平面一般力系的平衡方程

合集下载

平面一般力系的平衡方程及其应用

平面一般力系的平衡方程及其应用

MB 0
W1
l 2
W
l
x
FAyl
0

FAy 7k N
Y 0
F T
sin
FAy
W1
W
0

FT 34k N
X 0 FAx FT cos 0

FAx FT cos 29.44k N
目录
平面力系\平面一般力系的平衡方程及其应用
4) 讨论。 本题若列出对A、B两点的力矩方程 和在x轴上的投影方程,即
F,平衡锤重WQ,已知W、F、a、b、e、l,欲使起重机满载和空载
时均不致翻倒,求WQ的范围。
目录
力系的平衡\平面力系的平衡方程及其应用 【解】 1)考虑满载时的情况 受力如图所示。 列平衡方程并求解 MB=0 WQmin(a+b)WeFl=0
得 We F l
WQmin a b
目录
平面力系\平面一般力系的平衡方程及其应用
理论力学
平面力系\平面一般力系的平衡方程及其应用
平面一般力系的平衡方程及其应用
1.1 平面一般力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系
平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充要条件是力系的主 矢和对任一点的主矩都等于零,即
应用平面力系的平衡方程求解平衡问题的步骤如下: 1) 取研究对象。根据问题的已知条件和待求量,选择合适的研 究对象。 2) 画受力图。画出所有作用于研究对象上的外力。 3) 列平衡方程。适当选取投影轴和矩心,列出平衡方程。 4) 解方程。 在列平衡方程时,为使计算简单,通常尽可能选取与力系中多 数未知力的作用线平行或垂直的投影轴,矩心选在两个未知力的交 点上;尽可能多的用力矩方程,并使一个方程只含一个未知数。

平面一般力系的平衡和应用

平面一般力系的平衡和应用

由 mA (Fi ) 0
P2aNB 3a0,
N B
2P 3
X 0 XA 0
解除约束
Y 0 YB NB P0,
YA
P 3
衡第 三
静节 定 和物 超体 静系 定的

三铰拱ABC的支承及荷载情况如图所示.已知
P =20kN,均布荷载q = 4kN/m.求铰链支座A和
B的约束反力.
P
1m
q
C
2m
A
2m
为载荷集度(单位为牛顿/米),其左端的集度为零,右端集度为 q 。载荷的长度为 l,载荷的方向垂直向下。求支承处对梁的约束 力。
首先在 O 点建立坐标系
y
第二步作受力分析
q
Foy
q
• 主动力为分布载荷(忽略重
力),且为一平行力系
O Fox
• 约束反力:
x
dx
l
x
Aq
FA
O 为固定铰支座,A 为活动铰 支座。
和 物 RC = 7.07 kN
B XB
YB
2m
Q
C
RC
2m
超 体 整体分析
P
静系
Q
定的 平
A
XA
mA
YA 2m
B
C
RC
2m
2m 2m
衡第
P = 30kN, Q = 20kN, = 45o
三 静节 定
Xi = 0 Yi = 0
XA - 20 cos45o = 0 XA = 14.14 kN YA - 30 - 20 sin45o + RC = 0 YA = 37.07 kN
的坐标轴上的投影的代数和分别等于零,以及各力对于任意

平面一般力系的二力矩式平衡方程

平面一般力系的二力矩式平衡方程

平面一般力系的二力矩式平衡方程平面一般力系的二力矩式平衡方程引言在物理学和工程学中,力学的平衡是一个重要的概念。

力学的平衡可以分为平面力系的平衡和空间力系的平衡。

在本文中,我们将讨论平面力系的平衡,并重点关注二力矩式平衡方程。

平面力系的定义和特点平面力系是指作用在一个平面内的一组力。

平面力系具有以下特点:1. 所有的力和力矩都在一个平面内;2. 力系中的力可以同时作用在一个物体的不同点上;3. 力系中的力可能会产生力矩。

力矩的概念力矩是指力对旋转物体造成的影响。

它由两个因素确定:力的大小和作用点与旋转轴的距离。

力矩的大小可以通过以下公式计算:M = Fd其中,M表示力矩,F表示力的大小,d表示力的作用点与旋转轴之间的距离。

力矩的方向可以通过以下规则确定:1. 如果力的作用点在旋转轴上,力矩的大小为零;2. 如果力由旋转轴向外作用,力矩的方向为顺时针方向;3. 如果力由旋转轴向内作用,力矩的方向为逆时针方向。

