导电聚合物电致变色材料与器件(熊善新)思维导图

电致变色材料研究进展

电致变色材料研究进展 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电致变色材料研究进展摘要电致变色材料是目前公认的最有发展前途的智能材料之一。本文简述 了电致变色机理及特点,简要介绍了无机电致变色材料(WO3)和有机电致变色 材料(氧化还原型化合物、金属有机螯合物、导电聚合物)这两种不同类型的变 色材料,电致变色材料的应用前景和发展方向及其研究现状。 关键词电致变色无机电致变色材料有机电致变色材料应用现状 变色现象是指物质在外界环境的影响下,而产生的一种对光的反应的改变。 这种现象普遍存在于自然界中,比如变色龙,它的体色会随着周围环境的变化而 改变。人们感兴趣的是一类具有可逆变色现象的物质,即可利用一定的外界条件 将它们的颜色进行改变并且在另外一种条件下将其还原。目前发现的变色现象主 要有4 类: 电致变色、光致变色、热致变色和压致变色,其中又以电致变色研究得最为深入。 电致变色是指在外接电压或者电流的驱动下,物质发生电化学氧化还原反应 而引起颜色变化的现象。即在外加电场作用下,物质的化学性能(透射率、反射 率等)在可见光范围内产生稳定的可逆变化。其主要特点有以下几点:( 1) 电 致变色材料中电荷的注入与抽出可以通过外界电压或电流的改变而方便地实现, 注入或抽出电荷的多少直接决定了材料的致色程度,调节外界电压或电流可以控 制电致变色材料的致色程度; ( 2) 通过改变电压的极性可以方便地实现着色或 消色; ( 3) 已着色的材料在切断电流而不发生氧化还原反应的情况下,可以保 持着色状态,即具有记忆功能。因此,电致变色材料应满足以下各个方面的要求: (1) 具有良好的电化学氧化还原可逆性; (2) 颜色变化的响应时间快; (3) 颜色 的变化是可逆的; (4) 颜色变化的灵敏度高; (5) 有较高的循环寿命; (6) 有一

具有光致变色和发光性能的有机化合物的合成及其性能研究_百度文(精)

V o l . 21 2000年6月高等学校化学学报CH E M I CAL JOU RNAL O F CH I N ESE UN I V ER S IT IES N o. 6903~907 具有光致变色和发光性能的有机化合物的 合成及其性能研究 庞美丽王永梅孟继本王积涛 (南开大学化学系, 天津300071 摘要以吲哚啉螺苯并吡喃与香豆素衍生物为原料, 用DCC 缩合酯化法在温和条件下合成了8种新的具有光致变色和发光性能的化合物, 确定了结构, 研究了紫外光谱、荧光光谱及光致变色性. 所得化合物同时具有光致变色和发荧光的双重特性, 而且荧光光谱中有两个激发波长, 每一个波长对应产生一个不同的荧光发射峰. 关键词吲哚啉螺苯并吡喃; 香豆素; 紫外光谱; 荧光光谱 中图分类号O 626文献标识码 A 文章编号 025120790(2000 0620903205 香豆素类化合物是一类重要的具有生物活性的苯并吡喃酮类化合物, 及重要的生物学意义, [16]合物是一类研究颇多的有机光致变色化合物, 、光记录材料、光装饰材料、防伪技术等领域都有广泛的应用, [7~10]. 将香豆, 制备双功能有机化合物的研究尚未见文献报道. , 用DCC 缩合酯化法在温和条件下合成了8种尚未, 确定了其结构, 并考察了其光谱特性和光致变色性.

