结构位移计算-3图乘法
合集下载
静定结构的位移计算—图乘法计算静定结构的位移(建筑力学)

ql 2 8
) (5 8
l) 4
5ql 4 384 EI
()
温度变化时位移计算公式
设结构上侧温度变化t1,下侧温度变化t2,则杆轴线处温度变化为t0 =(h2t1+h1t2)/h。
此时任一微元体变形如图所示,包括两种形式:
①轴线伸长量du; ②截面转角dθ。
使用公式 L t L 和图中的几何关系,不难得到:
l
l
]
[t0
0
l
t h
1 2
l
l
]
-6l 18l 2 6l(1 3)()
h
h
N图
M图
支座位移时结构位移计算公式
支座位移直接引起结构位移,并不引起结构变形。因此,仅有支座位移时, 结构微元体变形为0。所以,虚拟状态内力虚功为0。将这一结论代入结构位移计 算的一般公式,即可得到支座位移时结构的位移计算公式:
N Nds EA
荷载作用下位移计算步骤
(1)计算位移状态(实际状态)结构内力:M、Q、N; (2)假设虚拟状态(受力状态); (3)并求其内力 M、 、Q ;N (4)代入位移计算公式并求解。
计算示例
例:计算图(a)所示简支梁中点C处得竖向线位移(EI为常数)。
(a)实际状态
(b)虚拟状态
解:(1)计算实际状态弯矩
位置如图a所示。
(3)当图形的面积和形心位置不易
图b
确定时,可将其分解为几个简单的图形,分
别与另一图形相乘,最后把结果相加,图b。
图a
(4)当y0所在图形是由若干直线段
组成的折线时,应分段进行图乘,再进行叠
加,图c。
(5)当直杆各杆段截面性质不同,即
EI不同时,应分段图乘,再进行叠加,图d。
结构力学图乘法课件

THANKS
感谢观看
工程实践应用
探讨结构力学图乘法在工程实践中的应用,包括结构分析和设计、损伤识别与健康监测、物理实验模拟等领域,以帮 助学员了解该领域的实际应用和未来发展方向。
对个人发展的启示 总结学习结构力学图乘法的经验和方法,提出对个人发展的启示和建议,包括思维方式、分析问题和解 决问题的能力以及团队协作等方面的提升。
图乘法的扩展应用
建筑结构分析
图乘法在建筑结构分析中有着广泛的应用,可以用于分析建筑结构的强度、刚度和稳定性。 通过图乘法,工程师可以快速求解出建筑结构的响应和性能,为建筑设计和施工提供依据。
桥梁结构分析
图乘法在桥梁结构分析中也有着重要的应用,可以用于分析桥梁的承载能力和稳定性。通 过图乘法,工程师可以得出桥梁在不同载荷条件下的响应和性能,为桥梁的设计和施工提 供依据。
选择实例
选择具有代表性的扭转结构作 为分析对象。
建模分析
建立结构模型,进行静力分析 和动力学分析。
结果比较
比较不同设计方案和参数下的 结果,分析优劣。
结论总结
总结分析结果,提出优化方案 和结论。
06
图乘法的应用与扩展
图乘法在结构设计中的应用
01
简化复杂结构分析
图乘法可以用于求解复杂结构的内力和位移,通过将结构分解为简单部
教学方法评析
对采用的教学方法和策略进行反 思和评析,包括案例分析、课堂 讲解、小组讨论和习题练习等, 以帮助学员更好地掌握知识和技
能。
学员收获与感受
分享学员在学习过程中的收获和 感受,包括对基本概念的理解、 解决问题的能力和实践应用能力
的提升等方面。
展望与启示
前沿技术发展
介绍结构力学图乘法领域的前沿技术和研究动态,包括新理论、新方法和新应用等,以激发学员对该领域的兴趣和研 究热情。
静定结构的位移计算-图乘法

