matlab最短路径算法代码

合集下载

matlab路径算法

matlab路径算法

matlab路径算法MATLAB(Matrix Laboratory)是一种用于算法开发、数据可视化、数据分析以及数值计算的编程语言和环境。

在MATLAB中,路径算法通常用于解决诸如最短路径、最小生成树等优化问题。

以下是一个简单的Dijkstra算法的实现,该算法用于找到图中两点间的最短路径。

matlab复制代码:function [path, distance] = dijkstra(adjMatrix, sourceNode)nNodes = size(adjMatrix, 1); % 获取节点数visited = false(1, nNodes); % 初始化访问状态distance = inf(1, nNodes); % 初始化距离distance(sourceNode) = 0; % 源节点到自己的距离为0path = cell(1, nNodes); % 初始化路径for i = 1:nNodes[~, minIndex] = min(distance); % 找到当前最小距离的节点node = minIndex + 1; % MATLAB的索引从1开始,所以需要+1if ~visited(node)visited(node) = true; % 标记为已访问for j = 1:nNodesif adjMatrix(node, j) && ~visited(j) && distance(j) > distance(node) + adjMatrix(node, j)distance(j) = distance(node) + adjMatrix(node, j); % 更新距离path{j} = [path{j}; node]; % 更新路径endendendendend在这个函数中,adjMatrix是一个邻接矩阵,表示图中各节点之间的连接关系和权重。

遗产算法最短路径问题matlab

遗产算法最短路径问题matlab

遗产算法最短路径问题matlab 下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!遗传算法在最短路径问题中的应用引言遗传算法是一种模拟自然界生物进化过程的优化算法,近年来在解决各种优化问题中展现出了强大的能力。

matlab最短路径案例

matlab最短路径案例

matlab最短路径案例在实际生活和工作中,我们经常会遇到需要找到最短路径的问题,例如在物流配送中,我们需要计算货物从出发地到目的地的最短路线,以提高效率和节约成本。

在这种情况下,MATLAB是一种非常有效的工具,可以帮助我们快速计算出最短路径。

最短路径问题是计算图中两个节点之间最短路径的问题。

在MATLAB中,我们可以使用Graph和Dijkstra算法来实现最短路径的计算。

首先,我们需要构建一个图,用来表示节点和边。

在MATLAB中,我们可以使用Graph对象来表示图,并且可以使用addnode和addedge函数来添加节点和边。

G = graph();G = addnode(G, 5); % 添加5个节点G = addedge(G, 1, 2, 10); % 添加边,每条边都有一个权重G = addedge(G, 1, 3, 15);G = addedge(G, 2, 3, 8);G = addedge(G, 2, 4, 2);G = addedge(G, 3, 4, 6);G = addedge(G, 4, 5, 12);上面的代码创建了一个图,其中包含5个节点和6条边。

每条边都有一个权重,代表两个节点之间的距离。

接下来,我们可以使用dijkstra函数来计算最短路径。

这个函数需要指定图、起始节点和目标节点。

[start_node, end_node, shortest_dist] = shortestpath(G, 1, 5);上面的代码计算了图G中从节点1到节点5的最短路径,并且返回了起始节点、终止节点和最短路径的长度。

最后,我们可以使用plot函数将最短路径可视化。

plot(G, 'EdgeLabel', G.Edges.Weight) % 可视化图highlight(G, shortest_path, 'EdgeColor', 'r') % 高亮显示最短路径通过以上步骤,我们可以使用MATLAB计算并可视化最短路径。

