我国特高压交直流工程的必要性

合集下载

特高压

特高压

从技术上看,采用±800千伏特高压直流输电,线路中间无需落点,能够将大量电力直送大负荷中心;在交 直流并列输电情况下,可利用双侧频率调制有效抑制区域性低频振荡,提高断面暂(动)稳极限;解决大受端电 网短路电流超标问题。采用1000千伏交流输电,中间可以落点,具有电网功能;加强电网支撑大规模直流送电; 从根本上解决大受端电网短路电流超标和500千伏线路输电能力低的问题,优化电网结构。
换流站是直流输电工程中直流和交流进行相互能量转换的系统,除有交流场等与交流变电站相同的设备外, 直流换流站还有以下特有设备:换流器、换流变压器、交直流滤波器和无功补偿设备、平波电抗器。 换流器主 要功能是进行交直流转换,从最初的汞弧阀发展到电控和光控晶闸管阀,换流器单位容量在不断增大。
换流变压器是直流换流站交直流转换的关键设备,其网侧与交流场相联,阀侧和换流器相联,因此其阀侧绕 组需承受交流和直流复合应力。由于换流变压器运行与换流器的换向所造成的非线性密切相关,在漏抗、绝缘、 谐波、直流偏磁、有载调压和试验方面与普通电力变压器有着不同的特点。
直流输电
01
名词定义
02
设备技术
04
技术的主要 特点
06
技术的经济 优势
03
换流站设备 特点及作用
05
导线的选择
技术创新 我国应用前景
和交流输电区别 技术和经济优势

换流站设备面临的 问题
绝缘子片数
发展前景
什么是直流的“静电吸尘效应”
在直流电压下,空气中的带电微粒会受到恒定方向电场力的作用被吸附到绝缘子表面,这就是直流的“静电 吸尘效应”。由于它的作用,在相同环境条件下,直流绝缘子表面积污量可比交流电压下的大一倍以上。随着污 秽量的不断增加,绝缘水平随之下降,在一定天气条件下就容易发生绝缘子的污秽闪络。因此,由于直流输电线 路的这种技术特性,与交流输电线路相比,其外绝缘特性更趋复杂。

特高压直流输电技术的应用分析

特高压直流输电技术的应用分析

特高压直流输电技术的应用分析摘要:随着我国经济快速发展,对电力资源需求量持续增加,很大程度上推动了电力事业发展。

用户对用电提出了更高要求,主要包括安全、稳定等方面,特高压直流输电输电能力更强、输电效率更高,可以满足实际发展所需。

文章先介绍特高压直流输电技术的价值,再分析目前应用现状,最后论述具体应用,为人民群众提供优质电力资源。

关键词:特高压;直流输电技术;应用1 前言电力技术发展及应用关系着群众的用电安全,而特高压直流输电作为我国发展建设中的重要组成部分,创造了世界电力工业史上的奇迹。

但就目前情况来看,特高压直流输电技术应用中还仍然存在着一些问题有待解决,因此需要电力企业相关从业人员对其进行全方位的分析,并提出合理的对策进行解决,进而保障电力的可持续运输,提高群众的用电质量和用电安全。

2 特高压直流输电技术特点2.1电网结构简单,易调控特高压直流输电采用大功率、远距离、点对点的输送模式,无中间落点,直接将电力输送到负荷中心。

当确定了送、受端之后,采用直流输电方式可实现交、直流电网并联输电,或者异步联网输电,电网结构清晰易调控。

2.2 短路电流易限制能够对系统的短路电流进行良好的限制,当企业选择使用直流输电线路对两个不同的交流系统进行连接的时候,直流系统通过使用自身的定电流控制这一功能,从而有效的将短路电流限制在额定功率周边,这样就能够在极大程度上保障短路容量不会因为交流系统的并联出现增加的问题,从而有效的互联两个交流系统。

