 ( )
A 也扩大 3 倍 B 缩小为原来的 1 C 都不变 3
D 有的扩大,有的缩小
【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算,
4cos30sin 60 (2)1 (
2009 2008)0 = 4
3 2
3 2
1 2
1
3 2
,故填
3 2

【答案】 3 2

3(2009
年黑龙江哈尔滨)先化简.再求代数式的值.
2 a2 a
(
a
1
a2
) 1
a
1
其中 a=tan60°-

A.300
B.450
C.600
D.不能确定
2.如图,梯形 ABCD 中,AD∥BC,∠B=450,∠C=1200, 则 CD 的长为( )
A
D AB=8 ,
8
A.
6
3
B. 4 6
82
C.
D. 4 2
3

《三角函数复习》教学案

《三角函数复习》教学案

《三角函数》复习课教学案一、教学目标:1.进一步巩固三角函数的图象、性质和三角变换;2.应用三角函数解决实际问题; 3.渗透数形结合与转化思想.教学目标(修改)1.会根据正、余弦函数的有界性和单调性求简单三角函数的最值和值域;2.运用转化思想,通过变形、换元等方法转化为代数函数求其给定区间内的值域和最 值。

3.通过对最值问题的探索与解决,提高运算能力,增强分析问题和解决问题能力。

体 现数学思想方法在解决三角最值问题中的作用。

二、教学过程: (一)知识点回顾:(略) (二)基础练习:1. 的值等于 .2.下列函数 中,既是以π为周期的奇函数,又是(0,)2π上的增函数的是 .3.若方程1cos sin 322cos +=-k x x x 有解,则k4.已知函数sin()yA x ωϕ=+(0,||A ϕπ><)的一段图象 如下图所示,则函数的解析式 .(三)例题选讲:例1.已知113cos ,cos()7142πααββα=-=<<且0< (1)求tan 2α的值(2)求β的值例2.已知函数(1)求函数f(x)的最小正周期.(2)用五点法作出此函数在一个周期内的简图;并指出其减区间,对称轴和对称中心.(3)如何将此函数的图象变换到 的图象?tan ,cos2,sin 2,sin y x y x y x y x ====2x 3f(x)=sin2x 2y =3sin2x ⎡⎤⎢⎥⎣⎦πx ∈0,2f(x)-k >000cos75cos15(4)若 时, 恒成立,求实数k 的取值范围.10090ABCD ATPS P TS BC CD PQCR 思考题:如图是一块边长为米的正方形地皮,其中是一半径为米的扇形小山,是弧上一点,其余都是平地,现一开发商想在平地上建造一个有边落在与上的长方形停车场.求长方形停车场的最大面积和最小面积.(四)巩固练习:1.若函数()f x 图象上每一个点的纵坐标保持不变,横坐标伸长到原来的两倍,然后再将整个图象沿x 轴向右平移2π个单位,向下平移3个单位,恰好得到1sin 2y x =的图象,则()f x = .2.①存在实数α,使sin α·cos α=1;②)227cos(2)(x x f --=π是奇函数;③83π-=x 是函数)432s i n(3π-=x y 的图象的一条对称轴;④函数)c o s (s i n x y =的值域为]1c os ,0[.其中正确命题的序号是 .3.函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f (1)a ≤,则a 的所有可能值为 .DABPRQSCT4.已知函数a R a a x x x x f ,(2cos 62sin 62sin )(∈++⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛+=ππ为常数). (1)求函数的最小正周期; (2)求函数的单调递减区间; (3)若⎥⎦⎤⎢⎣⎡∈2,0πx 时,f(x)的最小值为-2,求a 的值.。