MATLAB解决最短路径问题代码

MATLAB解决最短路径问题代码

默认是Dijkstra 算法是有权的, 我想如果把权都赋1的话, 就相当于没权的了参数是带权的稀疏矩阵及结点看看这两个例子(一个有向一个无向), 或许你能找到你想知道的% Create a directed graph with 6 nodes and 11 edgesW = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩% Find shortest path from 1 to 6[dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径% Mark the nodes and edges of the shortest pathset(h.Nodes(path),'Color',[1 0.4 0.4]) %上色edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));set(edges,'LineColor',[1 0 0]) %上色set(edges,'LineWidth',1.5) %上色下面是无向图的例子% % Solving the previous problem for an undirected graph% UG = tril(DG + DG')% h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6% [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)% % Mark the nodes and edges of the shortest path% set(h.Nodes(path),'Color',[1 0.4 0.4])% fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));% revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges];% set(edges,'LineColor',[1 0 0])% set(edges,'LineWidth',1.5)clc;close all; clear;load data;% global quyu;quyu = [2,3];%一片区域z_jl = lxjl(jdxx,lxxh);%计算路线的距离z = qyxz(jdxx,quyu,z_jl);% 根据节点信息,从z中将y区域的节点和路线选出所有点的信息hzlx(z);%绘制Z的图像[qypt, nqypt] = ptxzm(xjpt,quyu);changdu = length(bhxz(jdxx,1:6));%选出x中y区的标号,只是分区域,求长度并绘制它tt = z(:,[1,2,end])';k = min(min(tt(1:2,:)));%求两次最小值t = tt(1:2,:) ;xsjz = sparse(t(2,:),t(1,:),tt(3,:),changdu,changdu);%产生稀疏矩阵[dist, path, pred] = zdljxz(xsjz, qypt, k );%三个原包矩阵通过zdljxz计算得到最短路径hold onfor j = 1:nqyptcolors = rand(1,3);%产生随机数并用颜色标记hzptxc(path{j},jdxx,colors)endhold offaxis equal%把坐标轴单位设为相等zjd = jdfgd( path, quyu);function z = lxjl(x, y)%计算路线的距离[m n] = size(y);for i = 1:myy(i,1:2) = x(y(i,1),2:3);yy(i,3:4) = x(y(i,2),2:3);endz = sqrt((yy(:,3) - yy(:,1)).^2 + (yy(:,2) - yy(:,4)).^2);y = sort(y');y = y';z = [y yy z];z = sortrows(z);function [z lz] = ptxz(xjpt,y)pt = xjpt(:,2);wei = ismember(xjpt(:,1),y);z = pt(wei);lz = length(z);unction hzptxc(path,jdxx,colors)n = length(path);% hold onfor i = 1:nhzptjd(jdxx, path{i},colors)end% hold offunction hzptjd(jdxx,x,colors)% m = length(x);% x = x';hold onplot(jdxx(x,2),jdxx(x,3),'o','LineStyle' ,'-' ,...'Color',colors,'MarkerEdgeColor',colors)plot(jdxx(x(1),2),jdxx(x(1),3),'*','MarkerFaceColor',colors)hold offfunction hzlx(x)%绘制x的图像[m n] = size(x);hold onfor i = 1:mplot([x(i,3) x(i,5)],[x(i,4) x(i,6)],'k:')endhold offfunction z = bhxz(x,y)%选出x中y区的标号,只是分区域xzq = x(:,4);xzr = ismember(xzq,y);z = x(xzr,:);z = z(:,1);。

最短路dijkstra算法Matlab程序

最短路dijkstra算法Matlab程序

function [c0,c,path0,path]=dijkstra(s,t,C,flag)% Use the Dijkstra's algorithm to find the shortest path from% s to t and can also find the shortest path between s and all% the other points.% Reference: Graph Theory with Applications by J. A. Bondy and% U. S. R. Murty.% Input -- s is the starting point and also is the point s.% -- t is the given terminal point and is the point t.% -- C \in R^{n \times n}is the cost matrix, where% C(i,j)>=0 is the cost from point i to point j.% If there is no direct connection between point i and% j, C(i,j)=inf.% -- flag: if flag=1, the function just reports the% shortest path between s and t; if flag~=1, the% function reports the shortest path between s and t,% and the shortest paths between s and other points.% Output -- c0 is the minimal cost from s to t.% -- path0 denotes the shortest path form s to t.% -- c \in R{1\times n} in which the element i is the% minimal cost from s to point i.% -- path \in R^{n \times n} in which the row i denotes% the shortest path from s to point i.% Copyright by MingHua Xu(徐明华), Changhzou University, 27 Jan. 2014. s=floor(s);t=floor(t);n=size(C,1);if s<1 || t < 1 || s > n || t > nerror(' The starting point and the terminal point exceeds the valid range');endif t==sdisp('The starting point and the terminal point are the same points');endlabel=ones(1,n)*inf;label(s)=0;S=[s];Sbar=[1:s-1,s+1:n];c0=0;path=zeros(n,n);path(:,1)=s;c=ones(1,n)*inf;parent=zeros(1,n);i=1; % number of points in point set S.while i<n% for each point in Sbar, replace label(Sbar(j)) by% min(label(Sbar(j)),label(S(k))+C(S(k),Sbar(j)))for j=1:n-ifor k=1:iif label(Sbar(j)) > label(S(k))+C(S(k),Sbar(j))label(Sbar(j))=label(S(k))+C(S(k),Sbar(j));parent(Sbar(j))=S(k);endendend% Find the minmal label(j), j \in Sbar.temp=label(Sbar(1));son=1;for j=2:n-iif label(Sbar(j))< temptemp=label(Sbar(j));son=j;endend% update the point set S and SbarS=[S,Sbar(son)];Sbar=[Sbar(1:son-1),Sbar(son+1:n-i)];i=i+1;% if flag==1, just output the shortest path between s and t.if flag==1 && S(i)==tson=t;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path0(1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc0=c_temp;path(t,1:m)=path0;c(t)=c0;returnendend% Form the output resultsfor i=1:nson=i;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path(i,1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc(i)=c_temp;c0=c(t);path0=path(t,:);endreturn。

