发电厂高压变频器选型和存在问题的探讨

发电厂高压变频器选型和存在问题的探讨
发电厂高压变频器选型和存在问题的探讨

发电厂高压变频器选型和存在问题的探讨随着高压变频调速技术日趋成熟。韶关电厂于2OO5年首先对一台200Mw 机组的引风机进行高压变频调速改造试用,结合本厂的实际应用经验,对高压变频器选型与应用时应注意的技术问题进行阐述.同时对实际应用中存在的问题进行了分析。?在火力发电厂中,厂用电量约占机组发电量的5%~8%,其

中风机、泵类负载的用电量约占厂用电的80%;而这些设备在容量设计和选型上有很大的裕度,采用风门或阀门调节截流能量损失很大,在实际运行中机组负荷也需要调节,在机组调峰运行或负荷率较低的工况下情况更甚。随着能源供需的矛盾日益突出, “厂网分离、竞价上网”政策的实行,更加剧了电厂的成本压力,迫使发电企业实行节能降耗,以增加竞争力。在电机节能方面,变频器有其他调速设备不可比拟的优势,特别是高压变频器的节能效果更为显著,据统计我国风机、泵类进行高压变频改造后节电率可达20%~60%。因此,对火力发电厂的高压辅机进行变频调速改造,可以最大限度地降低厂用电率和发电成本,提高企业的市场竞争力。

1 高压变频器的选型

众所周知,高压辅机设备运行的稳定性、可靠性直接影响火力发电机组的安全稳定运行,一旦这些关键辅机设备由于变频器故障而非正常停机,往往会导致机组负荷大幅下降甚至跳机、锅炉熄火等事故。造成的损失是节能效益无法弥补的。因此,电厂

辅机在进行高压变频器改造时,对高压变频设备的稳定性、可靠性要求必须排在首位。在高压变频器选型时应关注几个方面。?

1.1 高压变频器平均无故障时间

高压变频器的指标需要生产厂家从采购、设计、制造、检验、管理等环节加以保证。因此在选型时可以通过收资、调研,选择产品设计技术先进、生产与品质控制严格、设备运行较稳定、用户业绩评价高的产品。?1.2 对环境的适应能力?评定高压变频器对环境的适应能力主要从以下几个方面考虑:?

a)对电网电压波动的适应能力。当母线上电动机成组自起动、当母线上最大一台电动机组起动时对变频器运行的影响,这与变频器允许的输入电压波动范围参数有关.对于火电机组应保证母线电压跌落30%时变频器不会停机。另外,存母线切换等情况下所造成的母线电压瞬时失电发生后,变频器应具有持续或恢复运行的功能(有些厂家称为“失压再起动功能”),即在母线电压瞬问降低或消失(如事故切换)时变频器不跳闸或使电机系统惯性运行;当母线电压重新恢复正常后,变频器能根据捕捉到的电动机转速止确调整自身输出,重新拖动电动机运行的功能。在电源瞬间跌落或消失时问不长的情况下,该功能保证变频器所驱动负载的稳定性,减少对机组运行的影响,避免锅炉灭火现象的发生。这一点是在选择重要辅机高压变频器时所必须考虑的问题。?b)对现场环境的适应能力。高压变频器大多安装于现场辅机附近,灰尘较多,灰尘进人变频柜内会导致绝缘下降或击穿损坏电

子元器件;灰尘堵塞滤网造成功率柜散热效果差,易导致功率模块过热失效损坏。有些厂家把空气滤网设计为在运行中可拆换清洗,便于维护。在南方高温、潮湿气候地区,应选择对环境温湿度要求低、系统温升相对低的产品,以保证安全稳定运行。

1.3对自身小故障的承受能力

高压变频器具有单元旁路功能,即某个功率单元出故障时该单元应能够自动退出,整个系统可持续带故障运行,这实际是一种冗余设计技术。此时应注意单元旁路后对变频器带载能力的影响,主要考虑变频装置每相功率单元个数、控制系统的电压补偿。单元串联越多,故障概率越大,单个单元故障对输出能力的影响越小,二者应折中取舍。若采用电压补偿算法、中性点偏移算法可提高系统单元旁路后的带载能力,但此种方法可能带来共模电压等问题,需视电动机绝缘安全等设备具体情况取舍。?高压变频器的控制系统电源至关重要,应设计采用多路控制电源供电,多通道互为备用、无扰切换;风扇冷却器的冗余设计也有助于提高系统的抗扰动能力。?1.4 对外部故障的承受能力?对输入侧的外部故障,如外部电网故障造成母线电压跌落

时对高压变频器运行的影响。广东省某电厂机组曾发生过这样的事故:由于外部电网瞬时故障造成厂用电母线电压闪变跌落.导致辅机变频器停机。虽然外部电网的故障很快切除。但由于变频器拖动的重要辅机停运导致机组甩负荷。因此瞬时停电再起动功能应是电厂机组辅机高压变频器提高外部故障承受能力的可靠保

证。

对输出侧的外部故障.如电缆击穿短路或电动机的单相接地甚至相问短路故障对高压变频器的影响。高压变频器应配置单相接地故障检测功能。根据现场情况选择设定告警或跳闸保护。据统计广东省高压电动机南于绝缘损坏导致的相间短路故障每年平均约20台。虽然相对概率较小,但对于采用过流能力极其有限的电力电子器件的高压变频器.短路电流的冲击对设备的损害是大的,可能导致设备损坏的严重故障。高斥变频器对输出相间短路的承受能力与保护技术是设备选型、保证设备安全应考虑的一项重要因素。

