模式识别实验报告

合集下载

模式识别 实验报告一

模式识别 实验报告一
45
402
132
识别正确率
73.36
84.87
99.71
70.31
82.89
86.84
结果分析:
实验中图像3的识别率最高,图像1和图像2的识别率次之。图像1和图像2的分辨率相对图像3更低,同时图像2有折痕影响而图像1则有大量噪声。通过阈值处理能较好的处理掉图像1的噪声和图像2的折痕,从而使得图像1的识别率有所提升,而图像2的识别率变化不大。从而可以得出结论,图像3和图像2识别率不同的原因主要在于图像分辨率,而图像2和图像1识别率的不同则在于噪声干扰。
实验报告
题目
模式识别系列实验——实验一字符识别实验
内容:
1.利用OCR软件对文字图像进行识别,了解图像处理与模式识别的关系。
2.利用OCR软件对文字图像进行识别,理解正确率的概念。
实验要求:
1.利用photoshop等软件对效果不佳的图像进行预处理,以提高OCR识别的正确率。
2.用OCR软件对未经预处理和经过预处理的简体和繁体中文字符图像进行识别并比较正确率。
图像4内容既有简体又有繁体,从识别结果中可了解到错误基本处在繁体字。
遇到的问题及解决方案:
实验中自动旋转几乎没效果,所以都是采用手动旋转;在对图像4进行识别时若采用系统自己的版面分析,则几乎识别不出什么,所以实验中使用手动画框将诗的内容和标题及作者分开识别。
主要实验方法:
1.使用汉王OCR软件对所给简体和繁体测试文件进行识别;
2.理,再次识别;
实验结果:
不经过图像预处理
经过图像预处理
实验图像
图像1
图像2
图像3
图像4
图像1
图像2
字符总数
458

《模式识别》实验报告 K-L变换 特征提取

《模式识别》实验报告 K-L变换 特征提取

基于K-L 变换的iris 数据分类一、实验原理K-L 变换是一种基于目标统计特性的最佳正交变换。

它具有一些优良的性质:即变换后产生的新的分量正交或者不相关;以部分新的分量表示原矢量均方误差最小;变换后的矢量更趋确定,能量更集中。

这一方法的目的是寻找任意统计分布的数据集合之主要分量的子集。

设n 维矢量12,,,Tn x x x ⎡⎤⎣⎦=x ,其均值矢量E ⎡⎤⎣⎦=μx ,协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u ,此协方差阵为对称正定阵,则经过正交分解克表示为x =T C U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u ⎡⎤⎣⎦=U 为对应特征值的特征向量组成的变换阵,且满足1T -=U U 。

变换阵T U 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协方差阵12[,,,]x n diag λλλ==x UC U C 。

通过略去对应于若干较小特征值的特征向量来给y 降维然后进行处理。

通常情况下特征值幅度差别很大,忽略一些较小的值并不会引起大的误差。

对经过K-L 变换后的特征向量按最小错误率bayes 决策和BP 神经网络方法进行分类。

二、实验步骤(1)计算样本向量的均值E ⎡⎤⎣⎦=μx 和协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u 5.8433 3.0573 3.7580 1.1993⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=μ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.1216 1.29560.5810x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦----=--C (2)计算协方差阵x C 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=U 从上面的计算可以看到协方差阵特征值0.023835和0.07821相对于0.24267和4.2282很小,并经计算个特征值对误差影响所占比重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最小的特征值,得到新的变换阵12,,,new n k u u u -⎡⎤⎣⎦=U 。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。

则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。

模式识别方PCA实验报告

模式识别方PCA实验报告

模式识别作业《模式识别》大作业人脸识别方法一 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器一、 理论知识1、主成分分析主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。

在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。

当特征较多时,在高维空间中研究样本的分布规律就更麻烦。

主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。

主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。

1.1 问题的提出一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将它们综合成n 综合变量,即11111221221122221122n nn n n n n nn ny c x c x c x y c x c x c x y c x c x c x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ij c 由下列原则决定:1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立;2、y 的排序原则是方差从大到小。

这样的综合指标因子分别是原变量的第1、第2、……、第n 个主分量,它们的方差依次递减。

1.2 主成分的导出我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是一个n 维随机向量,12n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是满足上式的新变量所构成的向量。

于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。

坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。

变换后的N 个点在1y 轴上有最大方差,而在n y 轴上有最小方差。

同时,注意上面第一条原则,由此我们要求i y 轴和j y 轴的协方差为零,那么要求T YY =Λ12n λλλ⎡⎤⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎣⎦令T R XX =,则T T RC C =Λ经过上面式子的变换,我们得到以下n 个方程111111212112111221122111121211()0()0()0n n n n n n nn n r c r c r c r c r c r c r c r c r c λλλ-+++=+-++=+++-=1.3 主成分分析的结果我们要求解出C ,即解出上述齐次方程的非零解,要求ij c 的系数行列式为0。

