模式识别实验报告-实验一 Bayes分类器设计

合集下载

模式识别实验指导

模式识别实验指导

《模式识别》实验指导实验用数据说明:¾训练样本集1)FAMALE.TXT——50个女生的身高、体重数据2)MALE.TXT——50个男生的身高、体重数据¾测试样本集1)test1.txt——35个同学的身高、体重、性别数据(15个女生、20个男生)2)test2.txt——300个同学的身高、体重、性别数据(50个女生、250个男生)实验一 Bayes分类器设计一、实验目的1)加深对Bayes分类器原理的理解和认识2)掌握Bayes分类器的设计方法二、实验环境1)具有相关编程软件的PC机三、实验原理1)Bayes分类器的理论基础2)分类器的性能评价四、实验内容1)用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器;2)用测试样本数据test2.txt对该分类器进行测试;3)调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。

五、实验步骤1)应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。

在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响;2)用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。

比较相关假设和不相关假设下结果的差异。

在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响;3)自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。

模式识别实验一

模式识别实验一

, n 是 n 维均值
向 量 , C i 是 n n 协 方 差 矩 阵 ; Ci 为 矩 阵 Ci 的 行 列 式 。 且 i Ei x ,
Ci Ei

x
i
x
i , Ei x 表示对类别属于 i 的模式作数学期望运算。
T
因此判别函数可表示为 J i ( x) P( x | i ) P(i ) 对判别函数取自然对数
1 1 J i ( x) ( x i ) Ci1 ( x i ) ln P(i ) ln Ci 2 2
然后根据(1)中所述最大后验准则判断样本所属类别。 三、实验过程 实验数据: IRIS 数据集 实验假设: 各类数据服从正态分布 实验方法: 最大后验概率 实验环境: MATLAB 2010b (1)数据导入
A , B 可设置每种类型的先验概率 P A , P B 。针对某一训练数据 x 计
算其判别函数 J A x , J B x ,比较两个值的大小,哪个最大,就可判断该数据 属于哪一类。最后统计分类器判决结果,设置矩阵存储被错误分类的数据,统计 A,B 两类测试数据的误判数,计算误判率。 %---------分类器测试----------% %选择分类组(w1,w2)(w1,w3)(w2,w3) %test = 1代表(w1,w2)分类 %test = 2代表(w1,w3)分类 %test = 3代表(w2,w3)分类 test = 1; if test==1 avr_A = avr_w1';var_A = var_w1'; avr_B = avr_w2';var_B = var_w2'; %合并待测数据 data_test = [data_test_w1;data_test_w2]; end if test==2 avr_A = avr_w1';var_A = var_w1'; avr_B = avr_w3';var_B = var_w3'; %合并待测数据 data_test = [data_test_w1;data_test_w3]; end if test==3 avr_A = avr_w2';var_A = var_w2'; avr_B = avr_w3';var_B = var_w3'; %合并待测数据 data_test = [data_test_w2;data_test_w3]; end %s设置先验概率 P_wA = 1/2; P_wB = 1/2;

自-模式识别实验1报告

自-模式识别实验1报告

模式识别实验一报告正态分布的分类器设计一、实验目的:1.对模式识别有一个初步的理解2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.熟悉单元和多元正态分布分类器、判别函数二、实验条件:ma tl ab 软件三、实验原理:对于具有多个特征参数的样本,其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x …其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

我们根据假设:类别i ω,i=1,2,……,N的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ如果 gi(x)=max g j(x ) (j =1,2,3,…) 则x∈wi;四、实验内容1(b)、写一个程序计算一个给定正态分布及先验概率P(wi)的判别函数111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ;2(a)、假设前面两个先验概率相等,P(w1)= P (w 2) =1/2,P(w 3)=0,仅利用x1的值特征值为这两个类别判别设计一个分类器; 2(d)、用两个特征值x1、x2重复2(a)步骤; 2(e)、利用所有的特征值重复以上各步;4、(a )、以下各测试点与2中各类别均值间的Ma halano bis 距离分别是多少?(1,2,1), (5,3,2), (0,0,0), (1,0,0)。

模式识别第一次作业报告

模式识别第一次作业报告

模式识别第一次作业报告姓名:刘昌元学号:099064370 班级:自动化092班题目:用身高和/或体重数据进行性别分类的实验基本要求:用famale.txt和male.txt的数据作为训练样本集,建立Bayes分类器,用测试样本数据test1.txt和test2.txt该分类器进行测试。