由于香豆素类化合物具有重要的生理活性, 该方面研究工作将在生理过程的跟踪以及生物探针的标记方面具有一定的指导意义. 由于生物体内许多基团本身即带有一定的荧光, 因而传统的荧光标记法存在背景干扰等问题, 而光致变色现象是通过光聚焦电子显微镜在可见区检测光波长的改变, 与生物体内基团的光性能不冲突, 所受干扰较小, 因而具有一定的优越性. 我们合成的化合物在多功能防伪材料的开发领域也有一定的应用前景(合成路线如Schem e 1和Schem e 2所示 . 1结果与讨论 1. 1合成条件的改进 通常DCC 缩合酯化法有一锅法(路线1 和酸酐法(路线2 两种. 一锅法是将所有的反应物、DCC 、催化剂一次性加入后反应; 酸酐法是先将酸与DCC 及催化剂混合反应一定的时间后, 滤出生成的脲, 再加入醇(酚进行酯化反应. 本文采用一锅法和酸酐法, 利用TL C 监测均发现副产物较多, 而采用Chai m Gilon 等[11]的方法(路线3 , 先将反应物、催化剂与反应溶剂充分混匀后, 再滴入DCC 溶在反应溶剂中的溶液, TL C 监测表明预期产物比例增大, 且副产物种类较少, 易于分离. 我们推测可能原因如下:吲哚啉螺苯并吡喃存在如Schem e 3所示的3种互变异构形态. 本文反应中可能存在的副反应主要是羧酸与C 异构体中的酚氧负离子结合成酯. 由于羧酸与DCC 反应生成的酸酐在DM A P 存在下的高反应活性, 它并不优先与预期的醇(酚结合, 而是首先和与其接触的反应物结合. 在路线1中, 由于溶解性与扩散速率的影响, 羧酸与预期应参与反应的羟基 收稿日期:1999208231. 基金项目:国家自然科学基金(批准号:29872015 及南开大学吸附与分离功能高分子材料国家重点实验室资助. 联系人简介:孟继本(1938年出生 , 男, 教授, 博士生导师, 主要从事生物有机光化学研究.

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

电致变色材料研究进展

电致变色材料研究进展 摘要电致变色材料是目前公认的最有发展前途的智能材料之一。本文简述了电致变色机理及特点,简要介绍了无机电致变色材料( WO 3)和有机电致变色材料(氧化还原型化合物、金属有机螯合物、导电聚合物)这两种不同类型的变色材料,电致变色材料的应用前景和发展方向及其研究现状。 关键词电致变色无机电致变色材料有机电致变色材料应用现状 变色现象是指物质在外界环境的影响下,而产生的一种对光的反应的改变。这种现象普遍存在于自然界中,比如变色龙,它的体色会随着周围环境的变化而改变。人们感兴趣的是一类具有可逆变色现象的物质,即可利用一定的外界条件将它们的颜色进行改变并且在另外一种条件下将其还原。目前发现的变色现象主要有4 类: 电致变色、光致变色、热致变色和压致变色,其中又以电致变色研究得最为深入。 电致变色是指在外接电压或者电流的驱动下,物质发生电化学氧化还原反应而引起颜色变化的现象。即在外加电场作用下,物质的化学性能(透射率、反射率等)在可见光范围内产生稳定的可逆变化。其主要特点有以下几点:( 1) 电致变色材料中电荷的注入与抽出可以通过外界电压或电流的改变而方便地实现,注入或抽出电荷的多少直接决定了材料的致色程度,调节外界电压或电流可以控制电致变色材料的致色程度; ( 2) 通过改变电压的极性可以方便地实现着色或消色; ( 3) 已着色的材料在切断电流而不发生氧化还原反 应的情况下,可以保持着色状态,即具有记忆功能。因此,电致变色材料应满足以下各个方面的要求: (1) 具有良好的电化学氧化还原可逆性; (2) 颜色变化的响应时间快; (3) 颜色的变化是可逆的; (4) 颜色变化的灵敏度高; (5) 有较高的循环寿命; (6) 有一定的记忆存贮功能; (7) 有高的机械性能和化学稳定性; (8) 有合适的微观结构。 自1969年Deb发现非晶W薄膜具有电致变色效应以来,电致变色薄膜材料以其特殊的性能成为了材料研究的热点之一,并且取得了一定的成果。70 年代电致变色器件的问世,80 年代美国科学家研究的“灵巧窗”都是在电致变色材料研究领域的重大突破。此后,人们又逐渐发现了其它一些电致变色材料,可以分为无机电致变色材料和有机电致变色材料。无机电致变色材料的性能稳定, 其光吸收变化是由于离子和电子的 双注入和双抽出而引起的。有机电致变色材料的色彩丰富, 易进行分子设计, 其光吸收变化来自氧化还原反 应。 无机电致变色材料 无机电致变色材料多为过渡金属氧化物或其衍生物。这是由于过渡金属元素在d 轨道有未成对的单电 子存在。过渡金属元素离子一般易于着色, 且基态与激发态能量差较小。氧化物中金属的电子层结构不稳定在一定的条件下价态发生可逆转变, 形成混合价态的离子共存状态, 其颜色随离子价态和浓度的变化而变化。依据变色特性, 又可分为阴极电致变色材料和阳极电致变色材料。 1 、阴极电致变色材料 在高价氧化状态无色, 在低价还原状态着色的电致变色材料称为阴极电致变色材料, 主要包括?B 族的WO3 、MoO3 及其混合材料, 以及V2O5 、Nb2O5 、TiO2 、BiO3 等。其中, 最典型的就是WO,它是最早被发现具有电致变色特性的,也是研究得最为广泛和深入的一种电致变色材 料。对于WO,在钨的位置上都被WI占据,是一种透明的薄膜;而在氧化还原态时,WV产生电致变色效 应。尽管对于WO羊细的变色机制还存在争议,但是金属阳离子的注入与抽岀的重要作用已被认可。一般认 为其反应方程式如下:xM+ + xe —+WO f MxWO 式中M表示H + ,Li +等。利用Faugh nan等提岀的价间电荷迁移模型解释WO勺变色行为,如图1( a)所示方向加电场时,电子e —和阳离子M+同时注入WO膜原子晶格间的缺陷位置,形成钨青铜(MxWO3)化合 物,呈现蓝色。如图1( b) 所示方向加电场时,电致变色层中电子 e —和阳离子M+同时脱离,蓝色消失。 WO在高价态呈现无色,在低价态呈现岀蓝色,是一类在高价氧化状态下无色,在低价还原状态下着色 的阴极电致变色材料,这类材料主要是W B族金属氧化物。 图1 价间电荷迁移模型示意图 2、阳极电致变色材料 阳极电致变色材料与阴极电致变色材料相反,它们在低价还原状态下无色,在高价氧化状态下呈现颜