2.3 系统高可靠性利用可控硅换流器,在直流输电技术中可快速调整有功功率,实现电流方向的改变。

另外,在正常状态下,直流系统可保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援。

因此,当交、直流电网互联时,假若交流电网线路出现短路,可通过短暂增大直流输送功率的方式,来控制电源端的发电机转子速度,从而提高系统可靠性。

2.4 年电能损耗小,线路造价低就现阶段的发展状况来看,对于架空线路的建设来说,交流输电一般需要使用三根导线,但是直流输电只需要两根双极导线或者是一根单极导线就可以。

800千伏特高压直流输电效率

800千伏特高压直流输电效率

800千伏特高压直流输电效率800千伏特高压直流输电是一种重要而先进的输电技术,它通过提高输电电压和采用直流电流来减少输电损耗,提高能源传输的效率。

本篇文章将探讨800千伏特高压直流输电的效率,并分析其重要性和应用前景。

1. 800千伏特高压直流输电的原理及优势800千伏特高压直流输电利用高压和直流电流的特性,通过减少电流的值,降低传输过程中的电阻损耗。

相比传统的交流输电方式,800千伏特高压直流输电具有以下优势:1.1 降低线路损耗800千伏特高压直流输电相对于交流输电,具有更小的线路电阻损耗。

在长距离、大容量的输电过程中,传统的交流输电线路会产生较大的电阻损耗。

而800千伏特高压直流输电则能够显著减少这一损耗,提高能源的传输效率。

1.2 提高传输容量800千伏特高压直流输电通过提高线路电压,相比较低电压的输电方式,能够有效提高输电线路的传输能力。

这一特点使得800千伏特高压直流输电在大容量、远距离电力传输中具备独特的优势,能够满足不断增长的电力需求。

1.3 适应远距离输电由于电力传输损耗的存在,长距离的输电效率普遍较低。

而800千伏特高压直流输电通过减小传输过程中的电阻损耗,能够有效克服这一难题,适应远距离输电需求,实现高效率、长距离的电力传输。

2. 800千伏特高压直流输电的应用前景800千伏特高压直流输电作为一种高效、可靠的输电方式,已经得到广泛的应用,并且在未来有着更广阔的发展前景。

2.1 降低环境影响相较于传统的交流输电方式,800千伏特高压直流输电能够减少输电线路的线损和电磁辐射,降低对环境的影响。

尤其对于近海、地下或环境敏感地区的电力传输,800千伏特高压直流输电具有明显的优势。

2.2 推动清洁能源发展随着清洁能源的不断发展,如风能和太阳能等,这些能源往往分布广泛,但却位于远离用电需求的地区。

800千伏特高压直流输电可以有效解决清洁能源远距离输电的问题,促进清洁能源的开发和利用。

我国特高压交流输电发展前景

我国特高压交流输电发展前景

我国特高压交流输电发展前景国外特高压交流输电发展概况及其适用范围自20世纪50年代开始电力系统采用380千伏、500千伏电压等级,60年代苏、美、加等国在330千伏电网中采用750千伏电压等级之后,由于电网输电容量的增大、输电走廊的布置日益困难、短路电流接近开关极限等原因,美、苏、日、意等国于60年代开始研究1000~1200千伏特高压交流输电技术,建设了试验室及1公里长的试验线路。

其后由于用电增长较规划慢得多等种因素,部分国家停止了试验工作,只有前苏联和日本根据电网规划建设了特高压交流输电工程。

前苏联为了优化利用煤炭资源,规划在哈萨克斯坦的埃基巴斯图兹煤矿建设数座容量为400~600万千瓦的发电厂,用1150千伏交流和±750千伏直流输电线路向俄罗斯的欧洲部分送电,同时在1150千伏交流线路中建设几个降压变电站向沿线城市供电。

1 981~1994年共建成1150千伏输电线路2364公里,其中埃基巴斯图兹一科克切塔夫一库斯坦奈线路长900公里,于1985年开始按1150千伏设计电压运行,前苏联解体后,输电容量大幅度减少,降压为500千伏运行。