模式识别实习报告

模式识别实习报告

实习报告一、实习背景及目的随着科技的飞速发展,模式识别技术在众多领域发挥着越来越重要的作用。

模式识别是指对数据进行分类、识别和解释的过程,其应用范围广泛,包括图像处理、语音识别、机器学习等。

为了更好地了解模式识别技术的原理及其在实际应用中的重要性,我参加了本次模式识别实习。

本次实习的主要目的是:1. 学习模式识别的基本原理和方法;2. 掌握模式识别技术在实际应用中的技巧;3. 提高自己的动手实践能力和团队协作能力。

二、实习内容及过程实习期间,我们团队共完成了四个模式识别项目,分别为:手写数字识别、图像分类、语音识别和机器学习。

下面我将分别介绍这四个项目的具体内容和过程。

1. 手写数字识别:手写数字识别是模式识别领域的一个经典项目。

我们使用了MNIST数据集,这是一个包含大量手写数字图片的数据集。

首先,我们对数据集进行预处理,包括归一化、数据清洗等。

然后,我们采用卷积神经网络(CNN)作为模型进行训练,并使用交叉验证法对模型进行评估。

最终,我们得到了一个识别准确率较高的模型。

2. 图像分类:图像分类是模式识别领域的另一个重要应用。

我们选择了CIFAR-10数据集,这是一个包含大量彩色图像的数据集。

与手写数字识别项目类似,我们先对数据集进行预处理,然后采用CNN进行训练。

在模型训练过程中,我们尝试了不同的优化算法和网络结构,以提高模型的性能。

最终,我们得到了一个识别准确率较高的模型。

3. 语音识别:语音识别是模式识别领域的又一项挑战。

我们使用了TIMIT数据集,这是一个包含大量语音样本的数据集。

首先,我们对语音样本进行预处理,包括特征提取、去噪等。

然后,我们采用循环神经网络(RNN)作为模型进行训练。

在模型训练过程中,我们尝试了不同的优化算法和网络结构。

最后,我们通过对模型进行评估,得到了一个较为可靠的语音识别系统。

4. 机器学习:机器学习是模式识别领域的基础。

我们使用了UCI数据集,这是一个包含多个数据集的数据集。

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验
一、实验背景
模式识别是机器学习领域中的一项重要研究领域,它可以被应用于多个领域,包括计算机视觉,图像处理,智能交通,自然语言处理和生物信息学等。