光致变色材料制备用途以及进展

光致变色材料制备用途以及进展 (青岛科技大学化学与分子工程学院应用化学084班李) 摘要: 本文针对光致变色材料这一新型材料,综述了光致变色材料的变色原理及分类,并着重对含氧、氮、硫杂螺环结构的光致变色化合物研究进展,有机光致变色高分子材料的加工方法、性能优劣及研究进展进行了论述,最后对光致变色材料的应用前景进行了总结和展望。 关键词:光致变色有机光致变色材料含氧、氮、硫杂螺环结构的光致变色 化合物 1 光致变色原理 光致变色现象[1](对光反应变色)指一个化合物(A)受一定波长( 1)光的照射,进行特定化学反应生成产物(B),其吸收光谱发生明显的变化;在另一波长( 2)的光照射下或热的作用下,又恢复到原来的形式: 严格意义上的光致变色化合物的主要结构形式有两种:1)光致变色材料分子作为侧链基团直接或通过间隔基与主链大分子相联;2)光致变色材料分子作为主链结构单元或共聚单元而形成聚合物但随着研究的不断深入,变色材料种类和结构形式也不断扩大,也有人认为将光致变色化合物添加到聚合物中形成聚合物的类型添加进来,但此种形式仍存在广泛争议 光致变色材料发展至今,按照不同判别标准其分类方式多种多样如果按照材料光反应前后颜色不同分类,可分为正光色性类和逆光色性类两种;而按照变色机理进行分类时,则可分为T类型和P类型;P类型材料的消色过程是光化学过程,有较好的稳定性和变色选择性[2]。 但应用最广泛的分类方法则是按照材料物质的化学成分进行分类,即分为无机化合物和有机化合物两大类 它主要有三个特点[3]:①有色和无色亚稳态问的可控可逆变化;②分子规模的变化过程;③亚稳态间的变化过程与作用光强度呈线性关系。光致变色反应中的成色和消色过程的速度和循环次数(即抗疲劳性)是其实际应用的决定性因素。 光致变色材料要想真正达到实用化,还必须满足以下条件: ○1A和B有足够高的稳定性; ○2A和B有足够长的循环寿命; ○3吸收带在可见光区;响应速度快,灵敏度高。 2 含氧、氮、硫杂螺环结构的光致变色化合物 2.1 螺吡喃化合物 1952 年Fisdher 和Hirshberg[4]首次发现了螺吡喃的光致变色性质, 1956年