日本东京电网在东京东北约300公里处的福岛建设了两座核电站及一座火电站,总容量为1230万千瓦,在西北方向约200公里处的柏崎刈羽建设了容量为821万千瓦的核电站向东京地区供电,因输电走廊布置困难,限制500千伏短路电流,提高输电技术及设备制造水平,经详细技术经济分析论证后决定采用1000千伏电压等级的特高压交流输电方式,建设(福岛)南磐城一新今市一西群马(长239公里)、柏崎刈羽一西群马(110公里)、西群马一东京东山黎(138公里)等三条1000千伏同杆并架双回路输电线路向东京电网送电,并与电厂投产初期己建成的多回500千伏线路并列运行。

由于部分核电机组投产进度推迟,先降压为500千伏运行,计划于2010年前后升压至1000千伏运行。

60年代意大利规划在南部建设大容量核电站向北部负荷中心地区供电,经研究后决定采用1000千伏电压等级,后因停止建设核电,改在负荷中心地区建设天然气电站,又因负荷增长速度较预测值低得多等原因,认为近期内没有必要建设特高压交流输电工程。

浅谈特高压输电技术的发展

浅谈特高压输电技术的发展

浅谈特高压输电技术的发展针对当前发展特高压输电技术的必要性,分别从直流和交流输电两个方面介绍了特高压输电系统的主要特点,结合国内外特高压输电技术的发展现状,分析了我国特高压输电技术的发展趋势和前景。

标签:高压输电;输电技术原理;高压直流前言:高压输电技术是世界能源领域的重大前沿技术,开展高压輸电技术的研究,对促进电力工业和能源工业的可持续发展,对世界电力科技创新和能源保障体系建设具有重要意义。

因此,在世界范围内,高压输电技术已得到了越来越多的机构和学者的关注。

1.什么叫高压输电从发电站发出的电能,一般都要通过输电线路送到各个用电地方。

根据输送电能距离的远近,采用不同的高电压。

从我国现在的电力情况来看,送电距离在200~300公里时采用220千伏的电压输电;在100公里左右时采用110千伏;50公里左右采用35千伏;在15公里~20公里时采用10千伏,有的则用6600伏。

输电电压在110千伏以上的线路,称为超高压输电线路。

在远距离送电时,我国还有500千伏的超高压输电线路。

2.为什么要高压输电根据P=UI,电压越高产生的电力浪费的也相对的越少,现在电力的材料是铜,他一个种导体,任何物质都会产生电阻,电阻就是电力浪费的主要原因,虽然说铜的电阻很小,也会产生浪费,况且铜的造价较高,主要是这个原因才使电线采用高压传输的方法,如果要打到物体没有电阻是有办法的,达到绝对零度,就是零下273℃,在这个温度下什么问题都能边成超导体,不过这样方法不能是实现,所以只能采用高压输电。

3.高压输电的原理高压输电原理可用欧姆定律解释.及电压=电流*电阻.或电流=电压/电阻.高压输电是要达到远距离输电的目的。

这个输电的重任就落到金属导线上,任何金属都有电阻存在,而电阻与其材质,长度和切面有关,各中材质导电系数不同,长度越长电阻越大,切面越大电阻越小。

为了达到高效率,远距离,节省成本输电的目的,就要用殴姆定律及电压,电流,电阻的关系来科学考虑其输电导线的成本。

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景摘要:由于我国的技术水平相对落后,导致我国电力系统的发展相对滞后,我国能源分布与电力资源使用很不均衡,电力输送的特点为大容量、长距离输电,为了减少电量损耗,我国目前主要研究高压直流输电技术和特高压直流输电技术。