1.5 设备的故障恢复时间设备故障分为两种类型:?一是瞬间可自行恢复的故障,这种故障一旦出现之后,能在较短的时间内自行恢复,而具有转速自动跟踪功能的变频装置能显著提高在此种故障情况下的运行能力和可靠性。广东省正在运行的部分高压变频器在雷雨季节发生雷击时频繁停机,就是因为不具备此种功能所致;其二是发生永久性损坏故障后装置的恢复时间,功率单元模块化可以在短时间内更换备用模块,使设备在短时间内恢复运行。

1.6 变频改造对电机保护的影响

高压变频器一般均配置工频旁路柜,以保证在变频器现故障或检修时,通过T频旁路柜的切换电机恢复工频运行,保证生产持续不断。但这种切换也带来了相应保护配置的问题:电动机在

变频运行状态下开关柜应装设变压器保护(因变频器内部与厂用电连接部分为输人移相整流变压器),而在T频运行时应装设电动机保护。因此在改造时,原有电动机保护应保留,作为工频运行时的保护装置,如果变频器控制系统不具备输入变压器的保护功能,从系统安全和合理配置保护的角度考虑,需加装“隔离移相变压器”保护;在电动机变频运行时.退电动机保护而投变压器保护。

1.7 手动旁路和自动旁路

手动切换变频器的运行方式(工频-变频),存在操作复杂、中断时问久对机组稳定性影响较大的问题。具有工频-变频自动切换的变频器在发生故障时能自动切换至工频运行。保证了重要辅机的持续运行。降低了对机组乃至对电网的影响。但是存电动机故障时变频器自动切换至工频,会加剧电动机的故障,并有使故障扩大化的危险。在具体的应用中,应充分考虑“自动旁路切换功能”的利弊,最好变频器控制系统具有判别自身故障和负载故障的能力。另外自动工频变频切换时还应注意开关柜保护装置的自动切换、风门或阀门的联动调节。在变频检修完毕后,如何使电机从工频运行状态瞬间切换至变频运行状态,也是存改造时必须注意的问题。

1.8 谐波对电网及电动机的影响?低压变频器的输入电流具有很大的高次偕波成份,这些谐波对电网造成“谐波污染” 的同时,还降低了变频器输入电路的功率因数。而高压变频器通常

采用多重化整流技术,减小对电网的谐波污染,提高变频器输入侧的功率因数。有资料表明,采用30脉波的移相变压器的高压变频器,输入总谐波含量基本小于国标要求的4%,网侧的功率因数也可达0.95以上。输出电压、电流谐波对电动机的影响主要体现在增加电动机转矩的脉动和电机的发热,从而影响电机绕组的绝缘;共模电压和轴承电流会加剧轴承电蚀降低机械寿命。一般多单元串联型式高压变频器的每相串联的功率单元个数达到5个及以上时,输出电压的突变率(du/dt)可满足电机绝缘要求,减少对绕组绝缘与共模电压轴电流的损害,谐波含量低,可以不考虑其对电机的影响。?电动机低速运行时,自冷电动机的散热能力将会下降,对于风机和泵类负载,采用单元串联式的高压变频器谐波发热影响小,电动机在低速运行时由于负载电流较低,发热量少,因此不必考虑附加散热措施问题;但对于恒转矩负载,低速运行时电动机的发热与高速运行时接近,就要考虑低速运行时加装强迫风冷等散热措施。同时,还应注意低速运行时轴承的润滑问题。

1.9 变频器的寿命

高压变频器设备的寿命主要决定于电解电容,电解电容的寿命与其运行温度和纹波电流区接相关。保证运行环境温度、提高功率模块的散热效果、降低功率模块温升对提高系统寿命起到关键的作用;外电容器纹波电流减小其寿命增加,因此系统的运行负载工况对于变频器的寿命紧密相关。对于一般的可变负载,

在运行环境满足设计条件,电解电容器的寿命在8年以上,更换电容器的费用约占系统投资的5%~10%。国内已有厂家推出无极性电容器替代电解电容器,据称寿命可达20年,但相同体积的无极性电容器的容量要比电解电容小得多,对系统输入、输出谐波、功率因数等指标有影响,目前采用无极性电容器滤波的高压变频器用量很少,其工艺成熟度以及产品的运行可靠性影响尚待观察,值得关注。?2应用经验总结?韶关电厂200 Mw机组两台引风机的高压变频凋速改造于2005年3月完成,现把在改造、运行过程中取得的经验总结如下。

2.1 散热和防尘问题

电厂在工程实施中结合现场实际,率先提出了“室内密闭式水冷加空调互助冷却”的冷却方式,即在变频器排风口安装水冷却器,采用工业水冷却变频器排出的热风,保证室温在40℃以下;由于变频器安装室采用这种散热方式设计为密封空间,降低灰尘的进入,减小设备运行维护工作量,为设备的安全、稳定运行提供了保证。?2.2 高温潮湿气候问题?考虑到本地区高温潮湿的气候特点,为防止春季凝露破坏电气绝缘,对变频器的旁路柜进行了改造,在进、出线开关和柜体之间加装绝缘板,同时对开关带电体进行全工况改造,以提高旁路柜的整体绝缘水

2.3 控制系统的抗干扰问平,保证系统的安全可靠运行。?