有机电致发光器件OLED的结构和发光机理

摘要 OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。 典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。介绍了该器件的制备工艺,对该OILED的I 一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。 关键词: 有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜

Abstract OLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays will become the future20 years of the most "money scene" of the new display because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism. Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development. Keywords: Organic Electroluminescent Devices,Organic reverse electroluminescent devices,Luminescence mechanism,Protective layer (PL), the anode of ITO

光致变色材料的研究及应用进展

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 139-146 Published Online August 2018 in Hans. https://www.360docs.net/doc/8016947325.html,/journal/japc https://https://www.360docs.net/doc/8016947325.html,/10.12677/japc.2018.73017 Research and Application Progress of Photochromic Materials Yue Sun College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu Sichuan Received: Aug. 5th, 2018; accepted: Aug. 18th, 2018; published: Aug. 27th, 2018 Abstract Photochromic materials, as an important subject in the field of high technology, have wide appli-cation value and development prospect. According to different types, this paper summarizes the research progress and related applications of organic photochromic materials, inorganic pho-tochromic materials and inorganic-organic hybrid photochromic materials, and briefly discusses the future development trend. Keywords Photochromatism, Research Progress, Application, Development Trend 光致变色材料的研究及应用进展 孙悦 西南石油大学化学化工学院,四川成都 收稿日期:2018年8月5日;录用日期:2018年8月18日;发布日期:2018年8月27日 摘要 光致变色材料作为当前高科技领域研究的重要课题,具有广阔的应用价值和发展前景。根据类型不同,本文分别综述了有机光致变色材料、无机光致变色材料以及无机–有机杂化光致变色材料的研究进展及相关应用,并对光致变色材料未来的发展趋势作了简要探讨。 关键词 光致变色,研究进展,应用,发展趋势

电致变色材料综述

电致变色材料制备技术综述 电致变色材料概述 电致变色是在电流或电场的作用下,材料发生可逆的变色现象。早在本世纪30年代就有关于电致变色的初步报道。60年代,Pkat在研究有机染料时,发现了电致变色现象并进行了研究。1969年,Deb发现在施加电压的情况下,MoO3和WO3具有电致变色效应,Deb 在此基础上进行了深入的研究并研制出了第一个薄膜电致变色器件。电致变色材料因为在智能窗(smart window)、汽车防炫后视镜、电致变色显示器等方向具有巨大的潜在应用价值,正受到越来越多的关注。波音公司最新的波音787梦想客机上就使用了电致变色旋窗设计,电致变色也正在走向产业化,具有广阔的市场前景。 目前电致变色材料主要包括两种,即无机电致变色材料和有机电致变色材料。许多过渡金属氧化物具有电致变色效应。普遍认为无机电致变色材料由于电子和离子的双注入和双抽出发生氧化还原反应而具有电致变色效应。根据材料是在氧化态或者还原态着色可分为还原态着色电致变色材料如W、Mo、V、Nb和Ti的氧化物和氧化态着色电致变色材料如Ir、Rh、Ni和Co等的氧化物。有些材料如V、Co和Rh的氧化物在氧化态和还原态均会呈现不同的颜色。普鲁士蓝也是一种具有多种变色特性的电致变色材料,能在暗蓝色、透明无色(还原时)、淡绿色(氧化时)等颜色之间转变。有机电致变色材料包括氧化还原型化合物如紫罗精,导电聚合物如聚苯胺、聚噻吩和金属有机螯合物如酞花菁等。无机电致变色材料由于化学稳定性好,制备工艺简单等优点,是人们研究的重点,WO3作为最早发现的一种电致变色材料,由于性能优越,价格低廉等优点,是研究最为详细的一种电致变色材料。

