八年级数学第二十章《数据的分析》基础测试题含答案
新人教版八年级下第二十章《数据的分析》章节练习题(含答案)

第二十章数据的分析姓名 _____ 班别 _____ 学号_____1.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10 B。
10, 12.5 C. 11,12.5 D。
11,102.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,53。
在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的().A。
众数 B.方差 C。
平均数 D.中位数4.一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 .5.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是小时.6。
甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):品种第1年第2年第3年第4年[来]第5年甲9.8 9。
9 10。
1 10 10。
2 乙9。
4 10.3 10.8 9.7 9。
8经计算,x甲=10,x乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定.7。
如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD= .8。
某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:1 2 3 4 5 6 笔试成绩/分 85 92 84 90 84 80 面试成绩/分908886908085根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分) (1)这6名选手笔试成绩的中位数是 分,众数是 分. (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比. (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.9. 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少? (2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小; (4)求该班学生所穿校服型号的众数和中位数.答案第二十章 数据的分析练习题序号项目1.D 解析:10515520115x ++++==,这组数据从小到大排列:5、5、10、15、20.所以中位数是10.2。
八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。
八年级数学下册第二十章数据的分析知识点汇总(带答案)

八年级数学下册第二十章数据的分析知识点汇总单选题1、北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的众数和中位数分别是().答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中32是出现次数最多的,故众数是32;把数据按从小到大的顺序排列后,处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选:A.小提示:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x≥-2,故选:D.小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3、若x1,x2,x3,⋯,x n的平均数为8,方差为2,则关于x1+2,x2+2,x3+2,……,x n+2,下列结论正确的是()A.平均数为8,方差为2B.平均数为8,方差为4C.平均数为10,方差为2D.平均数为10,方差为4答案:C分析:根据平均数、方差随数据的变化规律进行判断,将一组数的每个数据都增加n,所得到的新一组数据的平均数就增加n,而方差不变.解:样本x1+2,x2+2,x3+2,…x n+2,对于样本x1,x2,x3,…x n来说,每个数据均在原来的基础上增加了2,根据平均数、方差的变化规律得:平均数较前增加2,而方差不变,即:平均数为8+2=10,方差为2,故选:C.小提示:本题考查平均数、方差的意义以及受数据变化的影响,掌握规律,理解意义是解决问题的关键.4、如果x1与x2的平均数是5,那x1−1与x2+5的平均数是()A.4B.5C.6D.7答案:D分析:根据x1与x2的平均数是5,求出x1+x2=10,再根据平均数的计算公式求出答案.解:∵x1与x2的平均数是5,∴x1+x1=2×5=10,∴x1−1与x2+5的平均数是x1−1+x2+52=x1+x2+42=7,故选:D.小提示:此题考查了平均数的计算公式,熟记公式是解题的关键.5、自去年9月《北京市打赢蓝天保卫战三年行动计划》发布以来,北京市空气质量呈现“优增劣减”特征,“蓝天”含金量进一步提高,下图是今年5月17日至31日的空气质量指数趋势图.(说明:空气质量指数为0﹣50、51﹣100、101﹣150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优良的天数占45;②在此次统计中,空气质量为优的天数多于轻度污染的天数;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.所有正确结论的序号是()A.①B.①②C.②③D.①②③答案:D分析:根据折线统计图的数据,逐一进行分析即可.解:①在此次统计中,空气质量为优良的天数占1215=45,此项正确;②在此次统计中,空气质量为优的天数5天,多于轻度污染的天数3天,此项正确;③20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,此项正确.故选:D.小提示:本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6、抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差答案:A分析:7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.小提示:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.7、根据下表中的信息解决问题:4个C.5个D.6个答案:C分析:直接利用a=1、2、3、4、5、6分别得出中位数,进而得出符合题意的答案.当a=1时,有19个数据,最中间是:第10个数据,则中位数是38;当a=2时,有20个数据,最中间是:第10和11个数据,则中位数是38;当a=3时,有21个数据,最中间是:第11个数据,则中位数是38;当a=4时,有22个数据,最中间是:第11和12个数据,则中位数是38;当a=5时,有23个数据,最中间是:第12个数据,则中位数是38;当a=6时,有24个数据,最中间是:第12和13个数据,则中位数是38.5;因为该组数据的中位数不大于38,则符合条件的正整数a的取值共有:5个.故选C.