二力矩式平衡方程的推导在平面力系中,如果力系处于平衡状态,那么力系的合力和合力矩都必须为零。

根据牛顿第一定律,合力为零意味着物体的加速度为零;根据牛顿第二定律,合力矩为零意味着物体的角加速度为零。

设平面力系中共有n个力,分别记为F1, F2, ..., Fn。

考虑到每个力都可以产生力矩,那么每个力产生的力矩之和为:M1 + M2 + ... + Mn = 0力矩的正负号要根据力矩的方向来确定,根据上述力矩的规则,如果力矩是顺时针方向的,那么取正号;如果力矩是逆时针方向的,那么取负号。

根据力矩的计算公式,将每个力的力矩带入上述方程,得到二力矩式平衡方程:F1d1 + F2d2 + ... + Fndn = 0这就是平面力系的二力矩式平衡方程。

应用实例下面通过一个实例来说明如何应用二力矩式平衡方程。

假设有一个悬臂梁,上面有一个重物挂着。

悬臂梁的长度为L,重物的质量为m,重物与悬臂梁的连接处距离悬臂梁固定点的距离为d。

建筑力学平面一般力系的平衡方程及其应用

建筑力学平面一般力系的平衡方程及其应用

普通高等教育“十一五”国家级规划教材
满足平衡方程时,物体既不能移动,也不能 转动,物体就处于平衡状态。当物体在平面一般 力系的作用下平衡时,可用三个独立的平衡方程 求解三个未知量。 二、平衡方程的其它形式
1.二力矩形式的平衡方程 ∑FX= 0 ∑MA (F ) = 0 ∑MB (F ) = 0 式中x轴不可与A、B两点的连线垂直。
FAx
FNCD = 30kN (↗)
∑MD (F ) = 0
FNCD
- FAy×0.6 + 14 ×0.3 = 0
14kN 8kN
300
300 100
A 30° D B
FAy
C
FAy = 7kN (↑)
∑MC (F ) = 0
- FAx×0.6/ 3- 14 ×0.3
- 8 ×0.6 = 0 FAx = - 25.98kN (←)
5 + FAy= 0
普通高等教育“十一五”国家级规划教材
3kN·m 6kN
3m
6
A
B
5
5
3m
可取∑MB (F ) = 0这一未用过的方程进行校核: 3 + 5×3 - 6×3 = 0
说明计算无误。
普通高等教育“十一五”国家级规划教材
例4-4 梁AB一端是固定端支座,另一端无
约束,这样的梁称为悬臂梁。它承受荷载作用如
普通高等教育“十一五”国家级规划教材
在使用三力矩式计算出结果后,可用另外两 个投影方程之一进行校核。可知计算无误。
例4-6 外伸梁受荷载如图所示。已知均布荷载 集度q=20kN/m,力偶的力偶矩M=38kN·m,集中 力FP=10kN。试求支座A、B的反力。
10kN 20kN/m 38kN·m

平面一般力系的平衡方程的三种形式

平面一般力系的平衡方程的三种形式

平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程有以下三种形式:
1. 矢量和式形式:若平面一般力系中作用力F1、F2、F3、...、Fn与参考点O的连线分别为r1、r2、r3、...、rn,且F1、F2、
F3、...、Fn的和为零,则平衡条件可以表示为F1 + F2 + F3 + ...
+ Fn = 0。