为降低一次系统对二次系统的干扰.提高控制系统可靠性,高

压变频系统的一次地线与控制系统地线分离,屏蔽地接地极与强电设备接地极的距离大于15m。把高压变频器的一次接地母排与厂房钢结构连接接地,把控制地、屏蔽地通过屏蔽电缆接至控制电源配电柜的接地铜排,保证了控制系统的一点接地,提高了控制系统的抗干扰能力。

2.4 进线开关保护配置问题

引风机在进行高压变频捌速改造时.6kV高断路器保护配置仍采用MP-3000型电动机保护。引风机在变频方式下起动时。多次出现“过流保护”动作。在厂用电切换时出现“相失平衡保护”动作的情况。经分析发现保护配置不正确:该高压变频器在进线隔离开关投入时的变压器励磁涌流与元整流电容器充电电流(本变频器未设计充电电路)之和,超过MP-3000的过流保护整定值,导致保护动作。因此,给电源进线隔离开关加装DT-3000型变压器保护,并存电动机和变压器保护口加装压板。根据变频、工频运行方式分别投入MP-3000电动机保护和DT-3000变压器保护,解决了风机在变频起动时过流保护动作的问题。2.5 变频器负载过流的问题

在两台引风机变频器调试试运期间,均发生过“负载过流保护动作” 的现象,根据我们的经验,采用以下方法可以避免变频器过流现象的发生:肩动前,把风门挡板关闭,检查变频器频率给定为0;合上高压开关,待变频器就绪后启动变频器;根据变频器输入、输出电流的波动情况决定速度的增加量。避免电流急剧波

动造成变频器跳闸.侍工作频率达到10Hz后。再慢慢开启风门挡板.根据系统情况调节电机转速。当然,如果变频器本身能根据具体工况来调节加减速时问就可避免上述情况和操作。?

3 结束语?韶关电厂2OO5年进行的引风机高压变频改造节电显著。随着高压人功牢变频技术的日益成熟。高压变频器必将在电厂的辅机调速中得到广泛的应用,将为发电企业实现节能降耗,创造良好的社会与经济效益。?参考文献:[1]张燕宾.SPWM变频调速应用技术[M].2版北:北京:机械工程出版社.2OO2 ?[2]BOSE BK.电力电子与变频传动[M]姜建国.译.北京:中国矿业大学出版社.I999 ?作者简介:?董学武(1972 ).男.安徽东至人.工程师.工学学士.主要从事发电厂技术管理工作。

罗克韦尔变频器的选型标准

一、罗克韦尔变频器的采购标准 1、保证所选的罗克韦尔变频器符合所用电机的标准。 2、完好的通风设备,以保证运行时的罗克韦尔变频器冷却功能。 3、罗克韦尔变频器的封装等级为B级以上。 4、在输入端和输出端必须加有电抗器。 5、保证罗克韦尔变频器接线端子和内部元气件的完好。 6、保证罗克韦尔变频器外观的完好。 二、罗克韦尔变频器运行时的质量标准 1、保证罗克韦尔变频器在使用时,不对机器本身的控制电路及周遍设备有任何负面的影响。分以下几个部分: A、不对主控器的温控输入信号部分造成影响。方法是看变频状态时显示面板的温控显示数据和工频状态时的显示是一样的。 B、不对主控器的位尺输入信号造成影响。方法是看变频状态时显示面板的位尺显示数据和工频状态时的显示是一样的。 C、不对主控器的流量和压力输出信号造成影响。方法是看变频状态时流量和压力的电流表显示数据和工频状态时的显示是一样的。 D、不对主控器的变频控制输出信号造成影响。方法是看变频状态时主控器输出的变频控制电压信号和罗克韦尔变频器所要输出的频率符合。 E、不对主控器内部电路造成影响。方法是看在变频状态下,主控器的IC 元器件是否异常。 F、不对周遍的设备造成影响。看在实际的工作场合,如果周遍的设备有用模拟量的输入和输出的信号作控制,看是否有影响。 2、保证罗克韦尔变频器在使用时,不对电机的温升造成影响。方法是看变频状态时显示面板的电机温升显示数据和工频状态时的显示是一样的。 3、保证罗克韦尔变频器在使用时,不对机器循环周期造成影响。方法是看变频状态时显示面板循环周期显示数据和工频状态时显示是一样的。 4、保证罗克韦尔变频器在使用时,不对机器各动作响应速度造成影响。方法是看变频状态时手动操作个动作的响应速度和工频状态时是一样的。

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

通用变频器选型

通用变频器选型 一、通过变频器的控制方式选择变频器类型 通用变频器根据其性能、控制方式和用途的不同,习惯上可分为通用型、矢量型、多功能高性能型和专用型等。 (一)风机、水泵、空调专用型通用变频器是一种以节能为主要目的的通用变频器,多采用U/f控制方式(电压频率控制),主要在转矩控制性能方面是按降转矩负载特性设计,零速时的起动转矩相比其他控制方式要小一些。 (二)高性能矢量控制型通用变频器采用矢量控制方式(将异步电动机的定子电流矢量分解为产生磁场的电流分量和产生转矩的电流分量分别加以控制)或直接转矩控制方式(把磁通和转矩直接作为被控量直接控制转矩),并充分考虑了通用变频器应用过程中可能出现的各种需要,其中重要的一个功能特性是零速时的起动转矩和过载能力,通常起动转矩在150%-200%范围内,甚至更高,过载能力可达150%以上,一般持续时间为60S。这类通用变频器的特征是具较硬的机械特性和动态性能,广泛应用于各类生产机械装置,如机床、塑料机械、生产线、传送带、升降机械以及电动车辆等对调速系统性能和功能有较高要求的场合。 (三)专用变频器是为了满足某些特定应用场合的需要而设计生产的,基本上采用矢量控制方式,主要应用于对异步电动机控制性能要求较高的专用机械或系统。例如,在机床主轴驱动专用的高性能变频器中,为了便于和数控装置配合完成各种工作,变频器的主电路、回馈制动电路和各种接口电路等被做成一体,。另外还有电梯专用变频器、中频专用变频器、伺服控制专用变频器、抽油机专用变频器、塑料专用变频器等。 (四)中、高压变频器也就是我们常说的高压变频器,对应的电压等级为1500V、3KV、6KV、10KV,这类变频器通常采用GTOPWM

