方波 三角波--转换电路实验报告册
三角波方波发生器实验报告

三角波方波发生器实验报告一、实验目的本实验旨在掌握三角波、方波发生器的工作原理,学习使用运算放大器、电容、电阻等元器件搭建三角波、方波发生器电路,并对其进行调试。
二、实验原理1. 三角波发生器三角波发生器是一种能够输出呈直线上升或下降的信号的电路,其输出信号的频率和幅度可以通过改变电路中元件参数来调节。
常用的三角波发生器电路是基于反相输入正弦振荡器和积分放大器构成的。
2. 方波发生器方波发生器是一种能够输出高低电平交替出现的信号的电路,其输出信号频率和占空比可以通过改变元件参数来调节。
常用的方波发生器电路是基于反相输入比较器和反馈网络构成的。
三、实验步骤及结果1. 搭建三角波发生器电路将运算放大器(LM358)连接至两个10kΩ电阻组成反相输入正弦振荡器,再将积分放大器(LM358)连接至10kΩ电阻和100nF陶瓷电容组成积分放大网络。
调节电路中电阻和电容的参数,使其输出三角波信号。
示波器测量输出信号频率为1kHz,幅度为±3V。
2. 搭建方波发生器电路将运算放大器(LM358)连接至两个10kΩ电阻组成反相输入比较器,再将反馈网络连接至100kΩ电阻和1nF陶瓷电容组成积分放大网络。
调节电路中电阻和电容的参数,使其输出50%占空比的方波信号。
示波器测量输出信号频率为1kHz,幅度为±3V。
四、实验分析通过本实验的搭建和调试过程,我们深入了解了三角波、方波发生器的工作原理,并掌握了使用运算放大器、电容、电阻等元器件搭建三角波、方波发生器的方法。
同时,在实验中我们也学会了如何通过改变元件参数来调节输出信号频率和幅度。
五、实验总结本次实验是一次很好的综合性实验,在实践中我们不仅学习到了基础的三角波、方波发生器原理,还掌握了一些基本的模拟电路设计方法和手段。
在以后的学习和实践中,我们应该更加深入地理解和掌握这些知识,为以后的电路设计打下坚实的基础。
课程设计报告设计制作一个方波—三角波—正弦波的函数转换器

课程设计说明书课程设计名称:电子技术(模拟电路部分)课程设计题目:设计制作一个方波—三角波—正弦波的函数转换器学院名称:专业:班级:学号:姓名:评分:教师:20 年月日电子技术(模拟电路部分)课程设计任务书20 -20 学年第学期第周-周题目设计制作一个方波—三角波—正弦波的函数转换器内容及要求1 )输入波形频率范围为0.02Hz~20KHz且连续可调。
2 )正弦波幅值为±2V。
3 )方波幅值为±2V。
4 )三角波峰峰值为2V,占空比可调。
5 )设计电路所需的直流电源可用实验室电源。
进度安排第一周:设计电路图,参考文献,仿真,然后焊接。
第二周:调试装置,总结实验,完成实验报告。
学生姓名:指导时间:年月日至年月日指导地点:楼室任务下达年月日任务完成年月日考核方式 1.评阅□ 2.答辩□ 3.实际操作□ 4.其它□指导教师系(部)主任注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。
摘要函数信号发生器作为一种常用的信号源,是现代测试领域内应用最广泛的通用仪器之一,在研制生产测试和维修各种电子元件和部件都需要有信号源。
由于函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波,方波,三角波,锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数,所以信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信,广播,电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频),视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电容测量领域。
本次课程设计的目的:采用555集成芯片外界电容电阻来产生正弦波、方波、和三角波,先通过555芯片产生波形通过电容形成方波,接着经过两个电阻分别出现三角波和正弦波,经过仿真得出了三个波形的波形图,通过实验掌握电子系统的一般设计方法,培养综合应用所学知识来指导实践的能力,掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。
方波、三角波发生器实验报告

数字电子技术基础综合实验报告实验名称:方波,三角波发生器
系别:水利电力学院
专业:电气工程及其自动化
学生、学号:杜文涛(1000302073)聂现强(1000302059)张龙华(0803205038)
日期:2012/7/8
1.实验内容
2.电路图(multisim仿真)
3.仿真结果(举例2倍频时的结果)
4.实验分工
杜文涛:资料的查找与电路图的设计,并进行仿真测试。
和队友共同完成电路在实验箱上的模拟以及在电路板上的焊接!
聂现强:和队友共同完成电路在实验箱上的模拟以及在电路板上的焊接!
张龙华:和队友共同完成电路在实验箱上的模拟以及在电路板上的焊接!
6.实验心得
经过长达一个星期的实验,我们深刻体会到了团队合作的重要性。
这次实验不仅让我们巩固了专业知识,也让我们了解一个个体如何在团队工作中发挥出自己最大力量,更增加了彼此间的默契!。
方波-三角波发生电路实验报告

