壳牌气化炉构造说明
壳牌煤气化炉的设备特性及技术管理

Eq ui pm e nt Ch ar a c t e r i s t i c o f Sh e l l Ga s i ie f r a nd Te c hni c a l M an a g e me nt
GU0 Da n
( G u  ̄ h o u死 n , 以 C h e m i c a l E n g i n e e r i n g C o m p a n y L t d . ,F u q u a n G u  ̄ h o u 5 5 0 5 0 1 C h i n a )
me n t g i s t ;h a s p r e s e n t e d t h e s o l u t i o n s c [ 1 e me or f c o mmo n p r o b l e ms o f S h e l l g a s i i f e r . Ke y wo r d s : c o a l g a s i f i e r ;S h e l l g a s i f i e r ;e q u i p me n t f e a t u r e;t e c h n i c l a ma n a g e me n t
块 煤或 焦煤 为原 料 。煤 由气 化 炉顶 加入 , 气化剂 由 炉底 加 入 。流 动 气 体 的上 升 力 不 致 使 固体 颗 粒 的
化 技 术作 为 一 种 高 效 、 洁 净 的 煤 转 化 技 术 日益 受 到 重视 , 广 泛用 于合 成 化 学 品 和 制 气 等 众 多 领 域 。
摘 要 :简述 了煤i t ; x . 常用 气化炉的分类及特 点; 介绍 了壳牌 气化 炉的主要设备 和材料 ; 分析 了壳牌气化炉的X - . 艺 及设备特 点及 其技 术管理要 点; 提 出了壳牌 气化 炉常见 问题 的解决方案 。
壳牌煤气化气化原理技术说明(翻译版)

壳牌煤气化气化原理技术说明(翻译版)目录气化原理 ............................................................................................................ 错误!未定义书签。
一、总论 (2)1.1 概述 (2)1.2 主要反应方程式 (2)1.3 环境方面 (3)2壳牌煤气化工艺(SCGP) (4)2.1 概述 (4)2.2 工艺步骤 (5)3煤的起源和煤的成分对煤气化工艺SCGP的影响 (13)3.1煤的起源 (13)3.2 与shell煤气化工艺相关的煤的特性 (13)3.3 煤/煤灰特性对操作和设计的影响 (15)一、总论1.1 概述气化是一种将碳氢原料转变为CO和H2为主要气体成分的工艺。
其它气体成分如CH4、CO2、H2S、苯酚、烟和微量的氨、HCl、HCN以及在特殊工艺下基于原料和工况产生的甲酸盐。
气化产出的气体既可作为发电用的燃料,又可作为化工原料。
对气化工艺的选择,以及气化介质(O2或空气),取决于气化进料的类型和产品的要求。
壳牌专利/操作两大气化技术1. 壳牌气化工艺(SGP)壳牌气化工艺(SGP)原料范围从天然气到重油。
此工艺合成出来的气体广泛用于H2、Cl2、甲醇的制造,或作为发电用的燃料。
自1956年来,壳牌气化工艺(SGP)技术被广泛应用,现已经有150套气化炉。
壳牌气化工艺(SGP)采用有耐火衬里的单个烧咀和一个特别设计的气管式废热锅炉(合成气冷却器SGC)。
2. 壳牌煤气化工艺(SCGP)壳牌煤气化工艺(SCGP)原料范围从焦油和无烟煤到褐煤。
间接煤液化(气化伴随着合成气接触反应的变换)是发展此工艺的最初原因。
现在,此工艺主要应用于发电和化工原料生产。
1972年,开始壳牌煤气化工艺(SCGP)的开发。
1976年阿姆斯特丹壳牌实验室委托一个工厂——GASCO化工厂烧煤6t/d;1978~1983年在德国汉堡壳牌总厂,一个烧煤150t/d的工厂投产;1986~1991年在美国壳牌Deer Park总厂,一个烧煤250-400st/d的示范厂投产。
气化炉讲座ppt

激冷器结构示意图