五分钟让你学会高压变频器选型

五分钟让你学会高压变频器选型 产品选型一直是大家感到棘手的一个问题,请大家花费5分钟吸收,教会你选择准确、经济、实用的高压变频器产品型号。 1.选择过高电压等级的弊端 选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。 可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。 2.变频器容量与整流装置相数关系 变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。 短路容量在1000MVA以内,1000kW装置12相(变压器副边双绕组)即可,如果24相功率就可达2000kW,12相基本上消除了幅值较大的5次和7次谐波。 整流相数超过36相后,谐波电流幅值降低不显著,而制造成本过高。如果电网短路容量2000MVA,则装置容许容量更大。 3.把最高电压降到3kV以下可节约大量投资 从电力电子器件特性及安全系数考虑电压等级的必要性,受电力电子器件电压及电机允许的dv/dt限制,6kV变频器必须采用多电平或多器件串联,造成线路复杂,价格昂贵,可靠性差。对于6kV变频器若是用1700VIGBT,以美国罗宾康的PERFECTHARMONY系列6kV高压变频器为例,每相由5个额定电压为690V的功率单元串联,三相共60只器件。若是用3300V器件,也需3串共30只器件,数量巨大。另一方面

装置电流小,器件的电流能力得不到充分利用,以560kW为例,6kV电机电流仅60A左右,而1700V的IGBT电流已达2400A,3300V器件电流达1600A,有大器件不能用,偏要用大量小器件串联,极不合理。即使电机功率达2000kW,电流也只有140A左右,仍很小。 国外的中压变频器有多个电压等级:1.1kV,2.3kV,3kV,4.2kV,6kV,它们主要由电力电子器件的电压等级所确定。 输出同样功率的变频器,使用较高电压或较多单元串联所花的代价大于用较低电压,较少数量而电流较大单元的代价,也就是说在器件电流允许条件下应尽可能选用低的电压等级。 4.隔离变压器问题 为了隔离、改善输入电流及减小谐波,现在所有的中压“直接变频”器都不是真正的直接变频,其输入侧都装有输入变压器,这种配置短时间内不会改变。既然输入侧有变压器,变频器和电机的电压就没有必要和电网一样,非用10kV和6kV不可,功率2500kW以下电压可以不超过3kV,因此就有了变频器和电机的合理电压等级问题。 200kW~800kW以下的变频调速宜选用380V或660V电压等级。它线路简单,技术成熟,可靠性高,dv/dt小,价格便宜。仍以560kW电机为例,630kW660V的低压变频器约35万,而同容量6000V中压变频器约90万。实现的方法有低-低,低-高,高-低和高-低-高等几种形式。由于电机,变压器的价格远低于变频器,即使更换电机、变压器也合理。 5.原有6kV高压电机如何与3.5kV变频器电压配套 自建国以来传统的6kV高压电机是已投产的主要产品,为了推广3.5kV变频器不可能再花钱更换电机,作者提出一个简便方案,以供参考。 制造厂原有6kV电机一般均为星形接线,其相绕组承受实际电压为3468V,故只要将绕组改接成三角形其它不变。配3.5kV变频器就把变频器电压从6kV下降到3.5kV,可见4.5kV器件不串联就可承受3kV耐压。如果用1.7kV器件3串即可。制造成本将下降30%。而我国目前30MW 机组最大电机2500kW采用3.5kV电压完全合理。

如何为电机选择变频器

A.请问如何选变频器,比如我的电机功率5.5千瓦,4级的1470转 型号:WGB2-5.5KW/3是什么意思 答: 1.看功率选就行,电机5.5Kw,选变频器就选6Kw的。必须多一点。这样变 频器不爱坏! 2.220V单相进线,380V三相出线 3.选变频器要看你用的场合,一般你选5.5KW就行,要是用到机床,提升机 等地方就要增加了。 4.我决的主要问题是在选电机上,因为它要考虑负载 变频器的选型,注意两点就OK了 1.电机的额定电流 2.电机的功率 2.电机的极数 补充知识,Other answer: 1.变频器一般向下兼容两个功率等级, 比如7.5kw的变频器兼容3.7kw到7.5kw之间的电机, 但是只有当7.5kw的变频器带7.5kw的电机,发挥性能才是最佳的, 一般来说,随着变频器带的电机功率越来越小,性能会逐渐变差。 所以为保证性能,一般不用变频器带两个功率等级以下的电机。 2.电机的容量是变频器的50%-100%的都可以用,选容量大一些儿的不易出现过载,可以提高启动转矩,尤其是起重上用 B.变频器选型风机用电机功率28KW 电流55A ----question 要求是风机专用变频器,比如西门子mm430就是,然后再选择功率,可以选择大于等于这个输出功率和输出电流的变频器即可。 C.变频器如何控制电机功率 电机在变频器的控制下以低频率运行时,变频器的输出电压会随着频率的降低而降低,但电机定子阻值不变,为什嬷电流却和工频运行时差不多,与频率有关系吗?望各位高手赐教,不胜感激! 问题补充: 比如V/F控制时以10赫兹运行,变频器的输出电压只有75~80伏左右,但电流却和工频时差不多,为什么? Answer: 1.变频器控制的电机基本都是交流电机,交流电机转速是由电压频率决定的,国内都是50HZ,所以普通电机转速都是50转/秒。也就是3000转/分,有一定误差。变频器原理就是先把交流变成直流,然后再用单片机控制6个晶闸管把直流再变回交流,根据你的设定值来决定这6个晶闸管开关的速度,来输出不同频率的交流电,从而控制电机转速。 所以电压应该不会变,只是频率变了。电压不变电流也就不会变。 2.当电机转矩一定时,电机的输出功率与转速成正比,当频率降低时,电机的输出功率自然降低。