顶发射有机电致发光器件 3

顶发射有机电致发光器件 摘要 有机电致发光器件(OLED)由于其自身具有能耗低、自发光、视角宽、成本低、温度范围宽、响应速度快、发光颜色连续可调、可实现柔性显示、工艺比较简单等优点而吸引了全世界信息显示技术研究领域的专家学者们的目光,它成为了最有可能取代液晶显示器件的希望之星。有机电致发光器件的研究始于1963年,近年内,越来越多的研究人员从事到有机电致发光器件的研究中来,关于利用新材料、新结构制作有机电致发光器件的报道层出不穷,有机电致发光技术也得到了飞速的发展。 有机电致发光器件按照光从器件出射方向的不同,可以分为两种结构:一种是底发射型器件(BEOLED),另一种是顶发射型器件(OLED)。由于顶发射型器件所发出的光是从器件的顶部出射,这就不受器件底部驱动面板的影响从而能有效的提高开口率,有利于器件与底部驱动电路的集成。同时顶发射型器件还具有提高器件效率、窄化光谱和提高色纯度等诸多方面的优点,因此顶发射型器件具有非常良好的发展前景。而对于顶发射型器件来说,它的有机层结构与底发射型器件的结构基本一致,所以对于顶发射型器件电极的研究具有非常重要的意义。 关键词:电致发光顶发射 Abstract Organic light-emitting diode (OLED), due to its low energy consumption, self-luminous, wide viewing angle, low cost, wide temperature range, fast response, continuously adjustable, luminous colors, flexible display, the process is relatively simple, to attract the attention of experts and scholars in display researching field all over the world. It became the star of hope which most likely to replace liquid crystal display. Researching of the organic light-emitting diode began in 1963, and in recent years, more and more researchers come to research the organic light-emitting diode. New materials, new structures of organic light-emitting diode reported in an endless stream. OLED technology has been rapid development. According to the different directions of the light emitting from the device, we can divide the OLED into two kinds. The one is bottom-emitting type device (BEOLED) and the other is top-emitting device (TEOLED). As the light emitting from the top of the TEOLED, it can ignore the effect of the bottom driving panel, so that it can effectively improve the opening rate, conducive to the integration of the device with the driving circuit. Top-emitting device can also improve the efficiency of the device, narrowing the spectrum and improve the color purity, so it has a good prospect for development. For top-emitting device, the organic layer structure and is basically the same with the bottom-emitting type device, so it has very important significance to study the electrodes of the top-emitting device.

光致变色高分子材料

光致变色高分子材料 摘要光致变色高分子是一类新型的功能高分子材料这类材料经光照后, 其化学性能, 与物理性能特别是在颜色方面会发生可逆的变化本文对光致变色高分子的研究状况进行了较全面的综述, 文中对主要的光致变色高分子, 诸如聚甲亚胺型、硫卡巴踪型、偶氮苯型、苟二酮型、邃漆型和含螺结构型等进行了讨论。关键词:光致变色高分子原理种类合成应用 引言 高分子材料的研究与应用己给人类带来了巨大的益处, 迄今科学家们仍不遗余力开拓多种新型的高分子材料, 光致变色高分子材料就是近年来受到人们瞩目的新型功能高分子材料之一光致变色材料的研究始于本世纪初叶, 人们在对功能性染料的研究中发现多种物质在不同波长的光照射时呈现不同的颜色, 有的在可见光照射下产生颜色变化, 停止光照后又能回复原来的颜色这些现象引起高分子研究者的注意, 于是, 许多研究者们把光致变色的功能性染料引入到高分子的侧链或主链中, 或与高分子化合物共混, 从而开发出一系列具有光致变色特性的新型高分子材料功能性光致变色染料是小分子, 不便于制造成器件, 光致变色高分子恰恰在这方面有很大的优势, 因而更加促进了光致变色高分子的研究与开发。【1】 1 光致变色的基本原理 由于有机物质在结构上千差万异, 因而光致变色机理也多有不同宏观上可分为光化学过程变色和光物理过程变色两种。 光化学过程变色较为复杂, 可分为顺反异构反应、氧化还原反应、离解反应、环化反应以及氢转移互变异构化反应等等。 兹以侧链带偶氮苯的光致变色高分子为例, 这是典型的顺反异构变色机理在光作用下, 偶氮苯从稳定的反式转变为不稳定的顺式, 并伴随着颜色的转变, 后面我们将进一步说明。 关于光物理过程的变色行为, 通常是有机物质吸光而激发生成分子激发态, 主要是形成激发三线态, 而某些处于激发三线态的物质允许进行三线态一三线态的跃迁, 此时伴随有特征的吸收光谱变化而导致光致变色。