激冷区采用高合金奥氏体钢,而激冷 管则采用铁素体钢。激冷管设计成膜壁式 冷却系统组成的循环管,激冷管与中压水 /蒸汽的系统都采用翅片列管式结构。 激冷管下游的延伸部分即输气管,是 由一段冷却弯管和一段冷却直管组成。输 气管水冷壁为MP蒸汽系统的一部分,并用 铁素体材料的超“Ω ”管制成。
入蒸汽,并可副产5.5MPa中压蒸汽,同时 也增强了工艺操作强度(因为设计膜式水 冷壁时,考虑了超过设计条件的情况和操 作干扰)。另外,膜式水冷壁内衬有一层 耐火衬里,用“以渣抗渣”方式保护膜式 水冷壁不受侵蚀。与其它结构型式气化炉 相比,由于不需要耐火绝热层,使Shell粉 煤气化炉运转周期长,粉煤烧嘴操作寿命 长,可单炉运行,不需要备用炉,可靠性 高。
冷激区分为两个功能区。 在第一区,经冷却的干净气体以约200℃ 的温度进行循环,并加入到气化炉出来的热 气流中。这股气叫循环气。 第二区即所谓的“高速冷却区”,是用 加压的合成气吹除积累在循环气出口附近的 煤渣。 由于存在湍流,两股气流在经过很长的激 冷管时得到了最充分地混合,混合后的温度 低于900℃。
气化炉外壳材质为SA387Gr11CL2, 最大壁厚约95mm,最大内径4630 mm。 其下端为半球形封头。这两项指标也是 对国内压力容器制造厂装备的主要考核 内容,一是卷板能力,二是锻压机能力。
承压外壳在制造厂的制造按其内件 的交货状态及组装要求分四段进行,即 气化炉本体组件、输气管组件、气体反
气化炉内件的总体结构为水冷壁型式, 主要由受热面(膜式水冷壁)环形空间及承 压壳体组成。承压壳体设计压力为5.2 MPa , 设计温度350℃。用沸水冷却的水冷壁安装 在壳体内,气化过程实际发生在膜式水冷壁 围成的腔内,气化压力由承压炉体承受。在 膜式水冷壁与承压炉体之间的是环形空间, 主要用于放置容纳水/蒸汽的输入/输出管线 及集箱管、分配管,另外,环形空间也便于 管线的连接安装及其以后的检修与检验。膜 式水冷壁提高了气化炉的效率,不需额外加
三种煤气化炉技术介绍一

三种煤气化炉技术介绍一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
1.固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC-鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm 的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
SCGP(壳牌)煤气化工艺

SCGP(壳牌)煤气化工艺1、SCGP(壳牌)煤气化技术简介。
1.1工艺原理。
SCGP壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。
由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2和CO等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即过程进入到气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。
典型的SCGP煤气成分见表1。
1.2工艺流程。
目前,壳牌煤气化装置采用废锅流程,废锅流程的壳牌煤气化工艺简略流程见图1。
原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。
来自空分的高压氧气经预热后与中压过热蒸汽混合后导入煤烧嘴。
煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。
气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900℃左右进入合成气冷却器。
经合成气冷却器回收热量后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1mg/m3送后续工序。
湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。
闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。