利用Matlab编程计算最短路径及中位点选址

利用Matlab编程计算最短路径及中位点选址

139§19. 利用Matlab 编程计算最短路径及中位点选址1、最短路问题两个指定顶点之间的最短路径。

例如,给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。

以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。

对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。

G 的子图的权是指子图的各边的权和。

问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。

这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。

求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。

为避免重复并保留每一步的计算信息,采用了标号算法。

下面是该算法。

(i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。

(ii) 对每个i S v ∈(i i S V S \=),用)}()(),({min uv w u l v l iS u +∈代替)(v l 。

计算)}({min v l iS v ∈,把达到这个最小值的一个顶点记为1+i u ,令140}{11++=i i i u S S 。

(iii). 若1||-=V i ,停止;若1||-<V i ,用1+i 代替i ,转(ii)。

算法结束时,从0u 到各顶点v 的距离由v 的最后一次的标号)(v l 给出。

在v 进入i S 之前的标号)(v l 叫T 标号,v 进入i S 时的标号)(v l 叫P 标号。

算法就是不断修改各项点的T 标号,直至获得P 标号。

若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各项点的最短路也在图上标示出来了。

floyd算法求最短路径问题matlab

floyd算法求最短路径问题matlab

floyd算法求最短路径问题matlabFloyd算法简介Floyd算法是一种用于求解带权图中所有节点对之间最短路径的算法,其时间复杂度为O(n^3)。

该算法由美国计算机科学家罗伯特·弗洛伊德于1962年提出,因此被称为Floyd算法。

Floyd算法的思想是动态规划,它利用中转点的思想来不断更新节点之间的最短路径。

具体而言,它维护一个n*n的二维数组d[i][j]表示从节点i到节点j的最短路径长度,然后通过遍历所有中转点k来更新d[i][j]。

具体地说,如果从i到k再到j的路径比直接从i到j更短,则更新d[i][j]为从i到k再到j的路径长度。

Floyd算法实现步骤1. 初始化二维数组d首先需要初始化二维数组d,将其赋值为图中各边的权值。

如果两个节点之间没有边相连,则将它们之间的距离设为无穷大。

2. 遍历所有中转点k接下来需要遍历所有中转点k,并尝试使用k作为中转点来更新每一对节点之间的最短路径。

具体而言,在遍历每个k时,需要遍历所有可能的起点i和终点j,然后检查是否存在一条从i到k再到j的路径比直接从i到j更短。

如果是,则更新d[i][j]为从i到k再到j的路径长度。

3. 输出最短路径遍历完所有中转点后,二维数组d中存储的即为各节点之间的最短路径长度。

如果需要输出具体的最短路径,则可以使用回溯法来实现。

Floyd算法在Matlab中的实现在Matlab中,可以使用二维数组来表示图,并通过循环来实现Floyd 算法。

具体而言,可以按以下步骤实现:1. 初始化二维数组d假设有n个节点,则可以用一个n*n的矩阵来表示图。

首先需要将所有边权值存储在该矩阵中,并将不存在边相连的节点之间的距离设为无穷大。

这可以通过如下代码实现:% 初始化矩阵d = inf(n);for i = 1:nd(i, i) = 0;end% 存储边权值for i = 1:md(x(i), y(i)) = w(i);end```其中m是边数,x(i)和y(i)分别表示第i条边的起点和终点,w(i)表示其权值。

dijkstra算法原理及MATLAB代码

dijkstra算法原理及MATLAB代码

Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。

在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v 到U中任何顶点的最短路径长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。