变频器的选型和使用

变频器得选型与使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道:继电保护关键词: 变频变频器 通用变频器得选择包括通用变频器得型式选择与容量选择两个方面,选择得原则就就是:首先其功能特性能保证可靠地事项工艺要求,其次就就是获得较好得性能价格比。通用变频器类型得选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求得机械应选用具有转矩控制功能得高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比得恒转矩调速,常采用加大通用变频器容量得办法。对于要求精度高、动态性能好、速度响应快得生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机得规格指标参数 变频器在使用过程中带动得就就是电机,所以,变频器得选型可以从电机得角度来选择型号、规格。那首先,我们就必须先了解电机得各项规格指标参数。

每台电机都有它自己出厂得铭牌,从铭牌上,我们不难找到电机得各项参数。这些参数中,我们需要了解得主要参数有:电机得额定电压、额定电流、额定频率、额定转速等。 电机得额定电压:电机得额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产得变频器电压等级有:220V、380V、690V、1140V。如有其它非标准得电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机得额定电流:电机得额定电流根据电机得功率不同而不同。选择变频器时,变频器得额定电流应大于或等于电机得额定电流,特殊情况应将变频器功率档次放大一档。 电机得额定频率:普通电机得额定频率一般就就是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机得需要,如需更高频率,请选用CH_150系列变频器。 电机得额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用得电机得额定转速就就是1500rpm对应4极电机。变频器也就就是根据4极电机来设计得。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。2、温度与湿度

高压变频器的IGBT模块选择及计算分析

高压变频器的IGBT模块选择及计算分析 目前变频器应用中常用的几种模块,如IGCT、IEGT、GTO、IGBT。通过计算分析比较,得出IGBT是目前性价比较好的器件。 1、概述 由于我国元器件工业落后,还不能生产高压IGBT,西方国家仍对中国实行技术封锁。比如6500V IGBT仍不向中国出口,且不论其价格不菲。在直接串联技术选用什么样的功率开关器件对决定变频器的性价比至关重要。 目前可选的器件有好几种,如IGCT、IEGT、GTO、IGBT,而IGBT则又分为1700V,3300V,6500V。而各器件厂家都宣称自己的器件最好。到底选哪一种器件,其性价比较好,让我们进行一些具体比较,比较的依据为各厂家产品样本所列的技术参数。 2、几种常用的功率器件 变频器向前发展,一直是随着电力电子器件的发展而发展。只要电力电子器件有了新的飞跃,变频器就一定有个新飞跃,必定有新的变频器出现。在20世纪50年代出现了硅晶闸管(SCR);60年代出现可关断晶闸管(GTO晶闸管);70年代出现了高功率晶体管(GTR)和功率场效应管(MOSFET);80年代相继出现了绝缘栅双极功率晶体管(IGBT)以及门控晶闸管(IGCT)和电力加强注入型绝缘栅极晶体管(IEGT),90年代出现智能功率模块(IPM)。由于这些元器件的出现,相应出现了以这些逆变器件为主的变频器,反过来,变频器要求逆变器件有个理想的静态特性:在阻断状态时,能承受高电压;在导通状态时,能大电流通过和低的导通压降,损耗小,发热量小;在开关状态转换时,具有短的开、关时间,即开关频率高,而且能承受高的du/dt;全控功能,寿命长、结构紧凑、体积小等特点,当然还要求成本低。上述这些电力电子器件有些是满足部分要求,有些是逐步向这个方向发展,达到完善的要求,特别是中(高)压变频器更需要耐压高的元器件。 3、模块选择分析 3.1 相关定义及公式 我们以设计一台中压变频器为例,直流工作电压为3600V,。设电机功率因数为0.8,载波频率为3kHz,输出频率为50Hz,采用下列公式分别用不同功率开关器件构成变频器的一个开关组件的指标进行估算。以400A的峰值电流Icp计算,采用下列估算公式: 1、稳定功耗 2、开关功耗 3、总功耗

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

如何给电机选择合适的变频器

如何给电机选择合适的变频器 摘要:变频器让电机传动系统实现了两个愿望,一是让电机实现了更高效率的运行;二是让电机可以做到工况可控,避免大牛拉小车的问题。但摆在工程师面前的问题是:电机负载类型那么多,对所配变频器的性能要求也是千差万别,如何给电机选择合适的变频器呢? 变频器的英文译名是VFD(Variable Frequency Drive),这可能是现代科技由中文反向翻译为英文的为数不多实例之一。变频器是应用在变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 而为整个电机运动系统选择合适的变频器,已是让工程师一个头痛的问题。 总的来说,变频器的选用,应按照被控对象的类型、调速范围、静态速度精度、启动转矩等来考虑,使之在满足工艺和生产要求的同时,既好用,又经济。 一般性的经验是: ●多大的电机就选择多大的变频器,有时也可大一个规格。 ●大功率的变频器功率因数较低最好在变频器的进线端加装交流电抗器。这样一是提高 功率因数,二是抑制高频谐波。如果经常频繁启动,制动,要安装制动单元和制动电阻。 ●如果需要降低噪音,可用选择水冷型变频器; ●如果需要制动,需选配制动斩波器以及制动电阻。或可用选择四象限产品,可以向电 网回馈能量,节省电能; ●如果现场仅有直流电源的话,可以选择单纯的逆变产品(使用直流电源)用以驱动电 动机。