2. 分力和式形式:根据平面一般力系的平衡条件,可以将作用
在此力系上的力分解为水平分力和垂直分力。

平衡条件可以表示为水
平分力的和等于零,即∑Fx = 0;垂直分力的和等于零,即∑Fy = 0。

3. 正负向分式形式:根据平面一般力系的平衡条件,可以选择
合适的坐标系,将力的方向分为正向和负向。

若力Fi与坐标系确定的
正向相背离,则可表示为Fi > 0;若力Fi与坐标系确定的正向相同,则可表示为Fi < 0。

平衡条件可以表示为所有正向力的代数和等于所
有负向力的代数和,即ΣFi > 0 - ΣFi < 0 = 0。

以上是平面一般力系的平衡方程的三种形式。

3.平面一般力系

3.平面一般力系

个力和力偶还可以继续合成为一个合力FR,其作用 线离O点的距离为 d MO,/ F利R 用主矩的转向来 确定合力FR的作用线在简化中心的哪一侧。
FR′
FR
FR′
FR
Mo
O Mo O d O
O d
(2)若 FR 0,M,O 则 0原力系简化为一个力。在这种情 况下,附加力偶系平衡,主矢即为原力系的合力FR
必然为零。因此,FR 0,M O 0 就是平面一般力
系平衡的必要与充分条件。
由此可 得平面 一般力 系的平 衡方程 为:
Fx 0 Fy 0
M
O
(
F
)
0
例1:求图示梁支座
y
F
的约束反力。已知 : Fy
F 2kN a 2m A
Fx
解:取梁为研究对象。
a
a
受力图如图示。建
F
FB
Bx
3.平面一般力系
定义:作用在物体上的各力的作用线都在同一
平面内,既不相交于一点又不完全平行,这样
的力系称为平面一般力系。如图起重机横梁。
FAy
FT
FAx
G
Q
平面一般力系的简化 1.力的平移定理
F′
= O d F A
F″
F′
OM d A
M F,F Fd M O F
因此:作用于刚体上的力,可平移到刚体上的 任意一点,但必须附加一力偶,其附加力偶矩 等于原力对平移点的力矩。
例3: 如图所示一三铰拱桥。左右两半拱通过铰链C
联接起来,通过铰链A、B与桥基联接。已知 G=40kN,P=10kN。试求铰链A、B、C三处的约
束反力。
3m
解:取整体为研究对象 画出受力图,并建立 如图所示坐标系。列 平衡方程

平面一般力系

平面一般力系

l FAyl P 2 Q(l a) 0
FAx l
tg
P
l 2
Qa
0
FAy 2.1KN
FAx 11.4KN
18
平面一般力系的平衡方程:
① 基本式(一矩式) ②二矩式
③三矩式
Fx 0
Fy 0
MO (Fi ) 0
Fx 0
MA(Fi ) 0
MB(Fi ) 0
MA(Fi ) 0
20
§3-4 平面平行力系的平衡方程
平面平行力系:各力的作用线在同一平面内且相互平行的力系。
y
F1
x1
FR'
Mo o
x2
xR xn
F2 FR
Fn
设有F1, F2 … Fn 为一平行力系,
向O点简化得:
主矢 FR Fi
主矩 MO MO(Fi ) Fi xi
合力作用线的位置为:
xR
MO FR
F 对新作用点B的矩。
[证]
'
M
M
力F
力系 F,F ,F
力 F 力偶( F, F )
4
说明: ①力平移的条件是附加一个力偶M,且M与d有关,M=F•d ②力线平移定理揭示了力与力偶的关系:力力+力偶 ③力线平移定理的逆定理成立。力力+力偶 ❖力线平移定理是力系简化的理论基础。 ❖力线平移定理可将组合变形转化为基本变形进行研究。
A
B
②当Q=180kN时,求满载
时轨道A、B给起重机轮子的反
力?
分析:
Q过大,空载时有向左倾翻的趋势。
Q过小,满载时有向右倾翻的趋势。 24
解:⑴ ①首先考虑满载时,起
重机不向右翻倒的最小Q为:

第四章 平面力系简化平衡方程

第四章  平面力系简化平衡方程
第四章 平面力系的简化与平衡方程
工程实例:
厂房吊车梁实例:
平面任意力系:
本章任务:
(1)掌握平面任意力系向一点的简化---主矢 和主矩 (2)掌握平面任意力系的平衡条件· 平衡方程 (3)掌握物系的平衡问题(包括了解考虑摩 擦的物系平衡问题的处理)
一、平面一般力系向一点(简化中心O点)简化:
解(1)取整体为研究对 象,作受力图如图;
(2)列平衡方程, 求解未知力。 ∑X=0,XA +qL =0 XA A
1.5L
q
B
NB
L
X
∑Y=0,YA +NB
=0
YA
∑ mA(Fi)=0 1.5LNB -0.5L×qL =0
XA =-qL(←)
NB =qL/3
YA = -qL/3(↓)
[例4-4]十字交叉梁用三个链杆支座固定,如图所示。求在 水平力P的作用下各支座的约束反力。
[例4-1] 在边长为a=1m的正方形的四个顶点上,作用有 F1、 F2 、 F3 、F4等四个力,如图所示。已知F1=40N,F2=60N, F3=60N,F4=80N。试求该力系向A点简化的结果。
解:R′x=40cos45°+60cos45°+60cos60°-80sin30°=60.7N R′y=40sin45°-60sin45°-60sin60°- 80cos30°=-106.1N R′=√(R′ x)2+(R′ y)2=122.4N cos=60.7/122.4 , =60.27°
1.若R´=0,Mo=0,原力 系为平衡力系,物体处于 平衡状态。
平衡
2.若 R´=0,Mo≠0, 原力系与一力偶等效, 其力偶矩就是原力系 的 主矩。并且简化结 果与 简化中心位置无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.......................
装.............订..........
线
.....................

