企业实施大数据的关键
工业大数据关键技术研究与应用

工业大数据关键技术研究与应用工业大数据是当今工业领域中使用最为广泛的先进技术之一。
它通过采用先进的数据处理和分析技术,帮助企业轻松获取和处理大量的数据信息,从而实现工业先进化、精益化、数字化转型。
如今,随着工业大数据技术的逐步成熟和不断普及,越来越多的企业开始关注和采用这一新型技术,以实现企业的数字化转型和业务提升。
一、工业大数据的概念和特点工业大数据是指在工业生产和管理中产生的大量数据信息,这些数据涵盖了生产、管理、监测等方面的各种数据信息,包括设备状态数据、温湿度数据、生产数据、人力资源数据等。
这些数据信息以庞大、复杂、多元和高密度为特点,其处理难度非常大,需要使用先进的技术和算法实现数据的处理和挖掘。
二、工业大数据的主要应用领域工业大数据技术适用于各种行业和领域,尤其是工业领域中的生产管理、物流管理、质量管理、设备管理、能源管理等方面。
在这些领域中,工业大数据技术可以为企业提供各种精细化、个性化、定制化的解决方案和服务,为企业运营和业务提升带来更高的效率和质量。
三、工业大数据的关键技术1.数据采集技术:数据采集技术是工业大数据技术的基础,其中包括了传感器、物联网等数据采集设备和技术。
这些设备和技术可以采集各种工业领域中的数据信息,将其传输到数据处理中心进行处理和分析。
2.数据存储技术:数据存储技术是工业大数据技术的基础,其中包括了数据仓库、云计算等数据存储设备和技术。
这些设备和技术可以对原始数据信息进行存储和管理,以便后续进行数据的分析和挖掘。
3.数据处理与挖掘技术:数据处理与挖掘技术是工业大数据技术的关键技术,它可以对大量的数据信息进行分析和挖掘,包括数据的清洗、预处理、聚类、分类、回归等数据处理和挖掘算法。
这些算法可以有效地提取数据中的有用信息,并进行精细化分析和预测。
4.人工智能技术:人工智能技术是工业大数据技术的关键技术之一,其中包括了机器学习、深度学习、自然语言处理等人工智能算法和技术。
物流行业如何利用大数据提升运营效率

物流行业如何利用大数据提升运营效率在当今数字化的时代,大数据已经成为各个行业提升竞争力和运营效率的关键因素。
物流行业作为经济发展的重要支撑,也不例外。
通过充分利用大数据,物流企业能够更精准地规划运输路线、优化库存管理、提高客户满意度,从而实现降本增效的目标。
一、大数据在物流行业的应用现状物流行业涉及到大量的数据,包括货物的收发地址、运输方式、运输时间、库存水平等等。
这些数据以往大多处于孤立和分散的状态,没有得到有效的整合和利用。
随着信息技术的发展,越来越多的物流企业开始意识到大数据的价值,并逐步引入相关的技术和系统,对数据进行收集、分析和应用。
目前,大数据在物流行业的应用主要体现在以下几个方面:(一)运输路线规划通过对历史运输数据的分析,结合实时的交通状况和天气信息,物流企业可以为运输车辆规划出最优的行驶路线,从而减少运输时间和成本,提高运输效率。
(二)库存管理利用大数据对市场需求进行预测,物流企业可以更准确地掌握货物的库存水平,避免库存积压或缺货的情况发生,降低库存成本。
(三)客户关系管理通过对客户的订单数据和行为数据进行分析,物流企业可以了解客户的需求和偏好,为客户提供个性化的服务,提高客户满意度和忠诚度。
然而,尽管大数据在物流行业的应用已经取得了一定的成果,但仍然存在一些问题和挑战。
例如,数据质量参差不齐、数据安全存在隐患、数据分析人才短缺等等。
二、大数据提升物流运营效率的具体途径(一)优化运输管理1、车辆调度优化基于大数据的分析,物流企业可以实时了解车辆的位置、状态和负载情况,从而更合理地安排车辆的调度,提高车辆的利用率。
例如,当一辆车完成当前任务后,系统可以根据附近的新订单和车辆的剩余运力,立即为其分配下一个任务,减少车辆的空驶率。
2、运输路线智能规划结合实时的交通流量、路况和天气等数据,利用大数据算法为运输车辆规划出最佳的路线。
不仅可以缩短运输时间,还能降低燃油消耗和车辆磨损,从而降低运输成本。
大数据实施方案 实施计划