三角函数的复习教案

三角函数的复习教案

三角函数的复习教案教案标题:三角函数的复习教案教案目标:1. 复习学生对三角函数的基本概念和性质的理解。

2. 强化学生对三角函数的图像、周期、幅值和相位的掌握。

3. 提高学生解决与三角函数相关问题的能力。

4. 激发学生对数学的兴趣和学习动力。

教学资源:1. 教材:包括相关章节的教科书和练习册。

2. 多媒体设备:投影仪、电脑等。

3. 白板、彩色笔等。

教学过程:引入:1. 利用多媒体设备播放一个与三角函数相关的实际应用视频或图片,引起学生对三角函数的兴趣,并与他们讨论三角函数在现实生活中的应用。

概念复习:2. 回顾三角函数的基本定义:正弦函数、余弦函数和正切函数。

3. 通过示意图和实例,复习三角函数的图像、周期、幅值和相位的概念。

4. 引导学生回顾三角函数的性质,如奇偶性、周期性、对称性等。

图像练习:5. 在白板上绘制不同的三角函数图像,并要求学生根据图像确定函数的周期、幅值和相位。

6. 给学生一些练习题,要求他们根据函数的图像绘制出函数的表达式。

计算与问题解决:7. 给学生提供一些计算题和问题,要求他们运用三角函数的性质和公式进行计算和解决问题。

8. 强调解题过程中的思考方法和步骤,鼓励学生互相讨论和交流解题思路。

拓展应用:9. 提供一些拓展应用题,让学生运用三角函数解决实际问题,如测量高度、角度等。

10. 鼓励学生自主思考和探索,引导他们发现三角函数在不同学科和领域中的应用。

总结:11. 对本节课的内容进行总结,并强调三角函数的重要性和应用价值。

12. 鼓励学生继续深入学习和探索三角函数的更多应用和性质。

作业布置:13. 布置相关的练习题和作业,巩固学生对三角函数的理解和应用能力。

14. 鼓励学生在作业中提出问题和困惑,并在下节课中进行解答和讨论。

教案评估:15. 观察学生在课堂上的参与度和表现。

16. 收集学生完成的作业,评估他们对三角函数的掌握程度。

17. 针对学生的学习情况,进行个别辅导和指导。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。

引导学生理解三角函数的周期性和奇偶性。

1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。

引导学生理解图像的平移、伸缩等变换。

第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。

举例讲解如何利用三角函数的图像与性质解决实际问题。

第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。

引导学生理解平移的方向和距离对图像的影响。

6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。

引导学生理解伸缩的比例和对称性对图像的影响。

第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。

引导学生理解周期性在图像上的表现。

7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。

引导学生理解对称性在图像上的表现。

第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案一、教学目标:1. 回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 提高学生对三角函数图像与性质的理解和运用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 三角函数的图像与性质的基本概念和公式。

2. 三角函数的周期性及其图像。

3. 三角函数的奇偶性及其图像。

4. 三角函数的单调性及其图像。

5. 三角函数的极值及其图像。

三、教学重点与难点:1. 三角函数的周期性及其图像。

2. 三角函数的奇偶性及其图像。

3. 三角函数的单调性及其图像。

4. 三角函数的极值及其图像。

四、教学方法:1. 采用讲解法,引导学生回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 采用案例分析法,分析三角函数的周期性、奇偶性、单调性和极值的图像特点。

