一道高考试题的解法探究

合集下载

一道高考试题的解法探究及教学思考

一道高考试题的解法探究及教学思考
相减得
1 + Y Y) Y+ 1 — o ( oY) (

直线垂直 问题. 下面将第 ( ) 3 问的教学实录如下 :
朋 = 一 ,
师 : 哪位同学来说说第 ( ) 请 3 问的解法?
3 0
中。擞・ (1年 0 高 版 7 7 21 第1期. 中 ) 0
. 案例分析 .
则 P l- 1 , ( l0 , ( ,y ) C ,)
・ ’
又 O 1 B 求此椭圆方程. A.O , _
解法 1 设 A ,。 , X  ̄2 , 中点 ( tX ( y ) 曰(2Y) 则 — x+ 2

) .

A B, , c三点共线 '・ 2 = 2Y = = . . Y x Y-

由 叫, 得 口 )一 -= ’ ( 6z l0 + 2
又 为 A 在 圆 ,以 +=}等 l 因 点 , 椭 上所 等等 1 += B , ,
两式相减得 : 一
X0
由z- 口 i+ 1 + 似 '
。 ’

所 字 = ,Y11 = 以 Y 2_ X b丁 .X 2a x 丁 + +
所kB 以A詈 p= k p
即 上朋 .
= 普
, 与苏教版选修 1—1复 习题 11页“思考 ・运用 ”等级 中 ' 5
的第 2 题是如出一辙 的 , 1 问题如下 : 两点 , 为 A M B的 中点 , 线 O 0为原 点 ) 直 M( 的斜 率为

21 0 1年 江 苏 焉考 数 学 第 1 8题 时 , 以发 现 问题 ( ) 法 司 3解
因为 后 , 以 6 . 伽: 所 T : ①
l 即 XX+, = , ,  ̄2) t 0

对一道高考试题的解法探究

对一道高考试题的解法探究

2020年第11期中学数学教学参考(下旬)w w w.zh o n g sh u ca n.co m$7考频道对一道高考试题的解法探究柯良才(宁夏六盘山高级中学)摘要:高考试题具有科学性、逻辑性、规范性和典型性的特点,因此,研究高考试题是高中数学教学不可或缺的一部分,对其进行反复推敲与研究,会给复习备考带来不一样的收获。

关键词:高考数学;试题;解法文章编号:1002-2171 (2020) 11-0060-02高考试题是命题专家反复推敲、精心打磨的成 果,具有科学性、逻辑性、规范性和典型性。

高考试题 不仅具有选拔功能,更具有鲜明的教学导向功能。

下面笔者就2019年高考数学全国卷I E第23题进行了 探究,不仅找到了教材中的题源,还通过联想得到了 多种解法。

1原题呈现题目:设 x,;y,z e R,且 x+y+z^l。

(I)求U—l)2+(:y+l)2+U+l)2 的最小值;(n)若 u—2)z+〇—i)2+u—成立,证明:—3 或 —1。

本题是一道多元函数的最值问题,形式较为简 单,本文仅以第(I)问为例进行分析。

随新课程理念 的不断推进,高考试题的命制越来越关注对教材例、习题的研究,多以教材例、习题为源进行提炼、变式与 拓展,达到源于教材,高于教材的命题原则。

本题也 不例外。

此题源于人教A版《数学》(选修4-5)“不等式选 讲”第一讲第一节“不等式”习题1. 1中的第11题:已知设 a R+,且 a+6 +c r=l,求证:a2十62+c2>本题常用均值不等式法求解,高考试题在教材习题的基础上进行了全面拓展:(1)将限制条件从整实 数拓展到全体实数,为后面结论的拓展提供了可靠的 条件;(2)将源题简洁的结论背景从深度和宽度两方面进行了拓展,又将多个知识点联系到一起,为后续 试题的解答提供了发挥空间,有利于形成多种解法。

2多解联想像这类结构简单、形式优美的试题,我们可考虑从 形式和结论两方面人手,发挥想象,找到解题方法。

一道高考题的解法探究与推广

一道高考题的解法探究与推广

2 a
;最小值为— — .

点 评 : 题 巧 妙 运 用 ‘ ” 代 换 , 到 与 本 ‘ 的 l 得
A .

B . 4
c9 . -

D5

即 可利 用基 本 不 等 式 求 解. 2构 造 .
这道试题从它 的问题背景和难易程度来看 , 然相 当平凡 , 显
解析 : 因为叶6 2所 以旦 =,
, .