河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年 4月 26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。
指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。
方波变三角波

方波变三角波实验报告
20113081
吴芳
要求:做输出为1HZ—10HZ,10HZ—100HZ,100HZ—1000HZ范围内的波形。
实验原理:先采用滞回比较器产生方波,再通过积分电路将方波变成三角波,通过改变积分电路中电容的大小从而可以产生题目要求频率的三角波。
实验步骤:
1.做滞回比较器:要使U+=Uo/2,所以令R1=R2=10k
2.先做输出为1HZ的积分电路
T=1/f=1S,又T=(4R1*R3*C)/R2
令R3=1k,所以C=2.5u
要使输出频率在1HZ到10HZ之间变换,则R3的取值范围为1K到10K,可接入1K的定值电阻,9K的滑动变阻器
3.做输出为10HZ的积分电路
T=1/f=0.1s,又T=(4R1*R3*C)/R2
令R3=1K,则C=0.25u
要使输出频率在10HZ到100HZ之间变换,则R3的取值范围为1K到10K,可接入1K的定值电阻,9K的滑动变阻器
4.做输出为100HZ到1000HZ的积分电路,根据以上得R3的取值范围为1K 到10K,C=0.025u
5.为使输出频率连续可调,可接入三匝开关
实验结论:实验采用滞回比较器的输出端加在积分电路的反向输入端进行积分可以产生方波,并将方波转换为三角波。
实验总结:在仿真中的示波器上,我们可以明显的看出两波的频率相等,
而三角波则比方波减小了一半,在图中可以读出在方波发生跳
变的同时三角波也发生了跳变。
在做该实验时我们要注意理论
R大点,使得 大点上频率的计算,且在该实验中我们应使
4。
实验五 三角波-方波(锯齿波-矩形波)发生器实验报告

实验五三角波-方波(锯齿波-矩形波)发生器实验报告实验目的:学习、理解、掌握由运算放大器构成的施密特比较器、积分器的原理,掌握锯齿波-矩形波(三角波-方波)发生器的构成方式,波形参数与电路元件值的关系,通过对理论计算、仿真、测试的数据对比分析获得对电路原理及实践能力的提升。
实验设备及器件:笔记本电脑(软件环境:Multisim13.0、WaveForms2015)AD2口袋仪器电容:0.1μF电阻:200Ω、10kΩ*4、30kΩ*3二极管:发光二极管*2(红色或绿色)、普通二极管*2运放:μA741*2面包板、连接线等实验内容:用两片μA741构成的三角波-方波发生器(施密特触发器+积分电路)见图1。
图1 三角波-方波电路1.测试(使用红色发光二极管):(1)按图1搭建电路,使用AD2测试vo1和vo的波形(屏幕拷贝波形并贴于下方,图2),观察测试的波形,给出方波及三角波的高电平、低电平、方波的高电平持续时间、方波的低电平的持续时间、占空比、振荡周期,并填入表1。
图2 三角波-方波电路的测试波形(2)令图1中的R4=10 kΩ,其他器件参数不变,构成锯齿波-矩形波发生器,使用AD2测试vo1和vo2的波形(屏幕拷贝波形并贴于下方,图3),通过波形给出锯齿波及矩形波的高电平、低电平、矩形波的高电平持续时间、矩形波的低电平的持续时间、占空比、振荡周期,并填入表2。
图3 锯齿波-矩形波电路的测试波形2.计算(1)利用测试(1)所得的方波高电平和低电平值(输出vo1,也就是发光二极管在该工作条件下的正向压降,计算周期时可使用正负峰值的平均值计算),并根据电路器件参数,理论计算三角波输出端(vo)的高电平和低电平值、方波高电平持续时间、方波低电平的持续时间、占空比、振荡周期,并填入表1。
(计算时需要考虑D3、D4二极管正向压降的影响,鉴于选用二极管的特性及实验中流过D 3、D4二极管的电流只有100μA左右,取正向压降为0.5V)。
三角波-方波(锯齿波-矩形波)发生器实验报告