3. 采用练习法,让学生通过练习题目的形式,巩固所学知识,提高解决问题的能力。

五、教学过程:1. 导入:通过复习三角函数的图像与性质的基本概念和公式,激发学生的学习兴趣。

2. 讲解:讲解三角函数的周期性及其图像,引导学生理解周期性的含义和周期函数的图像特点。

3. 分析:分析三角函数的奇偶性及其图像,引导学生理解奇偶性的含义和奇偶函数的图像特点。

4. 讲解:讲解三角函数的单调性及其图像,引导学生理解单调性的含义和单调函数的图像特点。

5. 分析:分析三角函数的极值及其图像,引导学生理解极值的含义和极值函数的图像特点。

6. 练习:布置练习题目,让学生通过练习的形式,巩固所学知识,提高解决问题的能力。

7. 总结:对本节课的内容进行总结,强调三角函数的图像与性质的重要性。

教学反思:在教学过程中,要注意引导学生理解和掌握三角函数的图像与性质的基本概念和公式,提高他们对三角函数图像与性质的理解和运用能力。

要关注学生的学习情况,及时进行反馈和指导,帮助他们解决学习中的问题。

六、教学评价:1. 通过课堂讲解和练习,评价学生对三角函数图像与性质的基本概念和公式的掌握程度。

三角函数复习教案

三角函数复习教案整理一、教学目标1. 回顾和巩固三角函数的基本概念、性质和公式。

2. 提高学生解决实际问题中涉及三角函数的能力。

3. 培养学生的逻辑思维和运算能力。

二、教学内容1. 三角函数的定义与性质正弦函数、余弦函数、正切函数的定义与性质特殊角的三角函数值2. 三角函数的图象与性质三角函数的图象特点三角函数的周期性、奇偶性、单调性3. 三角函数公式和差公式、倍角公式、半角公式、积化和差与和差化积公式正弦定理、余弦定理4. 三角函数的应用三角函数在几何中的应用三角函数在物理中的应用三、教学重点与难点1. 重点:三角函数的基本概念、性质、公式及应用。

2. 难点:三角函数的图象与性质的理解和应用,以及解决实际问题中的三角函数应用。

四、教学方法1. 采用讲解、示范、练习、讨论相结合的方法。

2. 利用多媒体课件辅助教学,直观展示三角函数的图象和性质。

3. 引导学生通过自主学习、合作交流,提高解决问题的能力。

五、教学过程1. 导入:回顾三角函数的定义与性质,引导学生思考三角函数在实际问题中的应用。

2. 新课:讲解三角函数的图象与性质,通过示例让学生理解并掌握。

3. 练习:让学生通过练习题,巩固所学内容,提高解决问题的能力。

4. 拓展:引导学生思考三角函数在其他领域的应用,如物理、工程等。

5. 小结:总结本节课的主要内容,强调重点和难点。

6. 作业:布置适量作业,让学生巩固所学知识。

六、教学评估1. 课堂讲解:观察学生对三角函数概念、性质和公式的理解程度,以及他们能否熟练运用相关知识解决问题。

2. 练习题:通过学生完成练习题的情况,评估他们对于三角函数图象与性质、公式的掌握程度。

3. 小组讨论:评估学生在合作交流中的参与程度,以及他们解决问题的能力。

七、教学反思1. 针对课堂讲解,反思教学方法是否适合学生的学习需求,是否需要调整讲解方式和节奏。

2. 针对练习题,反思习题难度是否适中,是否需要增加或调整习题类型。

新人教版九年级数学三角函数教案5篇

新人教版九年级数学三角函数教案5篇新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键1,重点:正弦的概念。

2,难点:正弦的概念。

3,关键:相似三角形对应边成比例的性质。

教学过程一、复习提问1、什么叫直角三角形2,如果直角三角形ABC中∠C为直角,它的直角边是什么斜边是什么这个直角三角形可用什么记号来表示二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。

)(4)这个实际问题可归结为怎样的数学问题(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。

)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢(引导学生回答;在这些直角三角形中,∠A的.对边与斜边的比值仍是一个固定值。

三角函数复习教案

三角函数复习教案一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)熟练运用三角函数公式进行计算;(3)理解三角函数在实际问题中的应用。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)学会运用归纳法、类比法等方法总结三角函数的性质;(3)提高运用三角函数解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生的团队协作精神;二、教学内容1. 三角函数的定义与性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数公式(1)和差化积公式;(2)积化和差公式;(3)倍角公式;(4)半角公式。

3. 三角函数在实际问题中的应用(1)角度与弧度的互化;(2)三角函数在几何问题中的应用;(3)三角函数在物理问题中的应用。

三、教学重点与难点1. 教学重点:(1)三角函数的定义与性质;(2)三角函数公式的运用;(3)三角函数在实际问题中的应用。

2. 教学难点:(1)三角函数公式的灵活运用;(2)解决实际问题时的三角函数求解。

四、教学方法1. 采用讲解法、问答法、讨论法等教学方法;2. 利用多媒体课件辅助教学,增强学生的直观感受;3. 设置适量练习,巩固所学知识。

五、教学过程1. 导入:通过复习三角函数的基本概念,引导学生回顾已学知识,为新课的学习做好铺垫。

2. 讲解:(1)讲解三角函数的定义与性质,通过示例让学生理解并掌握;(2)介绍三角函数公式,引导学生学会运用公式解决实际问题;(3)讲解三角函数在实际问题中的应用,培养学生运用数学知识解决实际问题的能力。