小提示:本题考查中位数,频数(率)分布表.8、新冠肺炎疫情期间,某市实施静态管理,九年级某班组建了若干个数学学习互助小组,其中一个9人小组进行数学线上学习效果的自测,九名学生的平均成绩为73分,若将他们的成绩从高分到低分排序后,前五名学生的平均成绩为85分,后五名学生的平均成绩为63分,则这九名学生成绩的中位数是()A.84B.83C.74D.73答案:B分析:设将他们的成绩从高分到低分排序后,前四名学生的总成绩为a 分,第五名学生的成绩为x 分,后四名学生的总成绩为b 分,则这九名学生成绩的中位数是x ,再根据平均数的计算公式建立方程组,解方程组即可得.解:设将他们的成绩从高分到低分排序后,前四名学生的总成绩为a 分,第五名学生的成绩为x 分,后四名学生的总成绩为b 分,则这九名学生成绩的中位数是x ,由题意得:{ a+x+b 9=73①a+x 5=85②x+b 5=63③, 由②+③得:a+2x+b 5=148,即a +x +b =740−x ④,将④代入①得:740−x 9=73, 解得x =83, 即这九名学生成绩的中位数是83,故选:B .小提示:本题考查了中位数和平均数,熟记中位数的定义和平均数的计算公式是解题关键.9、某校为了了解学生在校一周体育锻炼时间,随机抽查了11名学生,调查结果如下,这11名学生在校一周体育锻炼时间的众数和中位数分别为( ).6.5h ,6h答案:A分析:根据中位数的意义得出中位数是排列后的第6个数据,再求出平均数即可;根据众数的意义求出众数即可.解:11个数据按大小顺序排列,第6个数据是6,故中位数 是6h ,∵锻炼时间为6h 的人数最多,是4人,∴众数是6h ,故选:A .小提示:本题考查了众数和中位数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.10、小明将自己家1月份至6月份的用水量绘制成了如图所示的折线统计图,那么小明家这6个月用水量的平均数和中位数分别是()A.10吨,12.5吨B.10吨,9.5吨C.9吨,10.5吨D.8吨,9.5吨答案:B分析:从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量,再将6个数据按从小到大的顺序排列,中间两个数的平均数就是中位数.解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10(吨),把这组数据按从小到大的顺序排列为:6,8,9,10,12,15,中位数为:(9+10)÷2=9.5(吨)故选:B.小提示:此题主要考查了折线图的应用以及平均数和中位数求法,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.填空题11、已知2、3、4、x1、x2、x3的平均数是5,则x1、x2、x3的平均数是______.答案:7分析:先根据2、3、4、x1、x2、x3的平均数是5得出2+3+4+x1+x2+x3=30,据此可知x1+x2+x3= 21,再根据平均数的定义进一步计算即可.解:∵2、3、4、x1、x2、x3的平均数是5,∴2+3+4+x1+x2+x3=30,∴x1+x2+x3=21,则x1、x2、x3的平均数是21÷3=7,所以答案是:7.小提示:本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.12、某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:__________小时.答案:6.6分析:根据加权平均数的定义解答即可.=6.6小时.解:这10名同学一周在校参加体育锻炼时间的平均数=5×1+6×4+7×3+8×210所以答案是:6.6.小提示:本题考查了加权平均数的计算,属于基础题型,熟练掌握计算的方法是解题关键.13、已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是______.答案:9分析:先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:∵众数是9,∴x=9,∴从小到大排列此数据为:3,7,9,9,10,12,∵处在第3、4位的数都是9,∴9为中位数.故答案为9.小提示:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14、某小组6名学生的平均身高为a cm,规定超过a cm的部分记为正数,不足a cm的部分记为负数,他们的身高与平均身高的差值情况记录如下表:答案:(a+1)##(1+a)分析:根据题意身高差值和为0,即可求解.解:∵平均身高为a cm,规定超过a cm的部分记为正数,不足a cm的部分记为负数,∴2+x+3−1−4−1=0.解得x=1∴2号学生的身高为(a+1)cm.所以答案是:(a+1)小提示:本题考查了根据平均数求未知,理解题意是解题的关键.15、有甲、乙两组数据,如表所示:s 甲2,s乙2,则s甲2______________s乙2(填“>”,“<”或“=”).答案:>分析:根据甲、乙两组数据分别求出甲、乙的平均数,然后再利用方差公式进行求解比较即可.解:由题意得:x 甲=11+12+13+14+155=13,x乙=12+12+13+14+145=13,∴s甲2=[(11−13)2+(12−13)2+(13−13)2+(14−13)2+(15−13)2]5=2,s 乙2=[(12−13)2+(12−13)2+(13−13)2+(14−13)2+(14−13)2]5=45,∴2>45,∴s甲2>s乙2;故答案为>.小提示:本题主要考查平均数及方差,熟练掌握平均数及方差的计算是解题的关键.解答题16、2022年5月25、26日国家实施义务教育质量监测.监测部门从某校八年级全体学生中任意抽取40名学生,平均分成甲、乙两个小组参加艺术测试.根据测试成绩绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表人数 3 9 3 5请根据上面的信息,解答下列问题:(1)m=____________,甲组成绩的众数是____________;乙组成绩的中位数是____________.(2)请你计算出甲组的平均成绩.2=1.05,乙组的平均成绩是8.5,请计算出乙组成绩的方差,并判断哪个小组的成(3)已知甲组成绩的方差S甲绩更均衡?答案:(1)3,8,8(2)8.5(3)0.75;乙更均衡分析:(1)根据统计表、中位数和众数的定义即可确定;(2)根据平均数的计算方法运算即可;(3)计算出乙组的方差,再比较甲、乙两组的方差大小即可.(1)解:m =20-2-9-6=3;有统计表可知:甲组成绩的众数是8;乙组的中位数是第10,11位数的平均数,由图可知是8;(2)甲组平均成绩为:120(7×3+8×9+9×3+10×5)=8.5; (3)S 乙2=120[2×(7−8.5)2+9×(8−8.5)2+6×(9−8.5)2+3×(10−8.5)2] =120×(2×2.25+9×0.25+6×0.25+3×2.25) =120×(5×2.25+15×0.25) =120×(11.25+3.75) =0.75∵S 甲2=1.05∴S 甲2>S 乙2∴乙更均衡.小提示:本题考查统计表与条形统计图、方差、中位数、众数、平均数的相关内容,注意从图中获取信息,分析图中数据之间的数量关系,掌握常见统计运算方法是解题的关键.17、某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0⩽x<0.5),第二组(0.5⩽x<1),第三组(1⩽x<1.5),第四组(1.5⩽x<2),第五组(x⩾2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.