调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。

一、实验思路1:利用Matlab7.1导入训练样本数据,然后将样本数据的身高和体重数据赋值给临时矩阵,构成m行2列的临时数据矩阵给后面调用。

2:查阅二维正态分布的概率密度的公式及需要的参数及各个参数的意义,新建m函数文件,编程计算二维正态分布的相关参数:期望、方差、标准差、协方差和相关系数。

3.利用二维正态分布的相关参数和训练样本构成的临时数据矩阵编程获得类条件概率密度,先验概率。

4.编程得到后验概率,并利用后验概率判断归为哪一类。

5.利用分类器训练样本并修正参数,最后可以用循环程序调用数据文件,统计分类的男女人数,再与正确的人数比较得到错误率。

6.自己给出决策表获得最小风险决策分类器。

7.问题的关键就在于利用样本数据获得二维正态分布的相关参数。

8.二维正态分布的概率密度公式如下:试验中编程计算出期望,方差,标准差和相关系数。

其中:二、实验程序设计流程图:1:二维正态分布的参数计算%功能:调用导入的男生和女生的身高和体重的数据文件得到二维正态分布的期望,方差,标准差,相关系数等参数%%使用方法:在Matlab的命令窗口输入cansu(male) 或者cansu(famale) 其中 male 和 famale%是导入的男生和女生的数据文件名,运用结果返回的是一个行1行7列的矩阵,其中参数的顺序依次为如下:%%身高期望、身高方差、身高标准差、体重期望、体重方差、体重标准差、身高和体重的相关系数%%开发者:安徽工业大学电气信息学院自动化 092班刘昌元学号:099064370 %function result=cansu(file)[m,n]=size(file); %求出导入的数据的行数和列数即 m 行n 列%for i=1:1:m %把身高和体重构成 m 行 2 列的矩阵%people(i,1)=file(i,1);people(i,2)=file(i,2);endu=sum(people)/m; %求得身高和体重的数学期望即平均值%for i=1:1:mpeople2(i,1)=people(i,1)^2;people2(i,2)=people(i,2)^2;endu2=sum(people2)/m; %求得身高和体重的方差、%x=u2(1,1)-u(1,1)^2;y=u2(1,2)-u(1,2)^2;for i=1:1:mtem(i,1)=people(i,1)*people(i,2);ends=0;for i=1:1:ms=s+tem(i,1);endcov=s/m-u(1,1)*u(1,2); %求得身高和体重的协方差 cov (x,y)%x1=sqrt(x); %求身高标准差 x1 %y1=sqrt(y); %求身高标准差 y1 %ralation=cov/(x1*y1); %求得身高和体重的相关系数 ralation %result(1,1)=u(1,1); %返回结果 :身高的期望 %result(1,2)=x; %返回结果 : 身高的方差 %result(1,3)=x1; %返回结果 : 身高的标准差 %result(1,4)=u(1,2); %返回结果 :体重的期望 %result(1,5)=y; %返回结果 : 体重的方差 %result(1,6)=y1; %返回结果 : 体重的标准差 %result(1,7)=ralation; %返回结果:相关系数 %2:贝叶斯分类器%功能:身高和体重相关情况下的贝叶斯分类器(最小错误率贝叶斯决策)输入身高和体重数据,输出男女的判断%%使用方法:在Matlab命令窗口输入 bayes(a,b) 其中a为身高数据,b为体重数据。

bayes 分类器设置实验总结

bayes 分类器设置实验总结

bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。

Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。

在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。

一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。

我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。

二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。

数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。

2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。

三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。

可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。

2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。

例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。

3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。

常见的评价指标包括准确率、召回率、精确率和F1 分数等。

四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。

我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。

此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。

五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。

根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。

2018-分类器实验报告-word范文模板 (16页)

2018-分类器实验报告-word范文模板 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==分类器实验报告篇一:Bayes分类器设计实验报告装订线模式识别实验报告:学院计算机科学与技术专业 xxxxxxxxxxxxxxxx学号xxxxxxxxxxxx姓名xxxx指导教师xxxx201X年xx月xx日题目Bayes分类器设计一、实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

二、实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知叶斯公式计算出后验概率: ???及给出待识别的X的情况下,根据贝(2)利用计算出的后验概率及决策表,按下面的公式计算出采取险的条件风(3)对(2)中得到的a个条件风险值风险最小的决策????则就是最小风险贝叶斯决策。