在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。
1.3技术特点。
1.3.1煤种适应性广。
SCGP工艺对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。
对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。
1.3.2单系列生产能力大。
煤气化装置单台气化炉投煤量达到2000t/d以上,生产能力更高的的煤气化装置也正在建设中。
壳牌气化炉及合成气冷却器的设备构造

壳牌气化炉及合成气冷却器的设备构造
邵春林
【期刊名称】《中氮肥》
【年(卷),期】2008(000)002
【摘要】壳牌煤气化技术具有煤种适应性广、碳转化率高、煤气中有效气体(CO +H2)含量高、氧耗低、单炉生产能力大、热效率高、环境污染小、气化炉运转周期长等特点,是目前国内已建、在建煤化工项目选择的主流技术之一。
我公司即将投产的在建煤制甲醇项目也采用该气化技术。
【总页数】3页(P54-56)
【作者】邵春林
【作者单位】河南龙宇煤化工有限公司,河南,永城,476600
【正文语种】中文
【中图分类】TQ545
【相关文献】
1.影响Shell气化炉合成气冷却器出口温度的原因及探讨 [J], 林伟
2.壳牌气化炉合成气冷却器结垢分析 [J], 郭小杰
3.Shell气化炉合成气冷却器入口堵灰的原因分析及改进 [J], 吕崇福;孙颖
4.50万t/a煤制甲醇装置合成气冷却器泄漏的处理措施 [J], 张振伍;任吉利;王则强
5.合成气冷却器入口堵灰原因分析与对策 [J], 宋星星
因版权原因,仅展示原文概要,查看原文内容请购买。
SHELL气化炉的结构特点及操作维修

煤化工 Coal Chemical Industry
No.4( Total No.137) Aug. 2008
Shell气 化 炉 的 结 构 特 点 及 操 作 维 修
周留霞 ( 中 原大 化 集 团 三 胺 公司 , 濮 阳 457004)
摘 要 详 细介绍 了 Shel l 气化 炉的主 要组成 ( 按 工艺功 能分) : 气化 反应 段、急冷 段、输 气管段 、气体 返回 段、气体 冷却 段、辅助 设备 等, 总结 了气 化炉的 结构 特点 : 结 构复 杂、控制 点多 、操作难 度大 、制粉 系统 故障 率高 等, 并对气 化炉的 安装、操作 维修进 行了说 明, 以期对 引进技 术的消 化吸收 工作起 指导作 用。
V1401
急冷段 输气 管段 气体返回 段 合成 气 冷却 段
辅 助设备
E1320 V1301
E1301 V1302 E1302 V1302 E1303A V1302
E1306 E1303B E1303C/ D
A1301A/ D A1302 A1303 A1305 A1306
表 2 气化炉 主要部 件使用材 料
198940mm2008年8月图1气化炉结构示意图1喷水环渣斗2气化炉压力容器外壳3气化传热面4急冷管5输气管内件6拱顶输气管压力容器外壳7气体进口支管8气体返回室压力容器外壳9返回室传热面10蒸发段及过热段传热面11保温支撑12合成气冷却器外壳13蒸发段及过热段传热面14恒力吊15合成气冷却器裙座表1气化炉包含设备位号v1301v1302v1303v1304e1320e1301e1302e1303ade1306a1301ada1302a1303x1305x1306设备名称气化段壳体合成气冷却器壳体输气段壳体渣池气化段中压蒸发器急冷段中压蒸发器输气段中压蒸发器合成气冷却段中压蒸发器合成气冷却段中压过热器敲击器煤烧嘴开工烧嘴点火烧嘴开工烧嘴插入装置点火烧嘴插入装置火焰监测器恒力吊台套111111141584111121备注无位号无位号无位号表2气化炉主要部件使用材料位号v1301v1301v1401e1320v1301e1301v1302e1302v1302e1303av1302e1306e1303be1303cda1301ada1302a1303a1305a1306部件名称裙座壳体渣池热裙挡渣屏反应段膜式壁急冷段外壳急冷区急冷管中压蒸发器输气管段外壳输气管中压蒸发器气体返回段外壳气体返回段中压蒸发器合成气冷却器壳体中压蒸汽过热器中压蒸发器中压蒸发器敲击器煤烧嘴开工烧嘴点火烧嘴开工烧嘴插入装置点火烧嘴插入装置火焰监测器恒力吊材料sa387gr11cl2sa387gr11cl2curon130rgmsa387gr11cl2incoloy8252