随着我国高压直流输电技术日趋成熟,高压直流输电技术在电力系统中得到了广泛的应用,标志着我国高压直流输电时代的来临。

关键词:高压直流输电;技术现状;发展前景由于我国地域辽阔,能源分布及负荷发展很不平衡,水利资源主要集中在西南数省,煤炭资源主要集中在山西、陕西和内蒙古西部,而负荷主要集中在东部沿海地区,因此远距离大容量输电势在必行。

另一方面,电网互联是电力工业发展的必然趋势,我国各大区和独立省网的互联已进入实施阶段,利用高压直流输电作异步联网在技术上、经济上和安全性等方面的优势已在世界范围内得到证明。

因此高压直流输电技术必将以其技术上和经济上的独特优势,在远距离大容量输电和全国联网两个方面对我国电力工业的发展起到十分重要的作用。

1.高压直流输电优劣势分析①优势由于直流输电架空路线只需要两极导线正极和负极,线杆结构简单、造价低、损耗小;在直流电压下,线路电容不存在,没有电容电流;输送容量量大不易老化;不用考虑输电稳定性,有助于远距离大容量送电;不受联网影响,可以非同步联网,输送的有功功率和损耗的无功功率可由控制系统进行控制,提高了电力系统的质量和可靠性,有利于增容建设、节省投资效益。

②劣势由于直流输电换流变电所多,结构复杂,造价高,元器件多损耗。

如晶闸管换流时消耗大量无功功率;直流输电的特性造成一些接地技术问题;直流电流没有过零投切,给断路器灭火弧带来困难,这些问题需要充分研究并采取预防措施。

2.高压直流输电技术的发展现状我国关于高压直流输电技术的研究起步较晚,发展也相对滞后,由于技术不成熟,至今也没有在电力输送系统中得到广泛的应用。

我国目前采用的输电发展为全国联网、南北互供、西电东输的趋势,近年来,我国高压直流输电技术取得了显著进步,随着高压直流输电技术日趋成熟,我国将逐渐兴建一批远距离、大容量、超高压的直流输电工程,采用高压直流输电新技术,能够减少输电损耗,提高输电效率,进一步完善我国电网建设,提高电网运行的稳定性和可靠性。

探讨特高压直流输电技术现状及在我国的应用前景_1

探讨特高压直流输电技术现状及在我国的应用前景_1

探讨特高压直流输电技术现状及在我国的应用前景发布时间:2022-10-30T00:59:29.986Z 来源:《科技新时代》2022年第12期作者:康伟[导读] 新时期,伴随着电力工业的快速发展,工业生产以及社会发展对于电能的需求不断提高康伟国网山西省电力公司超高压变电分公司山西太原 030000摘要:新时期,伴随着电力工业的快速发展,工业生产以及社会发展对于电能的需求不断提高,输电容量更大,输电距离更长,想要满足这样的要求,必须完善电力传输相关技术,做好基础设施建设,对国家电网整体规划进行优化。

在我国,10-220kV电压等级的线路属于高压线路,330-750kV的线路为超高压线路,直流800kV及以上,交流1000kV及以上的线路为特高压线路,电压等级越高,对于电力技术的要求也就相对越高。

关键词:特高压;直流输电;发展现状;应用前景1引言通常将10-220kV电压等级的线路叫做高压线路,把330-750kV的输电线路叫做超高压,国际上习惯把交流1000kV及以上和直流±800kV 及以上的叫做特高压输电技术。

工业电网的等级越高,电力技术应用要求越高。

国内输电网的质量高低取决于国内电网的总体规模、电网的覆盖区域、输电距离的长短与输电技术水平的高低。

由此相应的特高压直流输电技术也应运而生,更大的输出电量,为国家的发展做出了不可磨灭的贡献[1]。

2特高压直流输电系统概述特高压直流输电技术指±800kV及以上电压等级的直流输电相关技术,具有电压高、输电距离远、输电容量大的特点,能够用于电力系统的非同步联网。