2 a
的最小值为 , 故选 c .
点 评 : 变 量 转 化 成 y, 行 凑 项 , 积 为 定 值 , 用 基 本 不 将 进 使 利
等 式 求 解.
也 这 解:为 + 2 以 = 可以 样 因 nb , 詈十 1 =所 .

b= 2 (+ A= A+A 三 ≥2 1.a 三:2 , ± + 22 ) 2 +2 A 2 2 2 十 2 9 当 V A -


且 当 2即 ≥ 取号c=,4 以 仅 =,=时等 ,,26 , y + AA  ̄o : 所 = 3 1 了  ̄
的最 小 值 为 , 故选 c .
不见得 有多 大的 “ 新奇 ” 处 , 剖析其 内涵 , 掘其 内在 的功 之 但 挖 能, 可引发众多 的思考 , 笔者 结合 自己的教学实践 , 谈谈试题 带 给我们的思考 , 供大家参考.
解析 : 因为aO b O 卅6 2 所以O a 2 把0 Ⅱ 2 > ,> , = , < < , I 1看做数轴上
个确 定 的数 学关 系 , 从而形 成一个解 题 的行动 序列 , 这就 是解
题 方 向. 目信 息 与 不 同 数 学 知 识 的 结 合 , 能 会 形 成 多 个 解 题 可