U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。

为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。

过程如下:在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。

经过修改,得到比较好的效果。

[cpp]view plain copy1.function [ distance path] = Dijk( W,st,e )2.%DIJK Summary of this function goes here3.% W 权值矩阵 st 搜索的起点 e 搜索的终点4.n=length(W);%节点数5. D = W(st,:);6.visit= ones(1:n); visit(st)=0;7.parent = zeros(1,n);%记录每个节点的上一个节点8.9.path =[];10.11.for i=1:n-112. temp = [];13. %从起点出发,找最短距离的下一个点,每次不会重复原来的轨迹,设置visit判断节点是否访问14.for j=1:n15.if visit(j)16. temp =[temp D(j)];17.else18. temp =[temp inf];19. end20.21. end22.23. [value,index] = min(temp);24.25. visit(index) = 0;26.27. %更新如果经过index节点,从起点到每个节点的路径长度更小,则更新,记录前趋节点,方便后面回溯循迹28.for k=1:n29.if D(k)>D(index)+W(index,k)30. D(k) = D(index)+W(index,k);31. parent(k) = index;32. end33. end34.35.36.end37.38.distance = D(e);%最短距离39.%回溯法从尾部往前寻找搜索路径40.t = e;41.while t~=st && t>042. path =[t,path];43. p=parent(t);t=p;44.end45.path =[st,path];%最短路径46.47.48.end测试:测试用例1[cpp]view plain copy1.W=[0 50 inf 40 25 102. 50 0 15 20 inf 253. inf 15 0 10 20 inf4. 40 20 10 0 10 255. 25 inf 20 10 0 556. 10 25 inf 25 55 0];[cpp]view plain copy1.[cpp]view plain copy1.[distance,path]=Dijk(W,1,4);>> distancedistance =35>> pathpath =1 6 4从节点1到节点4最短距离路径为1-->6-->4, 最短距离为35测试用例2[html]view plain copy1.W=[0 1 3 42. 1 0 2 inf3. 3 2 0 54. 4 inf 5 0];[html]view plain copy1.[distance,path]=Dijk(W,2,4);>> distancedistance =5>> pathpath =2 1 4从节点2到节点4最短距离路径为2-->1-->4, 最短距离为5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab最短路径算法代码dijkstra算法如下:
function [dist,path] = dijkstra(A,Start)
% A是负责表示网络图的邻接矩阵
% 前提:随路网络中不存在负值回路
if Start==0 %默认起点为1
Start=1;
end
N=size(A,1); %N是有向网络中结点的数目
dist=inf*ones(1,N); %dist保存结点间最短距离,初始化为无穷大dist(1,Start)=0; %将起始点的距离初始化为0
path=zeros(N,N); %path保存路径
% 标志向量flag,元素值为1表示相应结点已成为最短路径结点flag=zeros(1,N);
for i=2:(N-1)
% 找出距离当前最短路径最近的结点
mini=inf;
n=-1;
for j=2:(N-1)
if flag(1,j)==0 && dist(1,j)<mini %flag(1,j)==0说明未找出最短路径
n=j;
mini=dist(1,j);
end
end
flag(1,n)=1; %将新找到的最短路径结点标记
for j=2:(N-1) %对所有没有找到最短路径结点
if A(n,j)~=inf && flag(1,j)==0 %未找到最短路径
if A(n,j)+dist(1,n)<dist(1,j) %更新最短距离
path(j,n)=1; %增加一条边
dist(1,j)=A(n,j)+dist(1,n); %更新最短距离
end
end
end
end
dist(1,N-1)=dist(1,N); %终点(0,0)处没有结点end。

相关文档
最新文档