变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 这里罗列了一些选择变频器时,我们需要关注的实际问题。 1.采用变频的目的;恒压控制或恒流控制等。 2.变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定 了应用时的方式方法。 3.变频器与负载的匹配问题; ●电压匹配;变频器的额定电压与负载的额定电压相符。 ●电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负 载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 ●转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4.在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流 值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5.变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免 变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6.对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量 要放大一挡。 对一些电机运动控制系统要求严格的场合,需要准确检测变频器的选配效果如何,直接方法就是通过电机测试系统进行测试。但要想完成变频器与电机系统的整体测试,对电机测试系统也就提出了更高的要求,比如高带宽、高精度的电参数测量,多通道同步测试等。

高压变频器的工作原理及功能

是指输入电压在3KV以上的大功率,主要电压等级有3000V、3300V、6000V、6600V、10000V等电压等级的高压大功率变频器,高压变频器主要以进口为主,我国已有高压变频器生产企业,以后我们就可以用国产的高压变频器了。对大企业的高压节能也就方便多了。高压变频器由高-低-高;低-高;高-高之分。高-低-高方式高压变频器是把高压用降压后,用变频器进行控制,再用升压变压器把电压升到我们使用的电压,供给高压电机使用。一般高低高方式都用在小功率的高压电机做变频节能用。 低-高方式高压变频器是用低压变频器控制后,直接用升压变压器把电压升到电机使用电压。低高方式也是用在小功率高压电机做变频节能用。高-高方式高压变频器是直接用变频器多个模块串联后,直接使用高压电源,直接输出高压,供高压电机使用。高高方式主要用在大功率高压电机做变频节能用。高压变频器主要有日本富士高压变频器、日本三菱高压变频器、日本东芝高压变频器、瑞典ABB高压变频器、德国西门子高压变频器、美国罗宾康高压变频器、合亿高压变频器、利德华福高压变频器等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/7f2162750.html,/

发电厂高压变频器选型和存在问题的探讨

发电厂高压变频器选型和存在问题的探讨随着高压变频调速技术日趋成熟。韶关电厂于2OO5年首先对一台200Mw 机组的引风机进行高压变频调速改造试用,结合本厂的实际应用经验,对高压变频器选型与应用时应注意的技术问题进行阐述.同时对实际应用中存在的问题进行了分析。?在火力发电厂中,厂用电量约占机组发电量的5%~8%,其 中风机、泵类负载的用电量约占厂用电的80%;而这些设备在容量设计和选型上有很大的裕度,采用风门或阀门调节截流能量损失很大,在实际运行中机组负荷也需要调节,在机组调峰运行或负荷率较低的工况下情况更甚。随着能源供需的矛盾日益突出, “厂网分离、竞价上网”政策的实行,更加剧了电厂的成本压力,迫使发电企业实行节能降耗,以增加竞争力。在电机节能方面,变频器有其他调速设备不可比拟的优势,特别是高压变频器的节能效果更为显著,据统计我国风机、泵类进行高压变频改造后节电率可达20%~60%。因此,对火力发电厂的高压辅机进行变频调速改造,可以最大限度地降低厂用电率和发电成本,提高企业的市场竞争力。 1 高压变频器的选型 众所周知,高压辅机设备运行的稳定性、可靠性直接影响火力发电机组的安全稳定运行,一旦这些关键辅机设备由于变频器故障而非正常停机,往往会导致机组负荷大幅下降甚至跳机、锅炉熄火等事故。造成的损失是节能效益无法弥补的。因此,电厂

辅机在进行高压变频器改造时,对高压变频设备的稳定性、可靠性要求必须排在首位。在高压变频器选型时应关注几个方面。? 1.1 高压变频器平均无故障时间 高压变频器的指标需要生产厂家从采购、设计、制造、检验、管理等环节加以保证。因此在选型时可以通过收资、调研,选择产品设计技术先进、生产与品质控制严格、设备运行较稳定、用户业绩评价高的产品。?1.2 对环境的适应能力?评定高压变频器对环境的适应能力主要从以下几个方面考虑:? a)对电网电压波动的适应能力。当母线上电动机成组自起动、当母线上最大一台电动机组起动时对变频器运行的影响,这与变频器允许的输入电压波动范围参数有关.对于火电机组应保证母线电压跌落30%时变频器不会停机。另外,存母线切换等情况下所造成的母线电压瞬时失电发生后,变频器应具有持续或恢复运行的功能(有些厂家称为“失压再起动功能”),即在母线电压瞬问降低或消失(如事故切换)时变频器不跳闸或使电机系统惯性运行;当母线电压重新恢复正常后,变频器能根据捕捉到的电动机转速止确调整自身输出,重新拖动电动机运行的功能。在电源瞬间跌落或消失时问不长的情况下,该功能保证变频器所驱动负载的稳定性,减少对机组运行的影响,避免锅炉灭火现象的发生。这一点是在选择重要辅机高压变频器时所必须考虑的问题。?b)对现场环境的适应能力。高压变频器大多安装于现场辅机附近,灰尘较多,灰尘进人变频柜内会导致绝缘下降或击穿损坏电