一道高考导数压轴题的解法探究及背景和推广

一道高考导数压轴题的解法探究及背景和推广

一道高考导数压轴题的解法探究及背景和推广刘㊀冰(厦门外国语学校石狮分校ꎬ福建厦门362700)摘㊀要:文章从不同角度给出2023年高考数学新课标Ⅱ卷导数压轴题第(2)问的多种解法ꎬ然后分析其背景ꎬ最后再对试题进行推广.关键词:高考ꎻ新课标ꎻ导数ꎻ背景ꎻ推广中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)33-0060-03收稿日期:2023-08-25作者简介:刘冰(1984.7-)ꎬ女ꎬ福建省泉州人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀2023年高考数学新课标Ⅱ卷的导数压轴题ꎬ第(1)问考查的是证明不等式ꎬ构造函数即可解决.而第(2)问考查的是已知函数f(x)的极值点ꎬ求参数a的取值范围ꎬ有一定的难度.其难点主要在于对参数a的讨论以及对极值的判断与取点上.该试题很好地考查了考生的分类讨论思想和数学运算㊁逻辑推理等素养.1真题再现2023年高考数学新课标Ⅱ卷第22题如下:(1)证明:当0<x<1时ꎬx-x2<sinx<xꎻ(2)已知函数f(x)=cosax-ln(1-x2)ꎬ若x=0是f(x)的极大值点ꎬ求a的取值范围.2解法探究(1)先证:当0<x<1时ꎬsinx<x.设g(x)=x-sinxꎬxɪ(0ꎬ1)ꎬ则gᶄ(x)=1-cosx>0ꎬ所以g(x)在(0ꎬ1)单调递增ꎬg(x)>g(0)=0ꎬ即sinx<xꎬ再证:当0<x<1时ꎬx-x2<sinx.解法1㊀利用x>sinx.设h(x)=x2-x+sinxꎬxɪ(0ꎬ1)ꎬ由x>sinxꎬ得hᶄ(x)=2x-1+cosx=2x-2sin2x2>x-2sin2x2=2x2-sin2x2æèçöø÷>2sinx2-sin2x2æèçöø÷>0.所以h(x)在(0ꎬ1)单调递增ꎬ故h(x)>h(0)=0ꎬ即x-x2<sinx.解法2㊀两次求导.设h(x)=x2-x+sinxꎬxɪ(0ꎬ1)ꎬ则hᶄ(x)=2x-1-cosxꎬhᵡ(x)=2-sinx.当0<x<1时ꎬhᵡ(x)>0ꎬ所以hᶄ(x)在(0ꎬ1)单调递增ꎬ从而hᶄ(x)>hᶄ(0)=0ꎬ因此h(x)在(0ꎬ1)单调递增ꎬ故h(x)>h(0)=0ꎬ即x-x2<sinx.(2)解法1㊀令1-x2>0ꎬ解得-1<x<1ꎬ即函数fx()的定义域为-1ꎬ1().若a=0ꎬ则fx()=-ln1-x2()ꎬxɪ-1ꎬ1()ꎬ因为y=-lnu在定义域内单调递减ꎬy=1-x2在-1ꎬ0()上单调递增ꎬ在0ꎬ1()上单调递减ꎬ则fx()=-ln1-x2()在-1ꎬ0()上单调递减ꎬ在0ꎬ1()上单调递增ꎬ故x=0是fx()的极小值点ꎬ不合题意ꎬ所以aʂ0.当aʂ0时ꎬ令b=a>0ꎬ因为fx()=cosax-ln1-x2()=cosax()-06ln1-x2()=cosbx-ln1-x2()ꎬ且f-x()=cos-bx()-ln1--x()2[]=cosbx-ln1-x2()=fx()ꎬ所以函数fx()在定义域内为偶函数ꎬ由题意可得fᶄx()=-bsinbx-2xx2-1ꎬxɪ-1ꎬ1().(ⅰ)当0<b2ɤ2时ꎬ取m=min1bꎬ1{}ꎬxɪ0ꎬm()ꎬ则bxɪ0ꎬ1()ꎬ由(1)可得fᶄx()=-bsinbx()-2xx2-1>-b2x-2xx2-1=xb2x2+2-b2()1-x2ꎬ且b2x2>0ꎬ2-b2ȡ0ꎬ1-x2>0ꎬ所以fᶄx()>xb2x2+2-b2()1-x2>0ꎬ即当xɪ0ꎬm()⊆0ꎬ1()时ꎬfᶄx()>0ꎬ则fx()在0ꎬm()上单调递增ꎬ结合偶函数的对称性可知ꎬfx()在-mꎬ0()上单调递减ꎬ所以x=0是fx()的极小值点ꎬ不合题意[1].(ⅱ)当b2>2时ꎬ取xɪ0ꎬ1bæèçöø÷⊆0ꎬ1()ꎬ则bxɪ0ꎬ1().由(1)可得fᶄx()=-bsinbx-2xx2-1<-b(bx-b2x2)-2xx2-1=x1-x2(-b3x3+b2x2+b3x+2-b2)ꎬ设hx()=-b3x3+b2x2+b3x+2-b2ꎬxɪ0ꎬ1bæèçöø÷ꎬ则hᶄx()=-3b3x2+2b2x+b3ꎬxɪ0ꎬ1bæèçöø÷ꎬ且hᶄ0()=b3>0ꎬhᶄ1bæèçöø÷=b3-b>0ꎬ则hᶄx()>0对∀xɪ0ꎬ1bæèçöø÷恒成立.可知hx()在0ꎬ1bæèçöø÷上单调递增ꎬ且h0()=2-b2<0ꎬh1bæèçöø÷=2>0ꎬ所以hx()在0ꎬ1bæèçöø÷内存在唯一的零点nɪ0ꎬ1bæèçöø÷ꎬ当xɪ0ꎬn()时ꎬ则hx()<0ꎬ且x>0ꎬ1-x2>0ꎬ则fᶄx()<x1-x2-b3x3+b2x2+b3x+2-b2()<0ꎬ即当xɪ0ꎬn()⊆0ꎬ1()时ꎬfᶄx()<0ꎬ则fx()在0ꎬn()上单调递减ꎬ结合偶函数的对称性可知ꎬfx()在-nꎬ0()上单调递增ꎬ所以x=0是fx()的极大值点ꎬ符合题意.