答案:(1)第二组(2)175人(3)该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量分析:(1)根据中位数的定义求解即可;(2)根据扇形统计图求出C所占的比例再计算即可;(3)根据统计图反应的问题回答即可.(1)1200人的中位数是按从小到大排列后第600和601位的平均数,而前两组总人数为308+295=603∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在第二组;(2)由扇形统计图得选择“不喜欢”的人数所占比例为1−43.2%−30.6%−8.7%=17.5%而扇形统计图只统计不足两小时的人数,总人数为1200-200=1000∴选择“不喜欢”的人数为1000×17.5%=175(人)(3)答案不唯一、言之有理即可.例如:该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量;③学校开设劳动拓展课程:等等.小提示:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18、某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了A,B两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a.A部门每日餐余重量的频数分布直方图如下(数据分成6组:0≤x<2,2≤x<4,4≤x<6,6≤x<8,8≤x<10,10≤x≤12):b.A部门每日餐余重量在6≤x<8这一组的是:6.1 6.6 7.0 7.0 7.0 7.8c.B部门每日餐余重量如下:1 .4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8d. A,B两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:(1)写出表m,n中的值;(2)在A,B这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“A”或“B”),理由是____________;(3)结合A,B这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.答案:(1)m=6.8,n=6.9;(2) A,A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数(3)15600kg.分析:(1)根据频数(率)分布直方图中数据即可得到结论;(2)根据表中数据即可得到结论;(3)根据A、B两个部门这20个工作日每日餐余量的平均数即可得到结论.=6.8,n=6.9;(1)m=6.6+7.02(2)在A,B这两个部门中,“适度取餐,减少浪费”做得较好的部门是A,理由是A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数;故答案为A,A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数.=15600kg,(3)10×240×6.4+6.62答:估计该公司(10个部门)一年(按240个工作日计算)的餐余重量15600kg.小提示:本题考查了频数(率)分布直方图,用样本估计总体,求中位数和众数等等,正确的理解题意是解题的关键.。
八年级数学下册第二十章数据的分析知识总结例题(带答案)

八年级数学下册第二十章数据的分析知识总结例题单选题1、某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④答案:B分析:根据中位数的性质即可作答.在添加了两款新能源汽车的测评数据之后,0~100km/h的加速时间的中位数m s,满电续航里程的中位数n km,这两组中位数的值不变,即可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,据此逐项判断即可:A项,两款车的0~100km/h的加速时间均在直线m下方,不符合要求,故A项错误;B项,可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,符合要求;C项,两款车的满电续航里程的数值均在直线n的左侧,不符合要求,故C项错误;D项,两款车的0~100km/h的加速时间均在直线m上方,不符合要求,故D项错误;故选:B.小提示:本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键.2、一组数据x、0、1、-2、3的平均数是1,则x的值是()A.3B.1C.2.5D.0答案:A分析:根据题意,得x+0+1-2+3=5,求得x的值即可.∵x、0、1、-2、3的平均数是1,∴x+0+1-2+3=5,解得x=3,故选A.,正确进行公式变形计算是解题的关键.小提示:本题考查了算术平均数的定义即x̅=x1+x2+x3+⋯+x n−1+x nn3、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.4、河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是0答案:B分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;C、15D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.5、某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.7答案:D分析:根据统计图即可判断选项A,根据统计图可求出平均成绩,即可判断选项B,根据统计图即可判断选项C,根据所给数据进行计算即可判断选项D.解:A、由统计图得,最高成绩是9.4环,选项说法正确,不符合题意;B、平均成绩:1×(9.4+8.4+9.2+9.2+8.8+9+8.6+9+9+9.4)=9,选项说法正确,符合题意;10C、由统计图得,9出现了3次,出现的次数最多,选项说法正确,不符合题意;×[(9.4−9)2+(8.4−9)2+(9.2−9)2+(9.2−9)2+(8.8−9)2+(9−9)2+(8.6−9)2+D、方差:110(9−9)2+(9−9)2+(9.4−9)2]=0.096,选项说法错误,符合题意;故选D.小提示:本题考查了平均数,众数,方差,解题的关键是理解题意掌握平均数,众数和方差的计算方法.6、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、小楠所在社会实践活动小组的同学们响应“垃圾分类,从我做起”的号召,主动到附近的7个社区宣传垃圾分类.她们记录的各社区参加活动的人数如图所示,那么这组数据的众数和中位数分别是()A.42,40B.42,38C.2,40D.2,38答案:A分析:根据众数和中位数的定义分别进行解答啊即可.解:在这一组数据中42是出现次数最多的,故众数是42 ;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是40,由中位数的定义可知,这组数据的中位数是40.