变频器和电机的选型

变频器和电机的选型 一、电机的选择: 首先应该根据负载运动时所需要的平均功率、最高功率,折算到电机轴侧(可能有减速机、皮带轮等减速装置)选择电机的功率,同时也要考虑电机的过载能力。电机厂商可以提供电机的力矩特性曲线,不同温度下电机特性会变化。 顺便说:选型的顺序当然是先选电机再根据电机选择变频器,因为控制的最终目的不是变频器也不是电机,而是机械负载。 二、变频器的选型: 第一应该强调的是,应该根据电流选型。对于一般负载,可以根据电机的额定电流选择变频器,即变频器额定电流(即常规环境下的最大持续工作电流)大于电机额定电流即可。但是必须要考虑极限状况的出现。因此变频器还需要可以提供短时间的过载电流。 (注意:电机的电流是由机械负载决定的) 变频器有一条过载电流曲线,是一条反时限曲线,描述了过载电流和时间的关系。这就是变频器厂商经常说得过载能力可以达到150%额定电流2秒、180%额定电流2秒云云,实际上是一条曲线。因此,只要电机的电流曲线在变频器的过载电流曲线之内,就是正确的选型。这就是为什么有时候变频器功率要大于电机功率1档或2档(比如起重应用),有时候小功率变频器仍然可以驱动大功率电机(比如输送带)的原因。 另一个必须注意的:在非正常环境下,比如高海拔、高环境温度(例如大于50度小于60度环境)、并排安装方式(有些变频器并排安装不降容,有些要降容,根据变频器设计决定)等情况下,要考虑变频器的降容。这方面的资料变频器厂商都可以提供。 结果是:变频器的额定功率可能大于电机功率,也可以小于电机功率,事实上变频器的选型也是根据机械负载决定的。 结论:变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 三、Y型电机和变频电机 Y型电机,应该就是普通异步电机(印象中是,不太确定)。 变频器的根本功能就是改变电源频率,从而改变电机转速。因此理论上讲,不管是什么电机,只要可以通过改变频率调速的,都可以使用变频器。 如上面某位朋友所说,变频电机有着特殊的设计,更适合变频使用,我同意。 因此,并不是有个独立风扇就是所谓变频电机了。 普通异步电机使用变频器控制时,需要注意的是: 1、低频时(一般小于25hz),由于电机采用同轴风扇,低速时散热效果会很差,电机发热后,力矩特性变软,从而出现速度不稳、电流大等问题。

2021年变频器的选型和使用

变频器的选型和使用 欧阳光明(2021.03.07) 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道: 继电保护关键词: 变频变频器 通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。通用变频器类型的选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比的恒转矩调速,常采用加大通用变频器容量的办法。对于要求精度高、动态性能好、速度响应快的生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机的规格指标参数 变频器在使用过程中带动的是电机,所以,变频器的选型可以从电机的角度来选择型号、规格。那首先,我们就必须先了解电机的各项规格指标参数。

每台电机都有它自己出厂的铭牌,从铭牌上,我们不难找到电机的各项参数。这些参数中,我们需要了解的主要参数有:电机的额定电压、额定电流、额定频率、额定转速等。 电机的额定电压:电机的额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产的变频器电压等级有:220V、380V、690V、1140V。如有其它非标准的电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机的额定电流:电机的额定电流根据电机的功率不同而不同。选择变频器时,变频器的额定电流应大于或等于电机的额定电流,特殊情况应将变频器功率档次放大一档。 电机的额定频率:普通电机的额定频率一般是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机的需要,如需更高频率,请选用CH_150系列变频器。 电机的额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用的电机的额定转速是1500rpm对应4极电机。变频器也是根据4极电机来设计的。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。 2、温度和湿度

变频器的选型和使用

变频器的选型和使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道: 继电保护关键词: 变频变频器 通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。通用变频器类型的选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比的恒转矩调速,常采用加大通用变频器容量的办法。对于要求精度高、动态性能好、速度响应快的生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机的规格指标参数 变频器在使用过程中带动的是电机,所以,变频器的选型可以从电机的角度来选择型号、规格。那首先,我们就必须先了解电机的各项规格指标参数。

每台电机都有它自己出厂的铭牌,从铭牌上,我们不难找到电机的各项参数。这些参数中,我们需要了解的主要参数有:电机的额定电压、额定电流、额定频率、额定转速等。 电机的额定电压:电机的额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产的变频器电压等级有:220V、380V、690V、1140V。如有其它非标准的电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机的额定电流:电机的额定电流根据电机的功率不同而不同。选择变频器时,变频器的额定电流应大于或等于电机的额定电流,特殊情况应将变频器功率档次放大一档。 电机的额定频率:普通电机的额定频率一般是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机的需要,如需更高频率,请选用CH_150系列变频器。 电机的额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用的电机的额定转速是1500rpm对应4极电机。变频器也是根据4极电机来设计的。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。 2、温度和湿度