分配记
20
∑Fy=0
∑MO(F)=0
不难看出,平面平行力系的二矩式平衡方程为
∑MA(F) =0
∑MB(F) =0
其中A、B两点的连线不能与各力平行。

平面平行力系只有两个独立的方程,因而最多能解出两个未知量。

三.应用平面一般力系平衡方程的解题步骤如下:
(1) 根据题意,选取适当的研究对象。

(2) 受力分析并画受力图。

(3) 选取坐标轴。

坐标轴应与较多的未知反力平行或垂直。

(4) 列平衡方程,求解未知量。

列力矩方程时,通常选未知力较多的交点为矩心。

(5) 校核结果。

应当注意:若由平衡方程解出的未知量为负,说明受力图上原假定的该未知量的方向与其实际方向相反。

而不要去改动受力图中原假设的方向。

例4-2 已知F=15kN,M=3kN.m,求A、B处支座反力。

解(1) 画受力图,并建坐标系
(2) 列方程求解
图4-8
分配记
20例4-3 如图3-9所示外伸梁上作用有集中力FC=20kN,力偶矩M=10kN.m ,载荷集度为q=10kN/m的均布载荷。

求支座A、B处的反力。

图4-9
解取水平梁AB为研究对象, 画受力图如图4-9(b)所示。

列平衡方程并求解
分配记
结果均为正,说明图示方向与实际方向一致。

例3-4 塔式起重机如图4-10所示。

设机架自重为G,重心在C点,与右轨
距离为e,载重W,吊臂最远端距右轨为l,平衡锤重Q,离左轨的距离为a,
轨距为b。

试求塔式起重机在满载和空载时都不致翻倒的平衡锤重量的范围。

图4-10
解取塔式起重机为研究对象,作用在起重机上的力有重物W、机架重G、
平衡锤的重力Q及钢轨的约束反力NA和NB,这些力构成了平面平行力系,起
重机在该平面平行力系作用下平衡。

(1)满载时W=Wmax,Q=Qmin,机架可能绕B点右翻,在临界平衡状
态,A处悬空,NA=0,受力图如图3-10b所示。


分配记
(2)空载时W=0,Q=Qmax,机架可能绕A点左翻,在临界平衡状态,
B处悬空,NB=0,受力图如图3-10c所示。


故平衡锤的范围应满足不等式
例4-5 一简易起重机如图4-11所示。

横梁AB的A端为固定铰支座,B端用
拉杆BC与立柱相连。

已知梁的重力G1=4kN,载荷G2=12kN,横梁长L=6m,
α=30°,求当载荷距A端距离x=4m时,拉杆BC的受力和铰支座A的约束
反力。

图4-11
分配记解取横梁AB为研究对象,画受力图如图4-11(b)所示。

列平衡方程并求解
小结对于平面任意力系的三种形式的方程组,都可以求解平面任意力系的平衡问题。

但对于单个刚体来说,只能列出三个独立的方程,求解三个未知量。

在具体解题时,要通过合理选取矩心和投影轴,合理的选用方程组的形式,尽量避免联立解方程组的麻烦。

另外,平面平行力系是平面任意力系的一种特殊情形。

复习思考题、作业题1、思考平面汇交力系的平衡方程中,可否取两个力矩方程,或
一个力矩方程和一个投影方程?这时,其矩心和投影轴的选择有什么限制?
2、课本习题4-7、4-6。

下次课预习要点物体系的平衡
静定和超静定问题
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档