综上ꎬb2>2ꎬ即a2>2ꎬ解得a>2或a<-2.故a的取值范围为-ɕꎬ-2()ɣ2ꎬ+ɕ().解法2㊀由f(x)=cosax-ln1-x2()可得ꎬfᶄ(x)=-asinax+2x1-x2ꎬ求二阶导数fᵡ(x)=-a2cosax+21+x2()1-x2()2ꎬ则fᶄ(0)=0ꎬfᵡ(0)=-a2+2.因为x=0是f(x)的极大值ꎬ由函数的连续性ꎬ我们知道还需满足在x=0的左侧附近ꎬfᶄ(x)>0ꎬ在x=0的右侧附近ꎬfᶄ(x)<0.由题意易得ꎬf(x)是关于x的偶函数ꎬ也是关于a的偶函数ꎬ因此只需要关注xɪ(0ꎬ1)ꎬa>0的情况.①当fᵡ0()=-a2+2>0ꎬ即0<a<2时ꎬ∃x0ɪ0ꎬ1aæèçöø÷ꎬ使ax0ɪ(0ꎬ1)ꎬ在xɪ0ꎬx0()时ꎬaxɪ(0ꎬ1)ꎬ由第(1)问可知ꎬsinax<axꎬ所以fᶄ(x)=-asinax+2x1-x2>-a2x+2x1-x2=x-a2+21-x2æèçöø÷.因为φ(x)=-a2+21-x2在0ꎬx0()上单调递增ꎬ则φx()>φ0()=2-a2>0ꎬ所以在0ꎬx0()上ꎬfᶄ(x)>0ꎬ与x=0是f(x)的极大值矛盾ꎬ舍去.②当fᵡ(0)=-a2+2<0ꎬ即a>2时ꎬ∃x0ɪ0ꎬ1aæèçöø÷ꎬ使ax0ɪ(0ꎬ1)ꎬ在xɪ0ꎬx0()时ꎬaxɪ(0ꎬ1)ꎬ由第(1)问可知sinax>ax-(ax)2ꎬ所以fᶄ(x)=-asinax+2x1-x<-a2x+a3x2+2x1-x2=x-a2+a3x+21-x2æèçöø÷.因为g(x)=-a2+a3x+21-x2在0ꎬx0()上单调递增ꎬ则g(x)min=g(0)=-a2+2<0ꎬ所以存在x116ɪ0ꎬx0()ꎬfᶄ(x)<0ꎬ符合题意.综上ꎬ由是关于的偶函数知a>2或a<-2.3背景分析本题的高数背景是极值的第二充分条件和第三充分条件.合并后即是如下定理.定理㊀设函数f(x)在Ux0ꎬδ()内n阶可导ꎬ且fᶄx0()=fᵡx0()= =f(n-1)x0()=0ꎬf(n)x0()ʂ0ꎬ则(1)当n为奇数时ꎬf(x)在点x0不取极值ꎻ(2)当n为偶数且f(n)x0()>0时ꎬf(x)在x0取极小值ꎻ(3)当n为偶数且f(n)x0()<0时ꎬf(x)在x0取极大值.利用定理ꎬ可得到本题的另一解法.解法3㊀S表示f(x)的极大值点的集合ꎬ则fᶄ(x)=-asinax+2x1-x2=-asinax+11-x-11+xꎬfᶄ(0)=0ꎻfᵡ(x)=-a2cosax+1(1-x)2+1(1+x)2ꎬfᵡ(0)=2-a2ꎻf‴(x)=a3sinax+2(1-x)3-2(1+x)3ꎬf‴(0)=0ꎻf(4)(x)=a4cosax+6(1-x)4+6(1+x)4ꎬf(4)(0)=a4+12.由定理可得:若-2<a<2ꎬ则fᶄ(0)=0ꎬfᵡ(0)>0ꎬ0∉Sꎻ若a>2或a<-2ꎬ则fᶄ(0)=0ꎬfᵡ(0)<0ꎬ0ɪSꎻ若a=ʃ2ꎬ则fᶄ(0)=fᵡ(0)=f‴(0)=0ꎬf(4)(0)>0ꎬ0∉S.综上ꎬa的取值范围为(-ɕꎬ-2)ɣ(2ꎬ+ɕ).4试题推广本题还可以作如下推广.(1)证明:当0<x<1时ꎬx-x2<sinx<xꎻ(2)已知函数f(x)=cosax-aln1-x2()ꎬ若x=0是f(x)的极大值点ꎬ求a的取值范围[2].解㊀(1)略.(2)显然f(x)的定义域是I=(-1ꎬ1).易见xɪI时fᶄ(x)=-asinax+a1-x-a1+xꎬfᶄ(0)=0ꎻfᵡ(x)=-a2cosax+a(1-x)2+a(1+x)2ꎬfᵡ(0)=2a-a2ꎻf‴(x)=a3sinax+2a(1-x)3-2a(1+x)3ꎬf‴(0)=0ꎻf(4)(x)=a4cosax+6a(1-x)4+6a(1+x)4ꎬf(4)(0)=a4+12a.设S表示f(x)的极大值点的集合.由定理可得:若0<a<2ꎬ则fᶄ(0)=0ꎬfᵡ(0)>0ꎬ0∉Sꎻ若a<0或a>2ꎬ则fᶄ(0)=0ꎬfᵡ(0)<0ꎬ0ɪSꎻ若a=2ꎬ则fᶄ(0)=fᵡ(0)=f‴(0)=0ꎬf(4)(0)>0ꎬ0∉Sꎻ若a=0ꎬ则f(x)=1为常数ꎬ0∉S.综上ꎬa的取值范围为(-ɕꎬ0)ɣ(2ꎬ+ɕ).试题以三角函数㊁对数函数为背景.三角函数的导数是中学数学教学的重点与难点.试题巧妙地将三角函数与对数函数相结合ꎬ讨论函数的极值问题ꎬ具有一定的综合性.试题的高等数学背景是极值的第三充分条件ꎬ起点高ꎬ但落点低ꎬ设计新颖ꎬ紧扣课程标准.通过第(1)问铺设好的不等式ꎬ给第(2)问的证明提高了思路ꎬ降低了思维强度.参考文献:[1]刘品德ꎬ李义仁.函数奇偶性的应用[J].数学通讯ꎬ2015(Z4):10-11.[责任编辑:李㊀璟]26。