这种利用内力图相乘代替积分的方法称为图乘法。
如果两个图形均为直线,则可取其中任一图形面积和 另一图形纵距相乘;如果两个图形都为曲线,则不能用图 乘法。
利用图乘法应注意:
(1)要满足3个条件;
(2)形心的纵距需取自直线图形; (3)正、负号规定:两个内力图在基线同侧时,乘 积为正。
例 1 计算图示结构 C 点转角
FP
FP B
C
0.5EI
a
EI A
a
C
5FP a 2 2EI
(
)
例 2 :计算图示结构 B 点转角。
A
B
EI
20kN
m 10m40kN
m
B
500 3EI
(
)
当内力图是由迭加得到时,图乘也可用迭加法。
对于两个图形都是梯形的情况(同侧)
1
2
Mp M dx 1 y1 2 y 2
y1
(2c 3
d)
FP
EI
A
C
B
l/2 l/2
例 8: 计算图示结构A点竖向位移
FP=0.5qL q
A
EI B
L
例 9(课后完成) : 计算图示结构 C点竖向位移 q
A l/2C l/2 B
作业: 5—20、5—23
第五章 静定结构的位移计算
§5-5 图乘法
目的:用弯矩图面积乘积代替积分 条件:
(1)各杆为等直杆 (2)各杆截面物理参数(EI、EA、GA)为常数 (3)内力图Mp、MK中至少有一个是直线
K
M P M ds Mp M C
EI
EI
(d )
公式(d)的意义在于:当两个内力图形中有一条为 直线时,其积分结果为曲线图形积分段内的面积ω与其形 心相对应的直线图形中纵距的乘积。
结构力学图乘法详述

6
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
图乘法

分析: 分析: 在直杆结构中总是直线。 M在直杆结构中总是直线。 满足上式推导中f(x)的条件 满足上式推导中f(x)的条件 f(x)
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP
或
1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP
或
1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授
结构力学-图乘法

1
NP
N
1
结构力学电子教案
第七章
静定结构位移计算
第23页
DP
M M P ds EI
F N FNP l EA
1 1 4 1 2 2 ( 2 2 8 ) 3 ( 2 2 2 ) 3 ( 3 2 0 . 5 ) 1 EI 4 1 2 2 1 ( 4 8 ) ( 4 8 ) ( 4 2 ) 1 2 EI 2 3 2 3 3 1 1 EA
Δ Cy
结构力学电子教案
第七章
静定结构位移计算
第17页
解 绘出实际状态及虚拟状态的 M P 、M 图。
72
2 16 8 4 2 16 8
20
4
MP图
y5 y 4 y 3
y1 y2
结构力学电子教案
第七章
静定结构位移计算
第18页
Cy
yc
EI
[( 4 20 )( 4 ) ( 4 4 )( 4 )] EI 2 3 3 2
B
xd
A
xc
B
A
M M P ds EI
tg EI
xc
yc
EI
结构力学电子教案
第七章
静定结构位移计算
第4页
B
A
M M P ds EI
tg EI
xc
yc
EI
由此可见,上述积分式等于一个弯矩图的面积 乘以其形 心处所对应的另一个直线弯矩图上的纵距 y c ,再除以EI。 这就是图形相乘法的计算公式,简称为图乘法。
NP
N
1
结构力学电子教案
第七章
静定结构位移计算
第23页
DP
M M P ds EI
F N FNP l EA
1 1 4 1 2 2 ( 2 2 8 ) 3 ( 2 2 2 ) 3 ( 3 2 0 . 5 ) 1 EI 4 1 2 2 1 ( 4 8 ) ( 4 8 ) ( 4 2 ) 1 2 EI 2 3 2 3 3 1 1 EA
Δ Cy
结构力学电子教案
第七章
静定结构位移计算
第17页
解 绘出实际状态及虚拟状态的 M P 、M 图。
72
2 16 8 4 2 16 8
20
4
MP图
y5 y 4 y 3
y1 y2
结构力学电子教案
第七章
静定结构位移计算
第18页
Cy
yc
EI
[( 4 20 )( 4 ) ( 4 4 )( 4 )] EI 2 3 3 2
B
xd
A
xc
B
A
M M P ds EI
tg EI
xc
yc
EI
结构力学电子教案
第七章
静定结构位移计算
第4页
B
A
M M P ds EI
tg EI
xc
yc
EI
由此可见,上述积分式等于一个弯矩图的面积 乘以其形 心处所对应的另一个直线弯矩图上的纵距 y c ,再除以EI。 这就是图形相乘法的计算公式,简称为图乘法。
《结构力学图乘法》PPT课件

EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
Δ
1 EI
l M ( x)M ( x)dx
M(x)
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 Mc 的乘积来代替
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时, ω应代以负号.
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1
EI x tan α M Pdx
tan α EI
注意
有时M(x)图为连续光滑曲线,而 M(x) 为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M ,M P 分为AC、CB两段。16
分块: M P图的AC段分为两块。
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
结构力学位移法