气化炉的结构及技术要求

气化炉的结构及技术要求6.2.1.1气化炉的结构煤气化炉又称煤气发生炉 (gas producer) 。
煤气化的主要设备。
根据煤的性质和对煤气产品的要求有多种气化炉型式。
分为固定床移动床、沸腾床和气流床等形式。
煤在煤气化炉内会发生一系列复杂的物理变化和化学变化,主要有:煤的干燥、煤的干馏和煤的气化反应。
其中干燥指煤中水分的挥发,是一个简单的物理过程,而干馏和气化反应都是复杂的热化学过程,受煤种、温度、压力、加热速率和气化炉形式等多种因素的影响,和生产操作密切相关,是需要特别重视的。
煤的干馏又称为煤的热分解或热解,指煤中的有机物在高温下发生分解而逸出煤中的挥发成分,并残存半焦或焦炭的过程。
气化炉中的气化反应,是一个极其复杂的体系。
由于煤炭的“分子”结构很复杂,其中含有碳、氢、氧和其它元素,因而在讨论气化反应时总是以如下假定为基础,即仅考虑煤炭中的主要元素碳,且气化反应前发生煤的干馏和热解。
这样一来,气化反应主要是指煤中的碳和气化剂中的氧气、水蒸气和氢气的反应,也包括碳与反应物以及反应产物之间进行的反应。
某化工机械厂生产的气化炉的结构如图所示,该气化炉燃烧室筒体内径3200mm,主体高度 19074mm。
上球形封头、燃烧室筒体、筒体锻件材料为耐热钢SA387Cr11Cl2,相对应中国标准图 6-5气化炉的结构为 14CrMoR。
,上球形封头厚度60mm,燃烧室筒体壁度 78mm,筒体锻件的筒体部分壁度78mm。
激冷室腐蚀比较严重,所以内部堆焊。
故气化炉激冷室筒体采用复合钢板SA387Cr11Cl2+316L,筒体复合钢板厚度( 78+4)mm,激冷室筒体内径 3192mm。
筒体锻件壁面在激冷室侧的要堆焊耐蚀层。
下锥体封头材料为耐热钢SA387Cr11Cl2,内表面堆焊堆焊耐蚀层,厚度为((82+6)mm,气化炉主体高度19074mm。
气化炉技术特性参数:设计压力 5.56MPa,设计温度 455℃,工作介质:高温煤气、煤气、熔渣、黑水等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)对操作条件比较苛刻的关键部分,采取可靠的保护措施
a.气化反应段(温度1400~1600℃区域),采用14~20mm耐热衬里,以防炉渣直接冲刷,降低热负荷。
主 题: 关于气化炉炉体构造的说明
1.气化炉
气化炉炉膛壳体径为4630,高~321450mm采用裙式支座支承。上部冷激段直径3020,高~9550mm。
气化炉件包括气化段、渣池、激冷段三个部分,它们由气化段园筒水冷壁、气化段锥顶、气化段锥底、渣池锥顶、渣池热筒壁、喷水环、渣斗、激冷管、喷嘴冷却锥、吹风管、正常冷激器和高速冷激器等14个部件组成。
气化炉的设计压力为5.2/F.VMPa,设计温度3500C;操作压力4.2/4.0MPa;压力容器壳体的设计温度>2000C。为了保证气化关键设备使用寿命达到25年以上,设备设计和制造等方面均采取了相应措施。壳体腐蚀裕量5.0mm。
气化空间(包括圆筒膜式壁,炉顶、炉底传热面及其附件)和渣池的顶部渣屏表面,因该区域处于气化反应最高温度区,热流密度最大(达170~230kW/m·K),多数部位又与高温熔融炉渣接触,为了减少传热量,保持反应空间气化反应正常进行,减少侧金属壁温的增值(基于减少结构应力和腐蚀对选定材料金属实际壁温的要求和防止熔融炉渣的直接冲刷等),要求对其壁受火面进行保护。通常采用设置销钉加衬耐火衬里的方法。但设置的耐火衬里层厚度应适当,过薄实施有困难且有可能达不到预期效果,过厚又将由于热阻增加引起气化炉壁凝固的渣层增厚而使排渣产生困难,严重时也有可能危及气化炉的正常操作。
1.7335
φ38
6.3
6
3.5
3.5
φ2104
5
-顶锥
管子-管子
1.7335
φ38
6.3
3.5
φ2118/φ846
6
-冷激管