利用二级结论优解椭网小题——2023年高考数学甲卷理科第12题解法探究

利用二级结论优解椭网小题——2023年高考数学甲卷理科第12题解法探究

利用二级结论 优解椭圆小题——2023年高考数学甲卷理科第12题解法探究ʏ甘肃省张掖市实验中学 王新宏圆锥曲线试题是高考数学的必考试题,是重点也是难点㊂大部分同学对其有畏惧心理,找不到解决的突破口㊂2023年高考数学甲卷理科第12题是一道椭圆压轴小题,它以椭圆焦点三角形为背景,考查椭圆的定义㊁余弦定理㊁焦点三角形等知识,题干简洁,设问直接,内涵丰富㊂本题入手比较容易,方法比较多,考查同学们理性思维与数学探究能力,体现了逻辑推理㊁直观想象㊁数学运算等核心素养㊂解决本题的关键在于数形结合,即可考虑用余弦定理,也可考虑焦半径公式㊁焦点三角形面积公式㊁中线的向量公式㊁中线定理㊁极化恒等式等相关二级结论迅速求解㊂试题凝聚了命题专家的心血与智慧,简约而不简单,为不同能力水平的同学提供了相应的思考空间,是一道独具匠心的好题㊂1.试题呈现2023年高考数学甲卷理科第12题:图1如图1所示,设O 为坐标原点,F 1,F 2为椭圆C :x 29+y26=1的两个焦点,点P 在椭圆C上,c o s øF 1P F 2=35,则|O P |=( )㊂A.135 B .302 C .145 D .3522.解法探究解法1:(挖出两角互补这个隐含条件)由椭圆方程知a 2=9,b 2=6㊂因为c 2=a 2-b 2,所以a =3,c =3,e =c a =33㊂在әP F 1F 2中,由余弦定理得:c o s øF 1P F 2=|P F 1|2+|P F 2|2-|F 1F 2|22|P F 1|㊃|P F 2|㊂则35=|P F 1|2+|P F 2|2-(23)22|P F 1|㊃|P F 2|=(|P F 1|+|P F 2|)2-122|P F 1|㊃|P F 2|-1㊂所以85=36-122|P F 1|㊃|P F 2|=12|P F 1|㊃|P F 2|,解得|P F 1|㊃|P F 2|=152㊂在әP O F 1和әP O F 2中,øP O F 1+øP O F 2=π,由余弦定理得:|P O |2+|O F 1|2-|P F 1|22|P O |㊃|O F 1|=-|P O |2+|O F 2|2-|P F 2|22|P O |㊃|O F 2|㊂解得|P O |2=152,所以|O P |=302㊂点评:解题的关键是发现øP O F 1+øP O F 2=π,c o s øP O F 1=-c o s øP O F 2这样的隐含条件,它往往能帮助整个题目的顺利求解㊂解法2:(借焦半径之力)同解法1,可得|P F 1|㊃|P F 2|=152㊂设P (x P ,y P ),则由焦半径公式得|P F 1|=a +e x P =3+33x P ,|P F 2|=a -e x P =3-33x P ,所以9-13x 2P =152,得x 2P =92㊂将P (x P ,y P )的坐标代入椭圆方程得y 2P =3,所以|O P |=x 2P +y 2P =92+3=302,选B ㊂点评:二级结论之焦半径公式:椭圆x2a2+63 解题篇 创新题追根溯源 高二数学 2024年3月y 2b2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上一点P (x 0,y 0),则|P F 1|=a +e x 0,|P F 2|=a -e x 0㊂证明过程:|P F 1|=(x 0+c )2+y 20=(x 0+c )2+b 2-b 2x 2a 2=c 2x 20a2+2c x 0+a2=c x 0a+a2=c x 0a+a =e x 0+a ㊂同理可证|P F 2|=a -e x 0㊂焦点在y 轴上的椭圆的焦半径公式为|P F 1|=a +e y 0,|P F 2|=a -e y 0㊂解法3:(与焦点三角形面积公式结合)设øF 1P F 2=2θ,0<θ<π2,所以S әP F 1F 2=b 2t a nøF 1P F 22=b 2t a n θ㊂由c o s øF 1P F 2=c o s 2θ=c o s 2θ-s i n 2θc o s 2θ+s i n 2θ=1-t a n 2θ1+t a n 2θ=35,解得t a n θ=12或-12(舍去)㊂由椭圆方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3㊂所以,S әP F1F2=12ˑ|F 1F 2|ˑ|y P |=12ˑ23ˑ|y P |=6ˑ12,解得y 2P =3㊂则x 2P =9ˑ1-36=92㊂因此,|O P |=x 2P +y 2P =3+92=302,故选B ㊂点评:二级结论之椭圆焦点三角形面积公式:椭圆x 2a 2+y2b 2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上异于左右顶点的一点P (x 0,y 0)(x 0ʂʃa ),则әP F 1F 2的面积S =b 2t a n α2(α=øF 1P F 2)㊂证明过程:如图2所示,设P (x ,y ),由余弦定理得|F 1F 2|2=|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s α㊂①由椭圆的定义得:图2|P F 1|+|P F 2|=2a ㊂②则②2-①得:|P F 1|㊃|P F 2|=2b21+c o s α㊂故S әP F 1F 2=12|P F 1|㊃|P F 2|s i n α=12㊃2b 21+c o s αs i n α=b 2t a n α2㊂解法4:(与中线的向量公式结合)由题意知|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂①并且|P F 1|+|P F 2|=6㊂②解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂而P O ң=12P F 1ң+P F 2ң ,所以|O P |=|P O ң|=12|P F 1ң+P F 2ң|㊂则|P O ң|=12|P F 1ң+P F 2ң|=12|P F 1ң|2+2P F 1ң㊃P F 2ң+|P F 2ң|2=1221+2ˑ35ˑ152=302,故选B ㊂图3点评:如图3所示,若A D 为әA B C 边B C 的中线,则A D ң=12(A B ң+A C ң),中线的向量公式在高考中也备受青睐㊂解法5:(与中线定理结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1|2+|P F 2|2=21㊂73解题篇 创新题追根溯源 高二数学 2024年3月由中线定理可知,|O P |2=2(|P F 1|2+|P F 2|2)-|F 1F 2|24㊂易知|F 1F 2|=23,解得|O P |=302㊂故选B ㊂点评:(1)二级结论之中线定理:如图4所示,若平行四边形A B C D 的对角线交于点O ,则|A O ң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24㊂图4证明过程:A B ң+A C ң=2A O ң,①A B ң-A Cң=C B ң㊂②①2+②2得2(|A B ң|2+|A C ң|2)=(2|A O ң|)2+|C B ң|2,则|A Oң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24,得证㊂中线定理在计算有关中线长度与相邻两边长度关系时,化繁为简,从而事半功倍㊂(2)中线定理的一个有用推论:平行四边形对角线的平方和等于其相邻两边平方和的两倍,即在图4中,|B D ң|2+|A C ң|2=2(|A B ң|2+|A D ң|2)㊂解法6:(与极化恒等式结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂由极化恒等式得P F 1ң㊃P F 2ң=|P F 1ң|㊃|P F 2ң|c o s øF 1P F 2=|O P ң|2-|O F 1ң|2=92,解得|O P |=302㊂故选B ㊂点评:二级结论之极化恒等式:如图4所示,若平行四边形A B C D 的对角线交于点O ,则A B ң㊃A D ң=|A O ң|2-|B O ң|2㊂证明过程:A B ң+A C ң=2A O ң,①A B ң-A D ң=D B ң㊂②①2-②2,得A B ң㊃A C ң=14[(2|A O ң|)2-(2|B O ң|)2]=|A O ң|2-|B O ң|2,得证㊂极化恒等式在处理与中线有关的数量积时,往往会出奇制胜,事半功倍㊂3.巩固练习(1)(2019年高考浙江卷理科第15题)已知椭圆x 29+y25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段P F 的中点在以原点O 为圆心,|O F |为半径的圆上,则直线P F 的斜率是㊂(2)(2019年全国Ⅰ卷文科第12题)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与椭圆C 交于A ,B 两点,如果|A F 2|=2|F 2B |,|A B |=|B F 1|,则椭圆C 的方程为( )㊂A.x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y24=1答案:(1)15 (2)B 4.小结与启示从以上内容可以看出,对于解析几何小题,一般不直接考虑设点的坐标运算,而是先画草图,接着充分考虑图形的几何性质特征与圆锥曲线定义,以及相关的二级结论,这样往往更能帮助同学们看清图形元素间内在的联系,挖掘问题本质,简化解题过程,减少运算量,提高解题的效率,快速准确解题㊂对高考真题进行适当的研究,不但可以明确高考重难点,把握高考方向,避免学习的随意性㊁盲目性,而且可以有效训练同学们的思维能力,培养创新意识,提高学习数学的兴趣㊂(责任编辑 徐利杰)83 解题篇 创新题追根溯源 高二数学 2024年3月。