,即进行比较,找出使其条件三、实验内容假定某个局部区域细胞识别中正常和非正常两类先验概率分别为正常状态:P (w1)=0.9;异常状态:P(w2)=0.1。

现有一系列待观察的细胞,其观察值为x:-3.9847-3.5549-1.2401-0.9780 -0.7932 -2.8531-2.7605-3.7287-3.5414-2.2692 -3.4549 -3.0752-3.9934 2.8792-0.97800.7932 1.1882 3.0682-1.5799-1.4885-0.7431-0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。

四、实验要求1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。

2)根据例子画出后验概率的分布曲线以及分类的结果示意图。

3)如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。

Bayes分类器算法

Bayes分类器算法

⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目...

实验一图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件HP D538、MATLAB三、实验原理1 基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。

并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。

此过程中,确定阈值是分割的关键。

对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。

最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。

而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。

类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。

上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。

这时如用全局阈值进行分割必然会产生一定的误差。

分割误差包括将目标分为背景和将背景分为目标两大类。

实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。

这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。

图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。

如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。

如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。

假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 Bayes 分类器设计【实验目的】对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

【实验原理】最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==则k a 就是最小风险贝叶斯决策。

【实验内容】假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。

现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率是的曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为N (-2,0.25)、N (2,4)试对观察的结果进行分类。

【实验要求】1)用matlab 完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。

2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。

3)如果是最小风险贝叶斯决策,决策表如下: 最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。

【实验程序】◆最小错误率贝叶斯决策✧分类器设计x=[-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 ]pw1=0.9 ; pw2=0.1e1=-2; a1=0.5e2=2;a2=2m=numel(x) %得到待测细胞个数pw1_x=zeros(1,m) %存放对w1的后验概率矩阵pw2_x=zeros(1,m) %存放对w2的后验概率矩阵results=zeros(1,m) %存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0 %正常细胞elseresult(i)=1 %异常细胞endenda=[-5:0.05:5] %取样本点以画图n=numel(a)pw1_plot=zeros(1,n)pw2_plot=zeros(1,n)for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2))%计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) endfigure(1)hold onplot(a,pw1_plot,'k-',a,pw2_plot,'r-.')for k=1:mif result(k)==0plot(x(k),-0.1,'b*') %正常细胞用*表示elseplot(x(k),-0.1,'rp') %异常细胞用五角星表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞')xlabel('样本细胞的观察值')ylabel('后验概率')title('后验概率分布曲线')grid onreturn ;✧实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ]disp(x)pw1=0.9pw2=0.1[result]=bayes(x,pw1,pw2)◆最小风险贝叶斯决策✧分类器设计function [R1_x,R2_x,result]=danger(x,pw1,pw2)m=numel(x) %得到待测细胞个数R1_x=zeros(1,m) %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m) %存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m) %存放比较结果e1=-2a1=0.5e2=2a2=2%类条件概率分布px_w1:(-2,0.25) px_w2(2,4)r11=0r12=2r21=4r22=0%风险决策表for i=1:m %计算两类风险值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e 2,a2))+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2))R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e 2,a2))+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2 ,a2))endfor i=1:mif R2_x(i)>R1_x(i)%第二类比第一类风险大result(i)=0 %判为正常细胞(损失较小),用0表示elseresult(i)=1 %判为异常细胞,用1表示endenda=[-5:0.05:5] %取样本点以画图n=numel(a)R1_plot=zeros(1,n)R2_plot=zeros(1,n)for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j ),e2,a2))+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j ),e2,a2))+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j) ,e2,a2))%计算各样本点的风险以画图endfigure(1)hold onplot(a,R1_plot,'b-',a,R2_plot,'g*-')for k=1:mif result(k)==0plot(x(k),-0.1,'b^')%正常细胞用上三角表示elseplot(x(k),-0.1,'go')%异常细胞用圆表示end;end;legend('正常细胞','异常细胞','Location','Best')xlabel('细胞分类结果')ylabel('条件风险')title('风险判决曲线')grid onreturn✧ 实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ] disp(x) pw1=0.9 pw2=0.1[R1_x,R2_x,result]=danger(x,pw1,pw2)【实验结果和数据】◆ 最小错误率贝叶斯决策后验概率曲线与判决结果在一张图上:后验概率曲线如图所示,带*的绿色曲线为判决成异常细胞的后验概率曲线;另一条平滑的蓝色曲线为判为正常细胞的后验概率曲线。

相关文档
最新文档