模式识别的目的是从观察到的数据中检测,理解和预测结果。

其中,神经网络(应用模式识别)是人工智能的关键部分,它模拟人类的神经元的工作方式,并且可以被用来识别,分类,计算和获取模式。

二、实验目标
本次实验的目的是,探讨神经网络在模式识别中的应用,并使用一个基于神经网络的模式识别系统来识别模式。

三、实验内容
(一)数据预处理
在进行本次实验之前,需要进行数据预处理,以便能够更好地使用神经网络。

数据预处理的目的是通过将原始数据处理成神经网络可以处理的格式,以便更好地提取特征。

(二)神经网络模型设计
(三)神经网络模型训练
在训练神经网络模型时,首先需要准备一组被识别的模式。

模式识别实验

模式识别实验

模式识别实验
一、实验任务
本次实验任务是模式识别,主要包括形式化的目标追踪、字符流分类和语音识别等。

二、所需软件
本实验所需软件包括MATLAB、Python等。

三、实验步骤
1. 首先需要安装MATLAB 和Python等软件,并建立实验环境。

2. 然后,通过MATLAB 进行基于向量量化(VQ) 的目标追踪实验,搭建端到端的系统,并使用Matlab编程实现实验内容。

3. 接着,使用Python进行字符流分类的实验,主要包括特征提取、建模和识别等,并使用Python编程实现实验内容。

4. 最后,使用MATLAB 进行语音识别的实验,主要是使用向量量化方法识别语音,并使用Matlab编程实现实验内容。

四、结果分析
1.在基于向量量化的目标追踪实验中,我们通过计算误差,确定了最优参数,最终获得了较高的准确率。

2.在字符流分类实验中,我们通过选择最佳分类器,得到了较高的准确率。

3.在语音识别实验中,我们使用向量量化方法,最终也获得了不错的准确率。

五、总结
本次实验研究了基于向量量化的目标追踪、字符流分类和语音识别等三项模式识别技术,经实验,探讨了不同方法之间的优劣,并获得了较高的准确率。

本次实验的结果为日常模式识别工作提供了有价值的参考。

中科大模式识别miniproject实验报告

中科大模式识别miniproject实验报告

模式识别miniproject实验报告一、算法介绍:本实验采用了SVM( Support Vector Machines)分类模型。

由于实际问题中很少线性可分,故本实验采用非线性SVM方法。

即通过一个适当的非线性映射ϕ(x) ,将数据由原始特征空间映射到一个新特征空间,然后在新空间中寻求最优(线性)判定面。

本实验选取的的核函数为RBF(径向基函数)中的高斯核函数,即k(x,y) = exp(-0.5*(norm(x-y)/s)^2)。

关于支持向量机的类型,本实验选取为二类分类算法,即svc_c。

算法方面,由于同时求解n个拉格朗日乘子涉及很多次迭代,计算开销太大,所以实验采用Sequential Minimal Optimization(SMO)算法,即每次只更新两个乘子,迭代获得最终解。

计算时,首先根据预先设定的规则,从所有样本中选出两个拉格朗日因子,然后保持其他拉格朗日乘子不变,更新所选样本对应的拉格朗日乘子,循环N次直到满足要求。

二、实验1、评价标准本实验采用正确率来作为评价指标,即。

2、整体试验方法及步骤(1)定义核函数的类型及相关参数;(2)构建两类训练样本:(考虑到实验程序运行时间问题,本实验只选用了testdata的第200至1200项共1000个作为训练样本)(3)训练支持向量机;(4)寻找支持向量;(5)测试输出;(6)计算评价指标,即正确率3、分类器训练算法的参数调整步骤(1)随机生成多个参数向量(解)(2)在目标函数上验证解的质量(3)根据解的质量由好到坏进行排序。

取出其中较好的一部分(例如一半)解,在这些解的每一个元素上加上一个随机数,从而得到一些新解(4)把新解和老解比较,取出最好的一部分,作为下一次迭代的初始解4、实验结果经实验,得到测试输出,将其第十一列,即样本类别与testdata 中的第十三列相比,即可得到正确率。

本实验将以上结果取于EXECL 中进行统计,部分结果截图如下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一Bayes 分类器设计本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。

1实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。

2实验内容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。

现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。

3 实验要求1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。

2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。

3) 如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,画出相应的后验概率的分布曲线和分类结果,并比较两个结果。

最小错误率贝叶斯决策试验程序x=[-3.9847,-3.5549,-1.2401,-0.9780,-0.7932,-2.8531,-2.7605,-3.7287,-3.5414 ,-2.2692,-3.4549,-3.0752,-3.9934,2.8792,...-0.9780,0.7932,1.1882 ,3.0682 ,-1.5799 ,-1.4885 ,-0.7431 ,-0.4221 ,-1.1186 ,4.2532 ]; num=24; %输入的特征值个数result=zeros(1,num);%存放分类结果e1=-2; %正常细胞的特征均值a1=0.5; %正常细胞的特征标准差e2=2; %异常细胞的特征均值a2=2; %异常细胞的特征标准差pw1=0.9; %正常细胞出现的概率pw2=0.1; %异常细胞出现的概率for i=1:numpw1_x=normpdf(x(i),e1,a1)*pw1; %正常细胞后验概率的分子pw2_x=normpdf(x(i),e2,a2)*pw2; %异常细胞后验概率的分子if pw1_x>pw2_xresult(i)=1; %识别结果为正常细胞endenda=[-5:0.05:5];n=numel(a);pw1_plot=zeros(1,n);pw2_plot=zeros(1,n);for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a (j),e2,a2));%正常细胞后验概率pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a (j),e2,a2));%异常细胞后验概率endfigure(1);hold on;plot(a,pw1_plot,'k-',a,pw2_plot,'r-.');for k=1:numif result(k)==1plot(x(k),-0.1,'b*');%正常细胞分布 elseplot(x(k),-0.1,'rp');%异常细胞分布 end endlegend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞'); xlabel('样品细胞特征值'); ylabel('后验概率'); title('后验概率分布曲线'); grid on; 实验结果-5-4-3-2-1012345-0.200.20.40.60.811.2样品细胞特征值后验概率后验概率分布曲线带—·—的曲线为判决成异常细胞的后验概率曲线;另一条平滑的曲线为判为正常细胞的后验概率曲线。