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

有机电致发光材料及器件导论

1.电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的 一种发光过程(非热转换即不是通过热辐射实现的)。 2.FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。OLED特点: 材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快; 器件可弯曲,不受尺寸限制,分辨率高等。 3.基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。激发态分子内的物 理失活:辐射跃迁和非辐射跃迁。而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。 4.有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。而掺杂半导体中的载流子浓 度大于本征半导体(电子和空穴浓度相同),所以导电性更好 5.直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的 现象。过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。 6.单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有 机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。 7.单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。但是单层器件的载流 子的注入不平衡,器件发光效率低。三层器件是目前OLED中最常用的一种。在实际的器件中,在发光层往往采用掺杂的方式提高器件性能 8.器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄 膜和阴极—取出器件并封装—测试表征 9.有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于 10^-4Pa)。共聚物发光器件主要是通过涂璇的方法制备的,涂璇过程中要精确的控制加速,转速。但涂璇浪费材料且不能全彩显示,而喷墨打印则弥补此缺点。 10.在OLED贮存和工作器件受到化学反应的影响,所以要选择阻隔性好的封装材料。有刚性封装材料(玻璃和聚合 物,玻璃可形成密闭空腔,聚合物可满足显示器大屏化);柔性封装材料(玻璃和聚合物);边缘缝隙封装材料(紫外固化得聚合物黏结剂) 11.有机电致发光器件封装材料的高阻隔性可通过在聚合物薄膜上沉积小分子图层形成复合薄膜获得,多层复合薄膜 可使粗糙的器件表面光滑化,保证无机层的完整,以致渗透分子的传导受阻更好,也可在封装中加捕捉剂来提高阻隔性。 12.器件发光效率:量子效率(器件向外发射的光子数与注入电子空穴对数之比。内量子数ηint指器件产生的所有光 子数与注入电子空穴对数之比;外量子数ηext指器件在全空间发射的光子数Np与注入的电子空穴对数量Nc之比);流明效率(ηl=AL/Ioled,A为器件有效面积,L为器件发光亮度,Ioled为有机发光器件发光亮度为L时的工作电流);功率效率(ηp=Lp/IoledV,ηp为光功率效率,Lp为器件前方发射出来的光功率,IoledV是驱动电压V驱动下的器件总电功率) 13.有机电致发光器件效率可以用积分球光度计测量。但这是一个理想模型,要对测量结果进行修正;发光效率用积 分球光度计加光谱仪的方法测量。 14.亮度,Lv为发光亮度,Km为光功当量,Le. λ为辐射亮度,V(λ)为明视觉光 谱光视效率。Lθ=Iθ/d a cosθ,Lθ为某方向发光功率,Iθ为改方向上的光强,da为一个发光表面。发光亮度一般用各种亮度计测量,测量被测光源表面的像在光电器件表面所产生的光照度,则该像表面的照度正比于光源的亮度,不随光度计与光体之间的距离而变化。 15.色度测量通常用光谱辐射计,如PR-705;有机电致发光器件的电流-电压曲线则可用普通的伏安法测量。亮度-电 压曲线表现器件光电性质;发射光谱测量:使荧光或者磷光通过单色器后照射于检测器上,扫描发射单色器并检