三角波-方波(锯齿波-矩形波)发生器实验报告一、实验背景及目的在电子技术中,经常需要产生特定频率和形态的波形信号。
三角波-方波(锯齿波-矩形波)发生器可以产生多种波形信号,因此应用广泛。
本实验的目的是学习如何设计和制作三角波-方波(锯齿波-矩形波)发生器,并且深入理解相关电路的工作原理。
二、实验原理本实验中,我们使用反相输入放大器作为比较器。
比较器会将输入的连续波形信号与阈值进行比较,若输入信号高于阈值,则输出高电平;反之,则输出低电平。
通过将两个反相输入放大器连接形成反馈环路,可以得到三角波和锯齿波的信号。
通过在反馈环路中添加开关管,可以将三角波信号转化为矩形波信号。
三、实验器材1. 实验板2. 集成电路 LM3583. 可变电阻4. 电容5. 二极管6. 开关管四、实验步骤1. 将 LM358 集成电路插入实验板正确位置。
2. 连接反馈电路:将时序电容和可变电阻串联,连接到反相输入端口。
将电容和电阻的另一端连接到非反相输入端口。
3. 连接反馈电路:将正输入端口连接到负电源的直流电压。
4. 连接输出端口:将反相输出端口连接到非反相输入端口。
5. 连接输出端口:将输出端口连接到输出负载电阻。
6. 添加电容:将一个电容连接到输出负载电阻的另一端,并将其连接到微调电器。
7. 连接矩形波开关管:将开关管连接到反馈环路中,通过它进行转换。
8. 连接锯齿波开关管:将开关管连接到反馈环路中,通过它进行转换。
9. 测试电路:检查电路是否连接正确。
10. 调节电阻:根据需要调节可变电阻以产生不同的波形信号。
五、实验结果在实验中,我们成功地设计和制作了三角波-方波(锯齿波-矩形波)发生器,并且得到了以下结果:1. 通过调节电阻,我们可以产生不同的波形信号,包括三角波、锯齿波和矩形波。
2. 我们发现,当添加了矩形波开关管时,产生的矩形波信号的占空比由电阻决定。
3. 我们发现,在添加锯齿波开关管时,电容和电阻的值将会影响锯齿波的斜率。
实验七 方波-三角波发生器设计与研究(设计性实验)-指导书