一道试题的解法探究与教学反思

一道试题的解法探究与教学反思

一道试题的解法探究与教学反思广西南宁市第三十六中学(530001) 庞 毅[摘 要]通过对一道高三摸底试题进行考情分析、解法探究和问题拓展,揭示试题的本质,并从注重解题经验积累培养数学运算素养、注重信息技术应用培养学生数字素养两个方面提出教学反思。

[关键词]解法探究;教学反思;圆锥曲线;信息技术[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)05-0025-03解析几何是高考加强“综合性”考查的重要载体。

广西南宁市2024届高中毕业班摸底测试第21题将直线与椭圆的位置关系以及长度计算相结合,问题设计紧扣高考评价体系的“基础性、综合性、应用性、创新性”考查要求,既基础又开放,对高三数学复习备考具有重要的参考意义。

一、试题呈现与考情分析(一)试题呈现已知平面上动点E 到点A (1,0)与到圆B :x 2+y 2+2x -15=0的圆心B 的距离之和等于该圆半径。

记Ε的轨迹为曲线Γ。

(1)说明Γ是什么曲线,并求Γ的方程;(2)设C 、D 是Γ上关于x 轴对称的不同两点,点M 在Γ上,且M 异于C 、D 两点,O 为原点,直线CM 交x 轴于点P ,直线DM 交x 轴于点Q ,试问||OP ·||OQ 是否为定值?若为定值,求出这个定值;若不是定值,请说明理由。