在我国,特高压电网建设一般是将1000kV交流特高压输电线路作为主体,构建特高压电网骨干网架,以此来完成不同区域电网的同步互联,而±800kV特高压直流输电则主要用于远距离、无电压支撑和中间落点的输电工程,配合双极两端中性点接线的方式,保证线路运行的稳定性[2]。

特高压直流输电技术具备结构较为显著的特点:一是系统设计简单,基本上可以沿用500kV或者600kV的直流输电系统设计方法,只需要处理好外部绝缘以及套管的设计,就能够保证设计的有效性;二是电力输送容量大,距离长,不过输电能力会受到导线本身最高允许温度的限制,例如,±600kV直流线路的最大传输功率约为4GW,±800kV直流线路的最大传输功率为6GW;三是只要交流系统短路比在3以上,就能够实现特高压线路与电网的可靠连接,而当前我国与直流连接的交流系统短路比均在5以上;四是可靠性强,对比高压直流输电技术,特高压直流输电技术的优势相当明显,在输电系统整体中,线路中间不落点,可以借助点对点的连接方式,以更大的功率确保电能的远距离传输,将电能汇聚到相应的电力负荷中心。

800千伏特高压直流输电效率

800千伏特高压直流输电效率

【深度长文】800千伏特高压直流输电效率一、引言随着我国经济的快速发展,电力需求逐年增长。

为满足对电力的需求,电力输送方式也在不断创新。

其中,800千伏特高压直流输电作为一种新型输电方式,其传输效率备受关注。

本文将就800千伏特高压直流输电效率进行全面评估,并探讨其在电力输送中的应用前景。

二、800千伏特高压直流输电的基本概念800千伏特高压直流输电是指采用800千伏的电压等级进行直流输电。

相较于传统的交流输电方式,其优势在于输电损耗小、电网稳定等特点。

值得指出的是,采用800千伏特高压直流输电技术,可以实现长距离大容量输电,为电力传输带来了全新的选择。

三、800千伏特高压直流输电效率的评估1. 技术成熟度:就技术水平而言,800千伏特高压直流输电技术已经较为成熟。

在国内外的多个项目中,已经成功实施了800千伏特高压直流输电工程,证明了其在实际应用中的可行性。

2. 输电效率:800千伏特高压直流输电相较于传统的交流输电方式,在输电过程中的能量损耗更小。

这是因为直流输电在电缆中的输电损耗更小,可以减少电力的能量损失,提高输电效率。

3. 环境影响:800千伏特高压直流输电技术在实际应用中,也需要考虑其对环境的影响。

因为其输电线路采用架空线路或者地下电缆,对环境和生态会造成一定的影响,需要做好环保措施。

四、800千伏特高压直流输电在实际应用中的情况1. 国内外案例:我国在800千伏特高压直流输电方面也开展了多个项目,如“西北—华东800千伏特高压直流输电项目”等。

在国外,欧洲、北美等地也都开展了相关工程。

2. 应用前景:800千伏特高压直流输电技术在实际应用中,能够解决远距离大容量输电的问题,对于跨区域电力传输、可再生能源的接入等都具有积极的意义。

未来,随着技术的不断完善,其在电力输送领域的应用前景不容忽视。

五、结论与展望800千伏特高压直流输电技术作为一项新型的电力输送方式,具有诸多优势,尤其在大容量远距离输电等方面具有优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国特高压交直流工程的必要性
特高压输电是在超高压输电的基础上发展起来的,国外研究特高压输电至今已有将近四十年的历史,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。

我国对于特高压输电也进行了很多研究并取得了很多成果,但是究竟我国是否需要开展特高压输电呢?下面就从以下这几个方面简单论述下我国实行特高压输电的必要性:1.国名经济可持续发展
近几年来,我国国民经济高速持续发展,伴随着这一发展趋势,对用电量的需求也愈来愈大,加上我国电网建设的步子相对滞后,使得电力供应和需求不平衡的矛盾越来越突出。