实验七 方波-三角波发生器设计与研究(设计性实验)一 实验目的(1) 掌握方波—三角波产生电路的设计方法及工作原理。
(2) 了解集成运算放大器的波形变换及非线性应用。
二 设计要求1.设计一个用集成运算放大器构成的方波—三角波产生电路。
指标要求如下: ① 方波: f=500Hz ,相对误差<±5%;脉冲幅度:±(5~5.5)V ② 三角波:f=500Hz ,相对误差<±5%;幅度:2~2.5V2.根据指标要求和实验室提供的元器件,确定电路方案,计算并选取电路的元件参数。
3.调试所设计的电路,使之满足指标要求,并记录输出波形的幅度和频率。
设计提示: 常用的方波—三角波产生电路图7.1 常用的方波—三角波产生电路图7.1所示是由集成运算放大器组成的一种常用的方波—三角波产生电路。
图中运算放大器A 1与电阻R 1、R 2构成同相输入施密特触发器(即迟滞比较器)。
运算放大器A 2与RC 构成积分电路,二者形成闭合回路。
由于电容C 的密勒效应,在A 2的输出端得到线性较好的三角波。
01u 为方波;02u 为三角波。
该电路的有关计算公式为: 振荡周期: 214R RCR T (7.4)输出方波u O1的幅度: Z m o V V ±=1 (7.5) 输出三角波u O2的幅度:Z m o V R R V 212±= (7.6) 元件参数确定与元件选择① 选择集成运算放大器由于方波的前后沿与用作开关器件的A 1的转换速率S R 有关,因此当输出方波的重复频率较高时,集成运算放大器A 1应选用高速运算放大器,一般要求选用通用型运放即可。
集成运算放大器A 2的选择原则是:为了减小积分误差,应选用输入失调参数小,开环增益高、输入电阻高、开环带宽较宽的运算放大器。
② 选择稳压二极管D Z稳压二极管D Z 的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选择稳压管的稳定电压V Z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与机电工程学院(2015——2016 学年第二学期)
综合设计报告
方波三角波转换电路
专业:电子信息科学与技术学号:2014216041
姓名:张腾
指导教师:石玉军
方波三角波转换电路
摘要:
一般方波-三角波发生器要用三只运算故大器,而且要用二极管或双向稳压管等有源器件进行限幅,线路较烦琐。
这里介绍一个实用的方波-三角波发生器。
该电路工作稳定、可靠,而且频率、幅度调节方便。
通过在Multisim10虚拟实验环境中对方波一三角波函数发生器电路的设计,阐述Multisim10在电路仿真设计中的应用过程,实现真正意义上的电子设计自动化(DEA)。
关键字:
三角波发生器频率方波二极管稳压管有源器件限幅实用振荡电路积分器
1.引言:
电子电路邻域中的信号波形,除了正弦波之外另一类就是非正弦波。
非正弦波又称为脉冲波,如方波、矩形波、三角波等都是最常见的脉冲波形,当今是科学技术及仪器设备高度智能化飞速发展的信息社会,电子技术的进步,给人们带来了根本性的转变。
现代电子领域中,单片机的应用正在不断的走向深入,这必将导致传统控制与检测技术的日益革新。
单片机构成的仪器具有高可靠性、高性能价格比,在智能仪表系统和办公自动化等诸多领域得以极为广泛的应用,并走入家庭,从洗衣机、微波炉到音响汽车,处处可见其应用。
因此,单片机技术开发和应用水平已逐步成为一个国家工业发展水平的标志之一。
信号发生器作为一种常见的应用电子仪器设备,传统的一般可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。
在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。
而借用计算机技术和DDS技术直接产生的各种波形频率高,成本高。
2.设计内容和要求:
(1).内容:设计一个用集成放大器构成的方波-三角波产生电路,指标要求如下:
方波重复频率:500Hz 相对误差<5%;脉冲幅度:6-6.5V
三角波重复频率:500Hz 相对误差<5%;脉冲幅度:1.5-2V
(2).要求:
①根据设计要求和已知条件,确定电路方案,设计并选出各单元电路的原件参数。
②测量方波产生电路输出方波的幅度和重复频,是只满足设计要求。
③测量三角波产生电路输出三角波的幅度和重复频率,是只满足设计要求。
3.方案论证和选择
函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波函数发生器的设计方法。
产生方波、三角波的方案有多种,如首先产生方波,然后通过整形电路或积分电路将方波变换成三角波;也可以首先产生三角波,再将三角波变成方波等等。
方案一:首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。
方案二:电压比较器以及差分放大器共同组成的方波—三角波函数发生器的设计方法。
先通过电压比较器产生方波,再通过积分电路形成三角波。
此电路具有良好的方波信号。
但经过积分器电路产生的同步三角波信号,存在难度。
原因是积分器电路的积分时间常数是不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。
若要保持三角波幅度不变,需同时改变积分时间常数的大小。
由于函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本系统未采用单片函数发生器模块8038。
方案一的电路结构、思路简单,但用低通滤波器将方波转化为正弦波时,其
输出因为负载的变动将拉动波形的崎变将造成负载的输出正弦波波形变形;而方案二,运行时性能稳定且能较好的符合设计要求,且成本低廉、调整方便。
综上所述,我们选择方案二。
4.系统框图
5.硬件系统设计
如下图所示的是由集成运算放大器组成的一种常见的方波-三角波产生电路。
图中第一个当大器与R3、R2构成同相输入施密特触发器(即迟滞比较器)。
第二个运算放大器与RC构成积分回路。
由于电容C的密勒效应,在第二个放大器的输出得到线性度较好的三角波。
6.软件系统的设计
7.测试结果
预期的结果如下:
测试结果如下:
8.结论
通过所设计的电路图,在multisim中仿真出了期望的结果,即将方波转换成了
三角波
9.参考文献
[1]童诗白华成英模拟电子技术基础第四版
[2]康华光数字电子技术基础第六版
[3]谷树忠倪虹霞张磊原理图、PCB设计与仿真第二版
10、致谢
感谢老师对我在实验上的帮助,以及操作过程中细心地指导。
对于我而言老师教会我的不仅仅是实验课,更是生活中点点滴滴的细节,更是为人处世的道理与社会经验。
再次,要感谢学校为我提供的良好学习环境,在这里我学到了很多的知识。
另外还要感谢那些帮助了我的同学,他们在我的电路仿真中给予了我很大的帮助,使我在学习上有了更大的进步。