故选:A.小提示:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个,正确理解众数及中位数的定义是解题的关键.8、某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.31答案:B分析:根据算术平均数的计算方法进行计算即可.=33(辆),解:这组数据的平均数为:25+33+36+31+405故选:B.小提示:本题考查平均数,掌握算术平均数的计算方法是正确计算的关键.9、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环答案:C分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.小提示:本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.填空题11、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.12、数据-1,0,1的方差为_______.答案:23 分析:先求出3个数的平均数,再根据方差公式计算.解:数据-1,0,1的平均数:13(−1+0+1)=0, 方差S 2=13[(−1−0)2+(0−0)2+(1−0)2] =23,所以答案是:23. 小提示:本题考查方差的计算,方差S 2=1n [(x 1−x̅)2+(x 2−x̅)2+⋯+(x n −x̅)2],熟记方差公式是解题的关键.13、甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽取100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但s 甲2=0.288,s 乙2=0.024,则______机床生产这种滚珠的质量更稳定.答案:乙分析:根据甲的方差大于乙的方差,即可得出乙机床生产这种滚珠的质量更稳定.解:∵这两台机床生产的滚珠平均直径均为10mm ,S 2甲>S2乙,∴乙机床生产这种滚珠的质量更稳定.所以答案是:乙.小提示:本题主要考查方差,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.答案:90分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.15、八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为 _____.答案:42分析:根据众数的定义即可求得.解:在这组数据中42出现了2次,出现的次数最多,故这组数据的众数是42.所以答案是:42.小提示:本题考查了众数的定义,熟练掌握和运用众数的定义是解决本题的关键.解答题16、近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?答案:(1)3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约2次;(3)估计这天使用共享单车次数在3次以上(含3次)的学生有765人.分析:(1)根据中位数和众数的定义进行求解即可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为3+3=3次,众数为3次,2其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)x=0×11+1×15+2×23+3×28+4×18+5×5≈2(次),100答:这天部分出行学生平均每人使用共享单车约2次;=765(人),(3)1500×28+18+5100答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.小提示:本题考查了中位数、众数、平均数、用样本估计总体等,熟练掌握中位数、众数、平均数的定义以及求解方法是解题的关键.17、某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10 ,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).答案:(1)8.6(2)甲(3)丙分析:(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.(1)=8.6,解:丙的平均数:10+10+10+9+9+8+3+9+8+1010则m =8.6.(2)s 甲2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04, s 乙2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,∵s 甲2<s 乙2,∴甲、乙两位同学中,评委对甲的评价更一致,所以答案是:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625, 乙:7+7+7+9+9+10+10+108=8.625, 丙:10+10+9+9+8+9+8+108=9.125, ∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,所以答案是:丙.小提示:本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.18、如图,直角坐标系xOy 中,一次函数y =﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.答案:(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.分析:(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,再根据A (10,0),B (0,5),可得AO =10,BO =5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得 4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2, y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32; 当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.小提示:本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。
《常考题》初中八年级数学下册第二十章《数据的分析》基础卷(含答案解析)