根据最小错误概率准则,判决结果见曲线下方,其中“*”代表判决为正常细胞,“五角星”代表异常细胞各细胞分类结果。

最小风险贝叶斯决策分类器设计实验程序x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 ,...-3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ] ;disp(x)pw1=0.9 ;%第一类的先验概率pw2=0.1 ;%第二类的先验概率m=numel(x); %样品个数R1_x=zeros(1,m) ;%判为第一类的条件风险R2_x=zeros(1,m) ;%判为第二类的条件风险result=zeros(1,m) ;%识别结果e1=-2; %第一类的均值a1=0.5 ;%第一类的标准差e2=2 ;%第二类的均值a2=2 ;%第二类的标准差%决策表r11=0 ;r12=2 ;r21=4 ;r22=0 ;%计算条件风险for i=1:mR1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2));R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2)) ;endfor i=1:mif R2_x(i)>R1_x(i)%result(i)=0;elseresult(i)=1;enda=[-5:0.05:5];n=numel(a);R1_plot=zeros(1,n) ;R2_plot=zeros(1,n);for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf( a(j),e2,a2))+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf (a(j),e2,a2));R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf( a(j),e2,a2))+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf (a(j),e2,a2));endfigure(1)hold onplot(a,R1_plot,'b-',a,R2_plot,'g*-')for k=1:mif result(k)==0plot(x(k),-0.1,'b^')elseplot(x(k),-0.1,'go')end;legend('正常细胞','异常细胞','Location','Best') xlabel('细胞分类结果') ylabel('条件风险') title('风险决策曲线') grid on 实验结果-5-4-3-2-1012345细胞分类结果条件风险风险决策曲线其中带*的绿色曲线代表异常细胞的条件风险曲线; 另一条光滑的蓝色曲线为判为正常细胞的条件风险曲线。

根据贝叶斯最小风险判决准则,判决结果见曲线下方,其中“上三角”代表判决为正常细胞,“圆圈“代表异常细胞。

比较分析:在图1中,这两个样本点下两类决策的后验概率相差很小,当结合最小风险贝叶斯决策表进行计算时,“损失因素”就起了主导作用,导致出现了相反的结果。

实验二\三多分类Bayes分类器设计数据集为Mnistall 数据集,加载到内存,解析数据集的组织结构,完成10类手写体数据集的分类问题。

实验原理首先提取手写体的特征,训练集为28*28的手写体图片,将手写体图片等分为7*7份,每一份的大小为4*4,统计每份中非0像素(即手写体)的个数n,像素占有率大于T(设为0.05)取特征值1,否则取特征值0。

对于要识别的手写体,首先提取特征值,然后计算0~9类的后验概率,后验概率最大即为对应类别实验内容%手写体特征值提取函数function sample_feature=feature_extraction(sample)%[单个样品的行数,单个样品的列数,训练集的个数][image_row,image_col,sample_num]=size(sample);sample_feature=zeros(49,sample_num);%存储训练集的特征yuzhi=0.05;%窗口面积比阈值%提取训练集的特征for k=1:sample_nump=1;for i=1:4:image_row-3for j=1:4:image_col-3for m=i:i+3for n=j:j+3if (sample(m,n,k)~=0)%统计手写体中每个窗口中非零像素的个数sample_feature(p,k)=sample_feature(p,k)+1;endendend%面积占有率大于yuzhi取特征值为1if ( (sample_feature(p,k)/16)>yuzhi )sample_feature(p,k)=1;elsesample_feature(p,k)=0;endp=p+1;endendend主函数load mnistAll;%提取样品库每个手写体的特征train_feature=feature_extraction(mnist.train_images); train_num=60000;%训练集大小%求0~9手写数字的特征分布pw=zeros(1,10);%先验概率pxw=zeros(49,10);%训练集的类条件概率for k=1:train_numi=mnist.train_labels(k)+1;%统计每类的样品个数pw(i)=pw(i)+1;%统计每类的每个特征特征值为1的个数pxw(:,i)=pxw(:,i)+train_feature(:,k);endfor i=1:10%求每类的特征分布概率pxw(:,i)=(pxw(:,i)+1)/(pw(i)+2);endpw=pw/train_num;pwx=zeros(1,10);%后验概率test_feature=feature_extraction(mnist.test_images); test_num=10000;%测试样品个数true_num=0;for k=1:test_numpxw_test=zeros(1,10)+1;%测试样品的类条件概率for i=1:10%求测试样品的类条件概率for j=1:49if(test_feature(j,k)==1)pxw_test(i)=pxw_test(i)*pxw(j,i);elsepxw_test(i)=pxw_test(i)*(1-pxw(j,i));endendendfor i=1:10%测试样品的后验概率的分子pwx(i)=pw(i)*pxw_test(i);end[maxval maxpos]=max(pwx);y=maxpos-1;if ( y==mnist.test_labels(k))true_num=true_num+1;endend识别结果10000个测试样品中正确识别了6891个,正确率为68.91%实验四基于Fisher准则的线性分类器设计一、实验目的本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher准则方法确定最佳线性分界面方法的原理。

相关文档
最新文档