例:求图示悬臂梁C 点的竖向位移。
(a) 54 C MP (c) 24 C 3kN/m (d) 30 3kN/m (b) 4 C M1 3kN/m F =1
4m
2m
6 M P2 C
M P1
解 在C点施加竖向单位力,作出M1图和MP图,再 用图乘法求位移。但图乘结果不能直接得出,需要采用 叠加法, 将MP图分解为MP1和MP2叠加,见图c、图d, 然后令MP1 和MP2 图分别与M1图图乘后再相加。
4. 图乘法及其应用
(Graphic Multiplication Method and its Applications)
已有基础: 1. 静定结构的内力计算; 2. 利用位移计算公式求静定结构的位移;
3. 杆件结构在荷载作用下的位移计算公式,即:
kFQ FQds FN FNds MM P ds P EI EA GA
Dy
3 1 FP a 2 2a ( 1 2 2 ) F a 4 F a P ( FP a 2 a ) P () E2 I 2 2 3 E1 A1 3 E2 I 2
例 7. 已知 EI 为常数,求 Cy 。
解:作荷载和单位荷载的内力图
返回
MP
分解
M
Cy
1 1 ql l 3l 1 ql l [( ) ( l) EI 3 8 2 8 2 8 3 2 ql 2 l ql 4 ( l) ] () 温 3 8 4 128 EI 度
ql 4
ql 2 M 8 2
ql 2 8
解法二、
ql 2 2
ql 2 8
ql 2 2
A
ql 2 32
ql 2 8
1 1 l ql l Cy [( ) EI 2 2 2 3 A 2 1 l ql l ( ) 2 2 8 6 2 4 2 l ql l 17ql ( )] () 3 2 32 4 384 EI
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
h
qh3l () 12EI
例 2. 已知 EI 为常数,求铰C两侧截面相对转角 C 。
C
lq
1
1 1
A
B
ll
Mi 1/l
ql 2 / 4
ql 2 / 4
0
解:作荷载弯矩图和单位荷载弯矩图
q
MP
CD
yc 1 2ql2 1
EI EI 3 8 2
ql / 4 ql / 4
例. 试求图示梁B端转角.
A
P B B
EI
l/2
l/2
MP
Pl/ 4
解: B MEMIPds
yc
EI
1 1 l Pl 1 EI 2 4 2
M1
A
B
1
Mi
为什么弯矩图在 杆件同侧图乘结
果为正?
1 Pl 2 ( ) 16 EI
练习: 试求图示梁A端竖向位移. P
已知: E、I、A为常数,求 Cy 。
D
P
A
C
l
l
2
2
a
B
解:作荷载内力图和单位荷载内力图
D
NP P/2
P A
l Cl
2
2
a
B
Ni 1/ 2
D
1 A
l Cl
2
2
a
B
l
MP
Pl
M
4
4
C y E 2 [1 2 ( I2 l P 4 ) 3 2 l 4 l] E 1 1 2 A P 2 a 4 P E 38 l 4 P E I( ) a A
三、图形分解
求 B
q
q
A
B
MP
ql 2
/8
E
I
ql
2
/4
l
ql2 / 8
ql 2
1
4
Mi
B
1 2 ql2 ( l
EI 3 8
1 1 ql2 l
22 4
21) 3
ql3 ( ) 24EI
三、图形分解
求C截面竖向位移 C
q
3ql2 / 32
A
B
EI
C
MP
ql2 / 8
EI 22 2
8EI
(顺时针)
1
MP图 1 M图
例. 试求图示梁D端竖向位移. EI=常数。
解: A
Δ A y
Ay 0 EI
a m
1 (1am2a 1ama)
EI 2
32
3 a/3
1 ma2 () 6 EI
a 2a/3
m
B a
m
m
a/3
a/3
C a
a
D
MP图 1
M图
24 EI
Mi
C
C
yc 1(13q2ll3l lq2ll)
EI EI3 8 2 4 2 2 8 4
5q3l () 12E8I
例 4. 图示梁 EI 为常数,求C点竖向位移 。
ql 2 / 2
q ql2 / 8
MP A l/2C l/2 B
l/2
1
c
yc
1
Mi
1/ 3
2/3
B
1 EI
(1 1040 2
2 3
1 10201) 500( )
2
3 3EI
20 A
20kNm A
B 40 B 40kNm
三、图形分解
求 B
20
A
MP
EI
20kNm