一、选择题1.数据2-,1-,0,1,2的方差是( ) A .0B .2C .2D .42.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是 ( ) A .平均数 B .极差C .中位数D .方差3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 5.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( )A .平均数改变,方差不变B .平均数改变,方差改变C .平均数不变,方差改变 D .平均数不变,方差不变6.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表: 班级 参加人数 中位数 方差 平均数 甲 55 149 1.91 135 乙551511.10135某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③ B .①②C .①③D .②③8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲9.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数10.下表为某校八年级72位女生在规定时间内的立定投篮数统计,若投篮投进个数的中位数为a ,众数为b ,则+a b 的值为( ) A .20B .21C .22D .2311.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .812.甲、乙两人各射击6次,甲所中的环数是8,5,5,a ,b ,c ,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较13.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,3814.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分15.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A .10名学生是总体的一个样本B .中位数是40C .众数是90D .方差是400二、填空题16.已知一组数据:x 1,x 2,x 3,…,x n 的平均数是2,方差是3,另一组数据:3x 1﹣2,3x 2﹣2,…3x n ﹣2的方差是__________.17.若一组数据4,x ,5,7,9的众数为5,则这组数据的方差为_____. 18.数据﹣2、﹣1、0、1、2的方差是_____.19.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.20.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.21.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 126 132 136 138 142 人数14212则这10名学生的数学周考成绩的中位数是________分.22.一组数据3,2,3,4,x 的平均数是3,则它的方差是_____. 23.已知一组数据:3,3,4,5,5,则它的方差为____________24.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.25.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩. ①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?28.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?29.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?30.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差合格率优秀率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.。
八年级数学下册《第二十章-数据分析》练习题附答案-人教版

八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。
《第二十章 数据的分析》试卷及答案_初中数学八年级下册_人教版_2024-2025学年

《第二十章数据的分析》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在下面的一组数据中,众数是:A. 5B. 4C. 3D. 62、已知一组数据,其平均数为8,中位数为7,众数为6。
下列关于这组数据的说法正确的是:A. 这组数据中至少有两个6B. 这组数据中至少有一个7C. 这组数据中至少有两个8D. 这组数据中所有数的和为563、从甲、乙、丙、丁四个数中随机抽取一个数,得到奇数的概率是多少?A. 1/2B. 1/4C. 1/3D. 2/34、一个袋子里装有红球、蓝球、黄球,红球、蓝球、黄球的数量比为2:3:5。
现在从这个袋子中随机抽取一个球,得到红球的概率是多少?A. 1/10B. 2/10C. 3/10D. 4/105、在以下数据集中,中位数是多少?(数据集:2,3,5,6,8,9,10,12,14,15)A. 7B. 8C. 9D. 106、某班级进行了一次数学测验,分数的分布如下表所示:分数区间 | 频数——|—— 0-10 | 3 10-20 | 5 20-30 | 7 30-40 | 8 40-50 | 7 50-60 | 5 60-70 | 3请计算这个班级的数学测验的平均分。
A. 35B. 40C. 45D. 507、某班学生在一次数学测试中,成绩的频数分布如下表所示:成绩区间频数60-695成绩区间频数70-791080-891590-9920100-1098该班学生的平均成绩是()A. 82分B. 85分C. 87分D. 90分8、从一批产品中随机抽取10件进行检查,其中不合格的产品有3件。
假设这批产品的合格率服从二项分布,则这批产品的合格率的估计值是()A. 0.3B. 0.7C. 0.2D. 0.59、某班学生进行数学测试,成绩的频率分布如下表所示:成绩区间频率60-690.270-790.380-890.490-1000.1则该班学生的平均成绩大约为:A. 75分B. 78分C. 80分D. 82分 10、一个班级有50名学生,他们的英语成绩如下:成绩区间人数60-691070-791580-892090-1005如果将成绩转换为标准分数(z分数),则z分数为负数的学生的比例大约为:A. 20%B. 30%C. 40%D. 50%二、计算题(本大题有3小题,每小题5分,共15分)第一题:某校八年级下册数学兴趣小组对50名同学的数学成绩进行了统计,以下是成绩的频率分布表:成绩区间频率60-701070-8015成绩区间频率80-902090-10051.计算该组数据的众数、中位数和平均数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第二十章《数据的分析》基础测试题测试1 平均数(一)学习要求了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.课堂学习检测一、填空题1.一组数据中有3个7,4个11和3个9,那么它们的平均数是______.2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.二、选择题4.如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C)3.5 (D)45.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).