评析:本题主要考查椭圆的定义、标准方程、几何性质和直线方程等主干知识,考查通过代数运算结果判断几何性质的坐标法和函数与方程、转化与化归以及数形结合等数学思想,考查逻辑推理、数学运算等核心素养。

第(2)问是开放性问题,重点考查学生的创新能力和探索精神。

(二)考情分析本题的考试情况如表1所示。

表1 考情分析题目第21题实考人数54110满分12平均分1.15标准差1.77难度0.15区分度0.21满分率0.16零分率29.52从统计的结果来看,本题总体平均分1.15,难度0.15,这个结果出乎命题组的预料。

一道高考数学试题的解法探索与思考

一道高考数学试题的解法探索与思考

两式 相 减 得 %++一 .
=2 l %+,
即 ++ —a+ %+一 一 + l n1 1 1 .
即当 ≥ 2时, +一 =2 ( 7 o 为常数 ) 4 . 又当 k=3 n≥ 4时 ,S +S一=2 | 且 S +S = 且 3 S +23 s
且 n>k时 ,S + 一=2 . 5, S +2
且 S + +S 一 =2 +2 S J, s
由题设知 ,当 k=3且 n≥4时 …S + 3 +23 3 S一=2 J, s
当k =4且 n≥ 5时 ,S +S =2 2 S, S +2 4 两 式相 减 得 %+一 一=24 4 3 a,
解 法探 索一 :
( ) M={ ,4 ,求数列 { } 2设 3 } 的通项公式.
本题 主要考查数列 的通项与前 n项和 的关 系 、等差数列 的
基本性质等基础知识 ,考查学生分析探究及逻辑推理 的能力. 第

问较简单 ,方法也有 多种 ,在此略去 ;第二 问能力要求较高 ,
江苏省教育考试院给出的解法是 : 由题设知 ,当 k M:{ ,4 , 3 }
n项 的 和 为 ,已知 对 任 意 整数 kEM,当 n >k时 ,5 +S = 一
解 嘞 d从 啦 手,= . 得 = , 而 = d d
因此 ,数列{ } 为等差数列 ,
由 们 =1 d:2 知 ,所 以数 列 { } 项 公 式 为 %=2 % 的通 n一1 .
的办法,两类新数列 ,给人 眼前一亮 ,虽然解题过程 和前面 的
2 + ) ( 都成立.
( ) M ={ } 1设 1 ,啦=2 ,求 a 的值 ; 5
【 思考 】该解法前段 的赋值大 多还是能想到 的,这在数列题

一道高考数学填空题的解法探究

一道高考数学填空题的解法探究



t n [ a t
这是一道关于 “ 三角函数” 的填充题 ,主要考 查三角函数 的基础知识 和三角恒等 一 阻 变换等基本思想方法 ,考查 的知识点为解三角形 、正弦定理 、余弦定理的灵活运用.
本题 构思巧妙 ,内涵丰富 、结构和谐 ,解法 多样 ,是一道全方位考查 三角变换 与
1 持 “ 法” . 坚 通 ,定 能 “ 到 最 后 ” . 笑 B —宝 C { 所谓 “ 通法 ”就是采用平时处理这类问题的一般方法 : , 切化弦+ 正弦定理+ 弦定理. 余
蹶 由 6C 手6Z- ,n2 c 以 + = +=o, +:一be 2= 2 ac 得 s ×+c故 + 争 , a 一 b 所 e
下 图所示 的直角坐
标 系 , 设 A , , B
(,)则 cs = , 。 0, oC x

y 、
2 . 在斜 AA C中 , A, C所 对的边分别为 Ⅱ b B 角 B, ,,
一j 2  ̄b-
a2 c 2



0c
iA c。 n
1 .
o(+ ) 则角 A 的值 为— s _ A) t C aD si s i

sC = i n
s iZ nC
_ =C 箍 s 2 =
e b+ c2


t nC a


a2







专 =icA= 丽Cs s o n
=222 丽ca= b_ +
2 2e- 2 ( +2b a )
2 巧妙 “ 值” . 赋 ,定 能 “ 得 最 美 ” . 笑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 若直线 A Ⅱ) C与平面 A B C所成的
( 求证 : I) AB上B C;
所以 0 ( <P .
而言 , 向量的处理明显比传统的做法更为
则, () 第 I 问考查线线垂直的判定 , 属于送 分题 , Ⅱ) 第( 问主要考查面面角 、 面角的 线 有关知识 , 以通过建 立线 面角 、 可 面面 角 的计算关系 , 利用三角 函数 及不等 式的性 质予 以解 决 , 遵循了在知识交汇处命题 的