40 B
B
1 EI
1 2
101(20
20 2) 500( )
10m40kNm
l ql 2 1 l ) 2 8 22
17 ql 4 () 384 EI
ql2 / 8
ql2 / 8
练习
图示结构 EI 为常数,求AB两点(1)相对竖向位
移,(2)相对水平位移,(3)相对转角 。
Pl
l
PP
AB
ABY
对称yc 结构的对称弯矩图与
其E反I 对称弯矩图图乘,结果
解:
Δ A y
Ay 0 EI
EI
A
l/2
l/2
Pl / 2
P
1(1lPl)5l5Pl3() l/6 EI 22 2 6 48EI l 5l/6
MP图
1 M图
练习: 试求图示梁A端截面转角.
A
Ay 0 EI
Pl / 2
P
1 1l Pl
1Pl2 l/6
( )1(1)
MP
1
1
l l Mi
解:作荷载弯矩图和单位荷载弯矩图
CD
yc1(1lq2l2l1lq2ll2lq2ll)
EI EI2
32
38
1q 14l( ) 1E 2 I
已知 EI 为常数,求B截面转角。
B 3m
2kN/m 4
MP
4m
6kN
12 A 2m
1
Mi
EI 2 4 3 2 2
4 32 3
8 22
2 2ql4 () 48EI EI
例 4. 图示梁EI 为常数,求C点竖向位移。
ql 2 / 2
q ql2 / 8
MP A l/2C l/2 B
l/2
1
c
yc 1 1l ql2 1 l
EI EI3 2 2 2
1 ql3 ()
2. 若 与 y c 在杆件的同侧, y c取正值;
反之,取负值。
3. 如图形较复杂,可分解为简单图形.
五、应用举例
例 1. 已知 EI 为常数,求C、D两点相对水平位移 CD。
A
B
h
q
1
q
1
l
ql2 / 8
h h
MP
Mi
解:作荷载弯矩图和单位荷载弯矩图
CDEycI
1 2ql2 EI 3 8
k
k
l
l
Mi
P/2
1/2
解:作荷载弯矩图和单位荷载弯矩图
B
yc
EI
1(lPll 1lPl1l lPll 1lPl2l)P11 EI 2 4 2 2 3 2 2 2 2 2 3 2 2 2 k
P3lP() 2EI 4k
EI
1 ( 2 l ql2 1 l 1 l ql2 2 l EI 3 2 32 2 2 2 2 2 3 2
Mi
ql 2 / 2
C q
1 l ql2 1 l )
22 8 32
ql 2 / 8 17 ql 4
()
384 EI
ql2 / 32
1P 13(l ) 3EI
练习
求C、D两点相对水平位移 CD 。
PC D
P
l
PlEI
EA
EI Pl
A MP B
l
1
1
l l
Mi
l
解:作荷载弯矩图和单位荷载弯矩图
B
yc
EI
N iN Pl11Pll2l41(2P ) (2)l EAEI2 3 EA
4P3l4P( l ) 3EIEA
解:作荷载弯矩图和单位荷载弯矩图
B E ycIE 1(I1 2412 1 313 2441 2)
8( ) 3EI
求B点水平位移,EI=常数。
2Pl
2l
A
MP
Pl
A
MP
l Pl l B
l
1
B
解:作荷载弯矩图和单位荷载弯矩图
B E yc IE 1[1 2 IlP3 2 llPlll1 2Pll(l2 3 l)Pll3 2 l]
ql3 ( 24EI
)
例 3. 已知 EI 为常数,求A点竖向位移 A 。
q
q
1
l
A ql 2 / 4
l/2
l
MP
ql / 4
Mi
l
1/ 2
解:作荷载弯矩图和单位荷载弯矩图
CD
yc
EI
1 (1lql2 2 l 1 2lql2 2 l 2 2lql21 l)
例. 试求图示结构B点竖向位移.
P
1
Pl
l
EI B
l EI MP
Mi
l
解:
By
MMPds EI
yc
EI
1 (1 Pll 2 l Pll l)
EI 2
3
4 Pl3 () 3 EI
二、常见图形的面积和形心位置
b
l/4 l
A 1 bl 3
l/2
l/2
EI
MP
P
Mi
A
B
l
解:作荷载弯矩图和单位荷载弯矩图
l
1
注意:各杆刚度 可能不同
B
yc 11Pll2l2 1 Plll
EI EI2
3
4EI
5P3l( ) 8EI
已知 EI 为常数,求C、D两点相对水平位移 CD,并画出变形图。
ql C
l
q
A
l
D ql
q
B ql 2
B
l 2
l 2
M12 PP图4l 竖12 标2l 吗12 ?13
Pl 4
)
Pl 2 ( ) 16 EI