(A)41度(B)42度(C)45.5度(D)46度三、解答题6.甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178 177 179 178 177 178 177 179 178 179;乙队:178 179 176 178 180 178 176 178 177 180.(1)(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.7假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?综合、运用、诊断一、填空题8.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.9.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.10.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大. 二、选择题 11.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ). (A)23.7吨 (B)21.6吨 (C)20吨 (D)5.416吨 12.m 个x 1,n 个x 2和r 个x 3,由这些数据组成一组数据的平均数是( ).(A)3321x x x ++(B)3r n m ++ (C ) 3321rx nx mx ++ (D)r n m rx nx mx ++++321 三、解答题13.从1月15日起,小明连续8天每天晚上记录了家中天然气表显示的读数(如下表):日期 15日 16日 17日 18日 19日 20日 21日 22日 天然气表读数(单位:m 3)220229241249259270279290小明的父亲买了一张面值600元的天然气使用卡,已知天然气每立方米1.70元,请估计这张卡是否够小明家用一个月(按30天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:______.并说明为什么.14.四川汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.(1)求这40名同学捐款的平均数;(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?15.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?(2)这1000名学生平均每人获得几个项目优秀?(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?测试2 平均数(二)学习要求加强实际问题中平均数的计算,体会用样本平均数估计总体平均数的思想.课堂学习检测一、填空题1.已知7,4,5和x的平均数是5,则x=______.2.某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.3.某班50名学生平均身高168cm,其中30名男生平均身高170cm,则20名女生的平均身高为______cm.二、选择题4.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)95那么这次知识问答全班的平均成绩是( )(结果保留整数).(A)80分(B)81分(C)82分(D)83分三、解答题6.某班有学生52人,期末数学考试平均成绩是72分.有两名同学下学期要转学,已知他俩的成绩分别为70分和80分.求他俩转学后该班的数学平均分.7.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上计算这10个西瓜的平均质量,并估计这1亩地的西瓜产量是多少千克.综合、运用、诊断一、填空题8.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=______.9若该小组的平均成绩为7.7环,则成绩为8环的人数是______.二、选择题10.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N,那么M∶N 为( ).(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶111.某辆汽车从甲地以速度v 1匀速行驶至乙地后,又从乙地以速度v 2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).(A)2121v v v v +(B) 2121v v vv + (C)221v v + (D) 21212v v vv +12.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ). (A)3 (B)-3 (C)3.5 (D)-3.5 三、解答题13.我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭每月使用塑料袋的数量,结果如下(单位:只)65 70 85 75 79 74 91 81 95 85 (1)计算这10名学生所在家庭平均每月使用塑料袋多少只?(2)“限塑令”执行后,家庭每月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1000名学生所在家庭每月使用塑料袋可减少多少只?拓展、探究、思考一、解答题14.某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如下:根据以上信息回答下列问题: (1)频数分布表中的A =______;(2)这40名女学生的平均身高是______cm(精确到0.1cm). 15.某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.图1 图2根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.测试3 中位数和众数(一)学习要求了解中位数和众数的意义,掌握它们的求法.课堂学习检测一、填空题1.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.2.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.3.已知数据1,2,x和5的平均数是2.5,则这组数据的众数是______.二、选择题4.对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.55.为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )(A)9与8(B)8与9(C)8与8(D)8.5与9三、解答题7.公园里有甲、乙两群游客正在进行团体活动,两群游客的年龄如下(单位:岁):甲群:13 13 14 15 15 15 1 5 16 17 17;乙群:3 4 4 5 5 6 6 54 57.回答下列问题:(1)甲群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征:(2)乙群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征.8.