由于各种原因,我国的区域经济发展极不均衡,东南沿海及中南地区经济发展较快,用电量很大,成为我国的负荷中心,而能源却主要集中在我国的“三西(山西、陕西、内蒙西部)”、西南、西北部,即能源中心远离负荷中心。

从煤炭资源看,昆仑山—秦岭—大别山以北,煤炭资源的保有储量占全国的90.3%;大兴安岭—太行山—雪峰山以西煤炭保有储量占85.98%。

而主要中心负荷区京津冀、华东六省一市,以及广东省,总共煤炭保有储量仅占7.0%。

从水力资源看,90%以上集中在京广铁路以西,西部12个省区占有全国的79.3%,四川、西藏和云南就占57%,而东部沿海12个省市只占8.9%。

而且我国地区间开发程度差别很大,东部水电开发程度高达68%,西部开发程度低,仅有12.5%。

计划新增的1.8亿千瓦水电中,约1.6亿千瓦在西部。

从国民经济可持续发展的角度来看,大容量、远距离输电将成为必然趋势,而特高压输电正是实现这一必然的最佳途径。

2.电力可持续发展
我国电源结构一直为常规水电和燃煤常规火电两种。

近年来,虽然核电和新能源发电都在突破性进展,也不到全国总装机容量的2%,故下世纪相当长的一般时间,我国的电源结构仍以燃煤火电和水电为主。

我国中部建设的三峡枢纽工程,西部筹建的溪落渡、向家坝枢纽工程及今后西部规划的一批大型、特大型水电基地,装机容量都在几GW、几十GW以上,向东部输送电力的距离都在1000 km以上,用500 kV输电方式(经济输送容量
1GW,输送距离300~500 km)已经不能满足要求。

特高压输电作为西电东送的骨干网架是适宜的。

煤炭能源输送方式有两种:①运煤发电,即将煤炭运输到负荷中心,就近布置大型电厂;②就地发电输送,即在煤炭资源的附近建电厂再用输送电能的方式将能源输送到负荷中心;两种方式后者为优,前者有三大弊端:①环境污染严重即使清洁燃煤技术,也只能减轻污染,污染治理将大大提高电力能源成本,煤炭的长途运输过程也会污染环境;②占用负荷中心宝贵土地资源,负荷中心一般人口稠密,地价昂贵,相对而言,特高压输电线路的单位输送容量占用线路走廓少;
③造成交通运输压力,一座5 GW的电厂日耗煤达4.1万吨,铁路、公路的运输压力极大。

故最好的办法是多建设坑口电站发及综合能源基地,然后,用大容量、远距离的输电方式将电能送往负荷中心。

由上所述,我国电源布局应根据我国的具体国情,集中建设综合能源基地,大力开发西南水电,集约发展“三西”地区火电,以大容量、远距离输电的特高压输电方式“西电东送”,将能源输送到负荷中心具有十分重要的战略意义。

3.工程经济性
(1)建设成本
有资料测算,按相同容量分析,目前特高压等级的发电机升压变压器的成本还高于超高压,但特高压设备的费用均低于超高压的:线路为超高压的60%~70%,断路器为50%~70%,并联电抗器为90%,特高压升压和降压变压器(包括自耦变压器)与超高压大体相当。

采有空气绝缘的传统型变电所,整个造价将比超高压节省10%~15%。

一条传输容量为5 700MW的1 150 kV线路,可代替5~6条500 kV线路或3条750 kV
线路。

施工中可节省铁塔用材近1/3,节约导线近1/2。

(2)输电成本
美国邦维尔电力局曾将500 kV与1 100 kV的输电成本进行了比较。

以322 km(200 mile)长的输电线路为例,经济转换点为2400 MW。

目前有关国家规划和建设的交流特高压线路的输送容量,远大于2400 MW,一般单回线路的输送容量为5 000~6 000MW,且多数线路长度也超过322 km,因此特高压输电线路的经济性显而易见的。