光致变色材料制备

光致变色材料制备与合成 摘要:本文针对光致变色材料这一新型材料,综述了光致变色材料的变色原理及分类,并着重对含氧、氮、硫杂螺环结构的光致变色化合物研究进展,有机光致变色高分子材料的加工方法、性能优劣及研究进展进行了论述,最后对光致变色材料的应用前景进行了总结和展望。 关键词:光致变色有机光致变色材料含氧、氮、硫杂螺环结构的光致变色化合物 1 光致变色原理 光致变色现象[1](对光反应变色)指一个化合物(A)受一定波长( 1)光的照射,进行特定化学反应生成产物(B),其吸收光谱发生明显的变化;在另一波长( 2)的光照射下或热的作用下,又恢复到原来的形式: 严格意义上的光致变色化合物的主要结构形式有两种:1)光致变色材料分子作为侧链基团直接或通过间隔基与主链大分子相联;2)光致变色材料分子作为主链结构单元或共聚单元而形成聚合物但随着研究的不断深入,变色材料种类和结构形式也不断扩大,也有人认为将光致变色化合物添加到聚合物中形成聚合物的类型添加进来,但此种形式仍存在广泛争议 光致变色材料发展至今,按照不同判别标准其分类方式多种多样如果按照材料光反应前后颜色不同分类,可分为正光色性类和逆光色性类两种;而按照变色机理进行分类时,则可分为T类型和P类型;P类型材料的消色过程是光化学过程,有较好的稳定性和变色选择性[2]。 但应用最广泛的分类方法则是按照材料物质的化学成分进行分类,即分为无机化合物和有机化合物两大类 它主要有三个特点[3]:①有色和无色亚稳态问的可控可逆变化;②分子规模的变化过程;③亚稳态间的变化过程与作用光强度呈线性关系。光致变色反应中的成色和消色过程的速度和循环次数(即抗疲劳性)是其实际应用的决定性因素。 光致变色材料要想真正达到实用化,还必须满足以下条件: ①A和B有足够高的稳定性; ②A和B有足够长的循环寿命;

光致变色材料及其应用前景

光致变色材料及其应用前景 一、光致变色材料 光致变色指的是某些化合物在一定的波长和强度的光作用下分子结构会发生变化,从而导致其对光的吸收峰值 即颜色的相应改变,且这种改变一般是可逆的。人类发现 光致变色现象已有一百多年的历史。第一个成功的商业应 用始于20世纪60年代,美国的Corning工作室的两位材 料学家Amistead和Stooky首先发现了含卤化银(AgX)玻璃的可逆光致变色性能[4],随后人们对其机理和应用作了大量研究并开发出变色眼镜。但由于其较高的成本及复杂的 加工技术,不适于制作大面积光色玻璃,限制了其在建筑 领域的商业应用。此后AgX光致变色的应用重心转向了价 格便宜且质量较轻的聚合物基材料,而各种新型光致变色 材料的性能及其应用也开始了系统研究。 二、原理 不同类型的光致变色材料具有不同的变色机理,尤其是无机光致变色材料的变色机理与有机材料有明显的区 别。光致变色材料典型无机体系的光致变色效应伴随着可 逆的氧化-还原反应,如WO3为半导体材料,其变色机理可用1975年由Faughnan提出的双电荷注入/抽出模型解释,

即在紫外光照射下,价带中电子被激发到导带中,产生电子空穴对,随后光生电子被W(VI)捕获,生成W(V),同时光生空穴氧化薄膜内部或表面的还原物种,生成质子H+,注入薄膜内部,与被还原的氧化物结合生成蓝色的钨青铜HxWO3,该蓝色是由于W(V)价带中电子向W(VI)导带跃迁的结果。另一种变色机理是Schirmer等在1980年所提出的小极化子模型,他们认为,光谱吸收是由于不等价的2个钨原子之间的极化子跃迁所产生,即注入电子被局域在W(V)位置上,并对周围的晶格产生极化作用,形成小极化子。入射光子被这些极化子吸收,从一种状态变到另一种状态,可简略表示如下:WA(V)-O-WB(VI)→WA(VI)-O-WB(V) 由于上述变化不会引起材料晶体结构的破坏,因此典型无机材料的光致变色效应具有良好的可逆性和耐疲劳性能。有机体系的光致变色也往往伴随着许多与光化学反应有关的过程同时发生,从而导致分子结构的某种改变,其反应方式主要包括:价键异构、顺反异构、键断裂、聚合作用、氧化-还原、周环反应等。以偶氮化合物为例,其光致变色效应基于分子中偶氮基-N=N-的顺-反异构反应,通常偶氮化合物顺-反异构体有不同的吸收峰,虽两者一般差值不大,但摩尔消光系数往往相差很大,另外,偶氮化合物还有明显的光偏振效应,即光致变色效果与光的偏振态有关。生物光致变色材料如细菌视紫红质等的感光效应也属于这

相关文档
最新文档