高压变频器与低压变频器的选择

高压变频器的选择 高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。 目前高压变频器技术采用领先技术的是采用IGCT技术的电压型高压变频器,由于在变频器的直流环节采用了电容元件而得名,随着技术的进步,高压变频器可以实现四象限运行,也能实现矢量控制,已经成为当前传动系统调速的主流产品。 另一种是目前市场上各厂家普遍采用的单元串联型变频器,这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。 6KV变频器,可以有15个或者18个功率单元组成,每相由5或者6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。 变频器的输入部分是一台移相变压器,原边Y形连接,副边采用延边三角形连接,共15到18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有5到6副三相小绕组,之间均匀相位偏移8.5或者10度。 缺点: 1、由于变压器采用延边三角形接法,实现8.5度或者10度的移相,由于工艺原因造成相应的误差,使得变压器内部环流大,发热量高,变压器效率低,从而整个系统效率下降。 2、由于随着负载率的不同,不是所有的功率单元都输出功率,导致谐波不能互相抵消。因此在低于额定负载时,谐波增加很快。由于同样原因,使得启动转矩较小,电机抖动及发热较大,噪声也较高。 3、由于需要保护电机不受共模电压的影响需要将电机接地,因此将共模电压引到了变压器上,使得变压器承受了更大的电应力,使得变压器可靠性降低,寿命降低。 4、由于引入了复杂的移相隔离变压器,使得成本增加。需制造复杂而昂贵的移相变压器。驱动元器和连线多。相应长期使 用中故障必然多,维护复杂且工作量大。 5、变压器的效率降低,影响了整个系统的效率,并随负载率的降低效率更要降低。 6、如果变压器损坏,维修极复杂,费用极高。总费用至少在购价的45%左右。 7、移相主变压器接点太多,接线复杂,系统的内阻和损耗增大。 8、输出电压波形在额定负载时尚好,低于35Hz以下畸变突出,谐波含量大增。 9、电机从0Hz起动时振动大,电机温度高,不能快加速。 10、功率因数低,谐波污染大。 11、动态特性软,响应速度慢,加速和减速时间长。 12、不易用于含有制动工况的机械转动和能量回馈的四象限运行,且无法实现制动。 13、装置的体积太大,重量大,安装占地面积大。 14、低频段或轻负载时波形畸变大,输出三相电压非对称性频摆加大。 15、电机磁链脉动增大,电机中性点与变频器中性点出现电位差,谐波剧增。 16、变压器来承受共模电压对绝缘的冲击和谐波热能。 高压变频器的选型注意事项 1.选择过高电压等级的弊端 选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。 可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。 2.变频器容量与整流装置相数关系 变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。

变频器选型---如何正确选择中小型断路器

如何正确选择中小型断路器 配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。 1.1配电用断路器的选择 配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则: (1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电 (2)3 (3) 式中 k Ied (4) 式中 Iedm (5) 时差为0.1 1.2 )进行保护。 电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。 但对热保护来讲,其过载保护的动作值整定于1.45Ied,也就是说电动机要承受45%以上的过载电流时MCB才能脱扣,这对于只能承受<20%过载的电机定子绕组来讲,是极容易使绕组间的绝缘损坏的,而对于电线电缆来讲是可承受的。因此,在某些场合如确需用MCB对电机进行保护,可选用ABB 公司特有的符合IEC947-2标准中K特性的MCB,或采用MCB外加热继电器的方式,对电动机进行过载和短路保护。 1.3家用保护型断路器的选择 MCB是建筑电气终端配电装置中使用最广泛的一种终端保护电器。 应当像选用塑壳断路器和框架断路器一样,计算最大短路容量后再选择。

MCB的设计和使用是针对50~60Hz交流电网的,如用于直流电路,应根据制造厂商提供的磁脱扣动作电流同电源频率变化系数来换算;当环境温度大于或小于校准温度值时,必须根据制造厂商提供的温度与载流能力修正曲线来调整MCB的额定电流值。 低压配电线路的短路电流与该供电线路的导线截面、导线敷设方式、短路点与电源距离长短、配电变压器的容量大小、阻抗百分比等电气参数有关。 一般工业与民用建筑配电变压器低压侧电压多为0.23/0.4kV,变压器容量大多为1600kVA及以下,低压侧线路的短路电流随配电容量增大而增大。对于不同容量的配变,低压馈线端短路电流是不同的。一般来说,对于民用住宅、小型商场及公共建筑,由于由当地供电企业的低压电网供电,供电线路的电缆或架空导线截面较细,用电设备距供电电源距离较远,选用4.5kA及以上分断能力的MCB 即可。 ,应选 用6kA 压总母排) 10kA下端子 因,MCB 性根据 用场合, 护;B 与A MCB不动作,C;D 2 2.1 (1) (2)线路应保护的漏电电流应小于或等于断路器的规定漏电保护电流; (3)断路器的极限通断能力应大于或等于电路最大短路电流; (4)过载脱扣器的额定电流大于或等于线路的最大负载电流; (5)有较短的分断反应时间,能够起到保护线路和设备的作用。 2.2四极断路器的选用 是否选用四极断路器可遵循以下原则: (2)带漏电保护的双电源转换断路器应采用四极断路器。两个上级断路器带漏电保护,其下级的电源转换断路器应使用四极断路器;

2019年某公司通用变频器选型规范

通用变频器选型规范 变频器的正确选择对于控制系统的正常运行是非常关键的。选择变频器时必须要充分了解变频器所驱动的负载特性。人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。 恒转矩负载: 负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。变频器拖动 转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。 恒功率负载: 机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大容许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大容许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。 风机、泵类负载:

在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。随着转速的减小,转速按转速的2次方减小。这种负载所需的功率与速度的3次方成正比。当所需风量、流量减小时,利用变频器通过调速的 方式来调节风量、流量,可以大幅度地节约电能。由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。 西门子公司可以提供不同类型的变频器,用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事项: 1.根据负载特性选择变频器,如负载为恒转矩负载需选择siemensMMV/MDV变频器,如负载为风机、泵类负载应选择siemensECO变频器。 2.选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外应充分考虑变频器的输出含有高次谐波,会造成电动机的功率因数和效率都会变坏。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流增加10%而温升增加20%左右。所以在选择电动机和变频器时,应考虑到这中情况,适当留有裕量,以防止温升过高,影响电动机的使用寿命。 3.变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一档选择或在变频器的输出端安装输出电抗器。 4.当变频器用于控制并联的几台电机时,一定要考虑变频器到电动机的

相关文档
最新文档