由n =O. f t nB

等腰三角形 , D是 AB的中点 , 又 C D上AB 又 V , C上底 面 A C B .
・ . .
I / O, 、 一cB上平面 V D. C
可取 n (一 , , n - a> , =0 a ) , c 于是 口A  ̄= - cO -
问的研究提供了建立空随 角坐标系的
可能 , 体现 了立体 几何的发展趋势一


向量为工具 , 化抽 象的逻辑推理为计 算这 指导 思想 , 而对 于第( 问的两种解 法 Ⅱ)
( < r P l "

繁琐 , 是否 意味着编者有意打破向量的 这 解法 2: (I) , 由 知 以点 B为 坐标原 处 理方法要优于传统的逻辑论证呢 角为 0 二面角 A 一 C A的大小为 ‘, , B — p试 点 ,以 B 、 A、 B 所在的直线 分别 为 X CB B 拓展训练 : 判断 0与 ‘的大小关 系, p 并予 以证 明. 轴、 Y轴、 轴 ,建立 如图所示的空 间直角 Z 如图 ,在三棱锥 V AB — C中 , C上底 V 分析 :本题照顾 了 9 、 B两个版 本 坐 标 系 ,设 A a AC bAB c A9 A = , = , = ,则 B 面 AB A C, C上B D 是 AB的 中 点 , C, 且 的学生 , 能用传统 做法 , 能借助 向量 既 也 ( O O , ( C 0. 、 6 O, ,)A0,, ) / C( , ,)A (, 0O,1 O 来论证 , 体现 了面 向全体 , 背景 公平 的原 A :C a/ D : < < . C B: , V C e0 o 孚1 f

并且第二种解 某射手进行射击练 习, 每射击 5发子 看到两种解法的结果相 同, 似乎他们已经接受第二 弹算一组 , 旦命中就停 止射击 , 一 并进 入 法过程非常简捷 !
下一组练习 , 否则一直打完 5发子弹后进 种解 法.难道 题中 的随机 变量 ∈果真服 ] 5 - 入下一组练习 , 已知他射击一次的命中 从几何 分布I 7 且 率为 08 .,求在这一组练习中耗用子弹数 《 的分布列 ,并求 出 § 的期望 与 方差
D. 毛
i 1 p r (一 ) P
P P 。 s= (一P P 1 ) 1 ) 一n (一P
一n 1 ) 一 P(-P =1
二 、 区辨析 误
不 妨从 几何分布的概念入手 : 在独立 重复试验中 , 某事件第一次发生时所作试
由平面 A B C上侧面 A,B 且平面 A B, AB Cn坝 面 AAB _A1 得 』 1 B= B, l
A 上 平 面 AB D C, 又 B 平 面 Cc
-C A- *

又A Bc平 面 V . 面 V 上平 AB 平 AB
C .  ̄ n的夹角 1为锐角 ,则 1与 0互为 面 V D 3 3 (I 过点 C在 平面 V D内作 C 1) C H上 余角.
( 求证 : I) 平面 V AB上平面 V D; C
设平面 A B C的一个法 向量为 n 《, =x y) ,, z 则
( 当角 0变 化时 , Ⅱ) 求直线 B C与 平面 V AB所成的角 的取值范围.
解析: (I)‘C B = . CB是 ‘ = C a △A . A
考试题

s e i = n , 于 是 由 c <b 得 J
— = < = =,即 s e i 又 = — 一 i <sn n e, b/ 、 、 / ‘ ’ 0 0 ( , 以 0 ‘ < ,< 所 P <P .
点评 : I问中的线线垂直为第( ) 第( ) I I


在 R AC D中, H 毕 t H C=
ai ; s0 n
( 转 3 下 O页 )
又 A A nAD A,从 而 B = C上侧 面
Ad es y ma e i wi ,n tr h逆 境 出 人 才 。 v ri k sa mal s t e o i . c
!{
原则 。 【I) 明 : 右 图 , 点 A在 平面 证 如 过
C a于 是 ,)

A, B 内作 A L B于 D, AB D_A1 则


(/ 2c一0 O, 、 6- 2, ,) (/ I 一 ,) 、 6 _,c 0,
=o C a, / , ,) =O 0 a, (, ,)
A B 所以 ADJB . C, C _
secs i—。 n p c o s
而c , a 丽C
因为 三棱 柱 AB —A BC 是直 三棱 C 柱, A 则 A 上底面 A C, B
所 以 A C. A 上B
V D于 H 则由( ) C 平面 V B , I 知 D上 A . 连接 B H,于是 /C H就是 直线 B B C 与平面 V AB所成 的角 .

分 布 概 急 理 觚
向清耀 张世 林


例 题 引入

部分采 用解法 1做出结 果的学生
(一PS =1 (一P+・・ (一1 1 ) 1 ) P 1 ) ・+ n ) 一P P( + P1 ) n (一Pr 、 S 一 (一PS =P 1 ) +P (一P+・・ (一P 1 ) ・+P 1 )
相关文档
最新文档