某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?综合、运用、诊断一、填空题9成绩/米 1.50 1.60 1.65 ⒈70 1.75 1.80 1.85 1.90人数/人 2 3 2 3 4 1 1 1那么运动员成绩的众数是______,中位数是______,平均数是______.10.如果数据20,30,50,90和x的众数是20,那么这组数据的中位数是______,平均数是______.二、选择题11.已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.512.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动(B)中位数一定会变动(C)众数一定会变动(D)平均数、中位数和众数可能都不变三、解答题13.某校八年级(1)班50名学生参加2009年贵阳市数学质量监控考试,全班学生的成绩统成绩/分71 74 78 80 82 83 85 86 88 90 91 92 94 人数/人 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.14.某中学要召开运动会,决定从九年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近).现在抽测了10名女生的身高,结果如下(单位:厘米):166 154 151 167 162 158 158 160 162 162.(1)依据数据估计,九年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)拓展、探究、思考一、选择题15.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在( ).(A)B组(B)C组(C)D组(D)A组二、解答题16.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36°.体育成绩统计表体育成绩/分人数/人百分比/%26 8 1627 2428 152930 m根据上面提供的信息,回答下列问题:(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.测试4 中位数和众数(二)学习要求进一步理解平均数、中位数和众数所代表的不同的数据特征.课堂学习检测一、填空题1.在一组数据中,受最大的一个数据值影响最大的数据代表是______.2.数据2,2,1,5,-1,1的众数和中位数之和是______.二、选择题3.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )(A)23 25 (B)23 23 (C)25 23 (D)25 254.为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 70三、解答题5.某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.6(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.综合、运用、诊断一、填空题7.已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______,中位数为______,平均数为______.8.一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______,众数是______.二、选择题9.有7个数由小到大排列,其平均数是38.如果这组数中前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是( ).(A)34 (B)1 6 (C)38 (D)20三、解答题10.文艺会演中,参加演出的10个班各派1名代表担任评委给演出打分,1班和2班的成绩如下:评委班级 1 2 3 4 5 6 7 8 9 101班得分8 7 7 4 8 7 8 8 8 82班得分7 8 8 10 7 7 8 7 7 7(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?11.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度):度数90 93 102 113 114 120天数 1 1 2 3 1 2(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.拓展、探究、思考一、解答题12.在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______;(2)平均数/分中位数/分众数/分1班87.6 902班87.6 100(3)①从平均数和中位数的角度来比较1班和2班的成绩;②从平均数和众数的角度来比较1班和2班的成绩;③从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.测试5 极差和方差(一)学习要求了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.课堂学习检测一、填空题1.一组数据100,97,99,103,101中,极差是______,方差是______. 2.数据1,3,2,5和x 的平均数是3,则这组数据的方差是______. 3.一个样本的方差1212s [(x 1-3)2+(x 2-3)2+…+(x n -3)2],则样本容量是______,样本平均数是______. 二、选择题4.一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有( ). (A)1个 (B)2个 (C)4个 (D)6个 5.已知样本数据1,2,4,3,5,下列说法不正确的是( ). (A)平均数是3 (B)中位数是4 (C)极差是4 (D)方差是2 三、解答题6.甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7; 乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.7.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛): 5 4 4 4 5 7 3 3 5 5 6 6 3 6 6 (1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.综合、运用、诊断一、填空题8.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:甲x =13,乙x =13,2甲s =3.6,2乙s =15.8,则小麦长势比较整齐的试验田是______.9.把一组数据中的每个数据都减去同一个非零数,则平均数______,方差______.(填“改变”或“不变”) 二、选择题10.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26 (C)众数为2 (D)平均数为011.某工厂共有50名员工,他们的月工资方差是s 2,现在给每个员工的月工资增加200元,那么他们的新工资的方差( ).