管子-翅片-管子
1.7335
φ38
6.3
6
3.5
3.5
φ953
1)设备的适用年限为20年
2)只考虑传热面壁与工艺气体接触侧的腐蚀裕量
3)管子/翅片焊接的间隙<=0.3×翅片厚度
b.局部气流冲刷严重部分采用镍基合金堆焊或增加管子壁厚。
c.换热面传热管留有较大的腐蚀裕量。
――承压壳体:
压力容器主体材料选用能抗氢腐蚀的SA387Cr.11 Cl.2材料。
与湿气氛接触的压力壳体(如气化炉底)采用SA387Cr.11 Cl.2+N08225复合板
制作。其它与气体接触的压力壳体均采用40mm耐热衬里保护,以使压力容器得
在炉气输送弯管处由于此处气流方向改变和重力作用,使气体中颗粒较粗的尘粒将较集中地沿输气管侧下方的表面运动。为了保护该表面不被冲刷损坏,设计上采取保护性措施。例如在下半部180°围设销钉衬耐火衬里材料。
过热器壳体直径φ3400,长~14200。采用立式结构。壳体的设计压力5.2 MPa,设计温度3500C。
过热器由一组过热段组成,蒸汽过热器采用同心的螺旋盘管,蒸汽过热器管束用高合金钢制作,管束通过特制吊架悬吊在壳体。为防止炉灰在换热管上积累,在个圈盘管上设有气动敲击器,用以保证传热面的传热效率。
带有粉尘的炉气通过炉气输送管送到蒸汽过热器,输送管件的主体结构则由38×6.3异型管组成水膜壁,在件设计中,由于件分段和热膨胀设计需要,至少有三处的膜式壁连接需采用承插连接(外加膨胀节密封)结构。由于该处含有粉尘的气体流速较高(达6.5m/s),气体流动方向正对膜式壁端部弯头的顶部,冲刷作用较大,需采用堆焊耐热高合金材料(IG625)进行保护。
材料方面基于H2S腐蚀考虑,对于使用不同煤种设计的气化炉,因其炉气中的H2S含量存在较大差异,对可能采用高硫煤种的气化炉膜式壁的水/汽压力应选用低一些(以满足要求的使用寿命为限);对能保证采用低硫煤种的气化炉膜式壁的水/汽压力可相应选用高一些。
——件部分:
(1)件与高温气体接触部分(包括对流管束)均采用冷却效果较好的水冷壁结构。
到一个安全备用反应时间,避免无法控制的操作失误(膜式壁破裂)造成压力
容器局部快速升温。
对无法进行衬里保护且可能存在冷凝腐蚀的接管壁堆焊IG625防腐层。
气化炉为干煤气化的关键设备,件部分设计及制造复杂本工程拟采用整
体引进。
表1.气化炉件主要传热面结构特征及采用数据(以双环工程为例)
序号
区域
结构型式
材料
2.炉气输送管及蒸汽过热器
炉气输送管长~17000mm,壳体直径φ3020,水膜壁径φ1432。一端与气化系统相接,另一端呈450角与蒸汽过热器相接。在蒸汽过热器上端设有气体返回室,气体返回室主要起炉气气流转向作用,因此件除了起保护作用的水/汽能副产少量蒸汽外,其主要功能是形成气流转向通道。炉气输送管水膜壁采用承插式接口。
换热面管子
腐蚀裕量
圆筒
外径
mm
壁厚
mm
翅片
mm
管
mm
翅
mm
直径
mm
气化炉
1
-圆筒热裙
超级Ω
2.4858
φ38
6.3
1.0
φ1733
2
-渣池锥顶(渣屏)
管子-管733/φ1057
3
-底锥
双超级Ω
1.7335
φ38
6.3
3.5
φ1991.5/φ744
4
-圆筒膜式壁
管子-翅片-管子
对于气化反应空间其它不能实施耐火衬里保护的冷却传热部件,则有可能由于高热流密度的影响将加快其受火面的损坏。例如煤粉烧咀的锥形护罩,开工喷咀、点火烧咀和火焰观察孔的水夹套等。
为了形成气化空间、渣池和冷激管,气化炉件采用了多种形式的膜式壁传热面。根据结构形状、载荷条件和制造的可能性,有的采用管-翅-管结构(如圆筒膜式壁和冷激管);有的采用光管制的螺旋管(如顶锥/冷激底传热面,渣池顶部的渣屏,煤烧咀的锥形护罩等);有的则采用双Ω管制的螺旋锥形传热面(如炉底锥形传热面)。为了制作出所需的形状,均采用了板(条)型或圆钢等连接件与管子直接焊接,且在这区域的件(包括管子、连接板、棒/条)绝大多数选用了焊接性能较好、热传导性能较好的13CrMo44材料。为了保证这些部件达到预期的使用寿命,在操作状态下(特别是在高硫条件下)结构的最高壁温都希望不超过300℃。因此,控制膜式壁水/汽压力不超过某一特定值,保证金属壁的实际温度始终都能在材料腐蚀允许围就成了这种件结构和用材长周期运行的先决条件。