3. 练习:布置适量练习题,让学生巩固所学知识,并及时给予解答和指导。

4. 总结:对本节课的主要内容进行总结,强调重点和难点,鼓励学生课后进行自主复习。

5. 课后作业:布置课后作业,巩固课堂所学知识,提高学生的实际运用能力。

六、教学评估1. 课堂问答:通过提问,了解学生对三角函数定义与性质的理解程度。

三角函数复习教案

三角函数复习教案整理一、教学目标1. 回顾和巩固三角函数的基本概念、性质和公式。

2. 提高学生运用三角函数解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 三角函数的定义与性质正弦函数、余弦函数、正切函数的定义周期性、奇偶性、单调性图像与性质2. 三角函数的公式和差公式、倍角公式、半角公式积化和差与和差化积公式正弦定理与余弦定理3. 三角函数的应用角度与弧度的互化三角函数在几何中的应用三角函数在物理中的应用三、教学方法1. 采用问题驱动的教学方式,引导学生主动探究三角函数的性质和公式。

2. 利用多媒体课件辅助教学,展示三角函数的图像和实际应用场景。

3. 组织小组讨论,鼓励学生分享自己的解题思路和心得。

四、教学步骤1. 复习三角函数的基本概念,引导学生回顾正弦函数、余弦函数、正切函数的定义。

2. 分析三角函数的性质,如周期性、奇偶性、单调性,并通过示例讲解如何应用这些性质解决问题。

3. 讲解三角函数的公式,包括和差公式、倍角公式、半角公式等,并通过例题展示公式的应用。

4. 结合实际应用场景,讲解三角函数在几何和物理中的应用,巩固学生对三角函数的理解。

五、课后作业1. 复习本节课所学内容,整理三角函数的基本概念、性质和公式。

2. 完成课后练习题,巩固和应用三角函数的知识。

3. 准备下一节课的预习内容,了解三角函数图像的特点和绘制方法。

六、教学评价1. 课堂讲解:观察学生在课堂上的参与程度、提问回答情况和理解程度,评估学生对三角函数基本概念、性质和公式的掌握情况。

2. 课后作业:检查学生完成的课后练习题,评估学生对课堂所学知识的应用能力。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、交流能力和思维深度。

七、教学资源1. 多媒体课件:制作三角函数的图像、公式和实际应用场景的演示文稿。

2. 练习题库:准备一系列的练习题,包括填空题、选择题、解答题等,用于巩固和检测学生的学习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .1米
B .3米
C .23
D .
23
3
9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )
(A )4 (B )5 (C )23 (D )
83
3
10.已知Rt △ABC 中,∠C=90°,tanA=4
3
,BC=8,则AC 等于( ) A .6 B .
32
3
C .10
D .12 二、填空题
11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________.
13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______. 14.某坡面的坡度为1:3,则坡角是_______度. 15.在△ABC 中,∠C =90°,AB =10cm ,sinA =
5
4
,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该
高楼的高度大约为
A.82米
B.163米
C.52米
D.70米
17.在△ABC 中,两邻边的长分别为6和8,她们夹角的正弦值为4
3
,则三角形的面积为______。

18.在△ABC 中,三角形的面积为18,其中两个边分别为4和9,则这两个边的夹角的正弦值为_______,夹角为_______。

19.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)
(16题) (17题) 三、解答题
18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:
(1)已知a=4,b=8, (2)已知b=10,∠B=60°. (
45︒30︒
B
A
D
C
家长签字签字:
日期:。

相关文档
最新文档