(A)变为s2+200 (B)不变(C)变大了(D)变小了12.数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定三、解答题13.甲、乙两个组各10名同学进行英语口语会话测试,每个人测试5次,每个同学合格的次数分别如下:甲组:4 1 2 2 1 3 3 1 2 1;乙组:4 3 0 2 1 3 3 0 1 3.(1)如果合格3次以上(含3次)为及格标准,请你说明哪个小组的及格率高;(2)请你比较两个小组口语会话的合格次数谁比较稳定.测试6 极差和方差(二)学习要求体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.课堂学习检测一、选择题 1.如图是根据某地2008年4月上旬每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是( ).A .5° 5° 4°B .5° 5° 4.5°C .2.8° 5° 4°D .2.8° 5° 4.5°2.已知甲、乙两组数据的平均数都是5,甲组数据的方差2甲s =121,乙组数据的方差2乙s =101,那么下列说法正确的是( ).(A)甲组数据比乙组数据的波动大 (B)乙组数据比甲组数据的波动大 (C)甲组数据与乙组数据的波动一样大 (D)甲、乙两组数据的波动大小不能比较 二、填空题3.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为______. 4.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.综合、运用、诊断一、填空题5.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.6.已知样本x 1、x 2,…,x n 的方差是2,则样本3x 1+2,3x 2+2,…,3x n +2的方差是_____ ____.7.如图,是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这6天日平均气温的方差大小关系为:2甲s ______2乙s (填“<”或“>”号),甲、乙两地气温更稳定的是:______.二、解答题8.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:甲队.年龄13 14 15 16 17人数 2 1 4 1 2乙队:年龄 3 4 5 6 54 57人数 1 2 2 3 1 1(1)根据上述数据完成下表:平均数中位数众数方差甲队游客年龄15 15乙队游客年龄15 411.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计数据是_____________________;②平均数能较好地反映乙队游客的年龄特征吗?为什么?9.为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份1月2月3月4月5月6月7月A型销售量/台10 14 17 16 13 14 14B型销售量/台 6 10 14 15 16 17 20(1)完成下表(结果精确到0.1):平均数中位数方差A型销售量14B型销售量14 18.6(2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).参考答案第二十章 数据的分析测试1 平均数(一)1.9.2. 2.8;2. 3.9.70. 4.B . 5.C . 6.(1)略;(2)178,178;(3)甲队,理由略. 7.小明8.900. 9.1.625. 10.80.4;体育技能测试. 11.A . 12.D . 13.够用;∵30×10×1.7=510<600. 14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二)1.4. 2.82. 3.165. 4.B . 5.C . 6.88.715070805272=--⨯(分).7.10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克),估计总产量是5×600=3000(千克).8.1. 9.4. 10.B . 11.D . 12.B . 13.(1)80; (2)4000.14.(1)6;(2)158.8. 15.(1)45; (2)220;(3)略.测试3 中位数和众数(一)1.9;9. 2.11. 3.2. 4.C . 5.C . 6.C .7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数.8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元;中位数和众数都是4元.9.1.75;1.70;1.69. 10.30;42. 11.A . 12.A . 13.(1)88;(2)86;(3)不能.因为83小于中位数. 14.(1)平均身高为16010162162160158162167151154166=++++++++(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队. 15.B .16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数. 2.2.5或3.5. 3.D . 4.A .5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分. 6.(1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元); (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平. 7.⋅++++8322;2;dc b a c b c 8.m -a ;n -a . 9.A . 10.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性;(2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜. 11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度); (3)解析式为y =54x (x 是正整数).12.(1)21; (2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4. 2.2. 3.12;3. 4.B . 5.B .6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小. 7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修. 8.甲. 9.改变;不变. 10.B . 11.B . 12.C . 13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)甲x =2,乙x =2,2甲s =1,2乙s =1.8,甲组更稳定. 测试6 极差和方差(二)1.B . 2.B. 3.4. 4.8. 5.8. 6.18. 7.>,乙. 8(2)①平均数;②不能;方差太大.9.(1)A 型:平均数 14;方差4.3(约);B 型:中位数 15. (2)略.。