上述比较是建立在相同线路损耗的基础上,实际上特高压输电线路可大大减少输电损耗,输送同样的容量,1 100 kV线路的损耗为500 kV
线路的20%~50%,由此可见,提高输电电压对减少传输能量的损失有很大的作用。

(3)输电走廊利用率
随着经济的发展,征地费用在输电工程建设投资中所占的费用比例将越来越高,在人口稠密地区和林区,处理走廊所需赔偿费用有的已占总投资的30%以上。

这就要求电网的规划、发展要立足于综合、长远的考虑,充分挖掘每一走廊的容量输送潜力。

据估计,1条1150kV输电线路的输电能力可代替5~6条500kV线路,如1150kV特高压输电线路按环境要求走廊宽度约为90m,6回500kV线路的走廊宽度约为360m,则1150kV特高压线路走廊宽度约仅为同等输送能力的500kV线路所需走廊宽度的1/4,采用特高压输电提高了走廊利用率。

以传输功率为10GW的线路为例,采用各种电压等级所需的回路数、占用走廊宽度和走廊利用率如表1所示。

表1 各种电压所需的走廊数和走廊利用率
综上所述,我国实行特高压输电具有明显的经济优越性。

4.对环境的影响
由于输电电压的提高,必然导致导线表面电场强度以及输电设备周围的空间电场强度的升高,而特高压输电线路和变电站出现的电晕现象和强电场效应对人体和生态环境是否会带来危害,一直是人们非常关心的问题。

3.1 电晕放电
电晕的产生是因为不平滑的导体产生不均匀的电场,在不均匀的电场周围曲率半径小的电极附近当电压升高到一定值,输电线路表面电场强度超过空气分子
的游离强度(一般为20~30kV/cm)时,就会发生放电,形成电晕。

电晕要消耗能量,电晕放电产生的脉冲电磁波对无线电和高频通信会产生干扰;还会使导线表面发生腐蚀,从而降低导线的使用寿命。

特高压输电线路由于电压等级太高,电晕的产生往往是无法避免的。

为了防止或减轻电晕放电的危害,最根本的途径就是设法限制或降低导线表面的电场强度。

在输电线路额定电压确定的情况下,增大导线线径是一个有效的方法,通常是采用分裂导线来降低导线表面电场强度的。

对于特高压线路来说,按电晕要求所需的导线线径往往大大超过按经济电流密度所选得的数值。

3.2 地面场强对人体的影响
大量的研究表明1000kV输电线路下方地面场强最大值比500kV的高许多。

虽然一般认为现有的输电线路下方的电场对人体不会有明显的直接影响,但是不少问题还正在继续研究中。

为慎重起见,目前对于输电线路走廊和变电所范围的最大场强给予了一定限制;对人员来往频繁的地方或某些特殊场所,则要求采取屏蔽措施以降低场强。

当适当抬高导线对地距离,如取22m时,1000kV输电线路如果采用前苏联相导线水平布置时,地面最大场强可限制在10kV/m;如果采用相导线正三角布置或者双回路逆相序布置时,地面最大场强与500kV的水平相当;如果采用相导线倒三角布置的紧凑型输电线路时,地面最大场强可比500kV的低,而且线下高场强区也显著减小,在对地距离相同条件下,线下高于4kV/m和2kV/m场强的宽度仅为前苏联相导线水平布置线路的三分之一和二分之一。

对特高压输电,各国的研究表明:只要合理选择分裂子导线的半径和根数,以及分裂间距和离地高度,这些影响和干扰均可限制在允许范围内。

因此,只要我国特高压线路采用合理的导线半径和根数,以及导线布置方式和对地距离,就不会对人类生活和生态环境造成危害,各项环境的控制指标均可限制在允许范围内,甚至低于已经运行的500kV线路。

相关文档
最新文档