大数据实施方案实施计划一、前言。
随着信息技术的飞速发展和互联网的普及,大数据已经成为企业发展的重要驱动力之一。
大数据的应用可以帮助企业更好地理解市场需求、优化产品设计、改进营销策略、提高运营效率等。
因此,制定一份科学合理的大数据实施方案和实施计划显得尤为重要。
二、目标和原则。
1. 目标,通过大数据的应用,提高企业的竞争力和盈利能力。
2. 原则,以业务需求为导向,充分利用现有资源,注重数据安全和隐私保护。
三、实施方案。
1. 数据采集,建立完善的数据采集系统,包括内部数据和外部数据的采集,确保数据的全面性和准确性。
2. 数据存储,构建高效稳定的数据存储平台,采用分布式存储技术,保证数据的安全性和可靠性。
3. 数据处理,建立数据清洗、转换、分析和挖掘的流程,利用大数据处理技术,提取有价值的信息。
4. 数据应用,将处理后的数据应用到业务决策、产品优化、营销推广等方面,实现商业应用的最大化价值。
四、实施计划。
1. 环境准备阶段(1个月):确定大数据实施团队成员及职责分工;调研和选择合适的大数据技术和平台;搭建实验环境,进行技术验证和评估。
2. 数据采集阶段(2个月):设计数据采集方案,确定采集的数据类型和来源;开发数据采集程序,确保数据的及时和准确采集;测试数据采集程序,验证数据的完整性和准确性。
3. 数据存储阶段(1个月):设计数据存储结构,确定数据的存储方式和策略;搭建数据存储平台,确保数据的安全和稳定存储;测试数据存储平台,验证数据的可靠性和性能。
4. 数据处理阶段(3个月):设计数据处理流程,确定数据的清洗、转换、分析和挖掘方法;开发数据处理程序,实现数据的自动化处理和分析;测试数据处理程序,验证数据的处理效果和结果的准确性。
5. 数据应用阶段(2个月):将处理后的数据应用到业务决策、产品优化、营销推广等方面;监控数据应用效果,不断优化和调整数据应用策略;总结数据应用经验,形成数据应用规范和流程。
企业如何开展大数据应用

企业如何开展大数据应用1. 引言在当今信息时代,大数据已经成为企业获取竞争优势的重要驱动力。
通过收集、存储和分析大量的数据,企业可以更好地了解客户需求、发现市场趋势和优化业务流程。
本文将从以下几个方面介绍企业如何开展大数据应用。
2. 数据收集与存储大数据应用的第一步是收集和存储大量的数据。
企业可以通过以下几种方式实现数据收集和存储:2.1 数据源企业可以通过内部和外部数据源获取数据。
内部数据源包括企业内部的各种系统和应用程序,如企业资源规划(ERP)系统、客户关系管理(CRM)系统等。
外部数据源可以是公共数据集、社交媒体数据、行业数据等。
2.2 数据收集工具企业可以使用各种工具来收集数据,例如网络爬虫、传感器、日志文件等。
此外,企业还可以与合作伙伴建立数据共享机制,共享双方的数据,以获得更全面和准确的数据。
2.3 数据存储企业可以选择将数据存储在传统的关系型数据库中,也可以使用新兴的大数据技术,如Apache Hadoop和Apache Spark等。
这些技术可以提供更高的可伸缩性和容错性,使企业能够存储和处理海量的数据。
3. 数据分析与挖掘一旦数据收集和存储完成,企业就可以进行数据分析和挖掘。
通过使用各种数据分析技术和算法,企业可以从数据中发现有价值的信息和洞察。
以下是一些常用的数据分析和挖掘技术:3.1 描述性分析描述性分析帮助企业了解数据的特征和分布,例如数据的平均值、标准差和变异系数等。
这些统计指标可以帮助企业更好地了解数据,并做出相应的决策。
3.2 预测性分析预测性分析通过利用历史数据和统计模型,预测未来的趋势和结果。
企业可以使用回归分析、时间序列分析和机器学习等技术来进行预测性分析,以支持决策制定。
3.3 关联规则挖掘关联规则挖掘帮助企业发现数据之间的关联关系和规律。
通过分析大量的交易数据或用户行为数据,企业可以找到一些隐藏的关联规则,并据此进行交叉销售、个性化推荐等业务活动。
3.4 文本挖掘文本挖掘技术可以帮助企业从大量的文本数据中提取有用的信息。
如何有效管理和利用大数据

如何有效管理和利用大数据大数据时代的到来,为企业经营和决策提供了巨大的机遇和挑战。
如何有效地管理和利用大数据成为了企业追求竞争优势的关键。
本文将从以下几个方面探讨如何有效管理和利用大数据。
一、建立完善的数据收集和存储系统要有效管理和利用大数据,首先需要建立完善的数据收集和存储系统。
数据收集的方式可以包括传感器、互联网、社交媒体等多种渠道。
在数据存储方面,可以采用云计算技术,将海量的数据存储在云端,提高数据的可靠性和可用性。
二、进行数据清洗和加工大数据往往包含大量的噪声数据和冗余数据,需要进行数据清洗和加工。
数据清洗可以通过清除异常值、填补缺失值等方式来实现,确保数据的准确性和完整性。
数据加工则可以通过数据挖掘、数据建模等手段来提取数据中的有用信息。
三、建立有效的数据分析模型有效的数据分析模型是利用大数据的关键。
可以借助机器学习、人工智能等技术,建立预测模型、分类模型等来分析和挖掘数据中的价值。
利用这些模型可以对市场趋势进行分析预测,对客户行为进行分析等,为决策提供科学依据。
四、保护数据的安全和隐私大数据涵盖了大量的个人和企业机密信息,保护数据的安全和隐私至关重要。
可以通过加密技术、权限管理等手段来保护数据的安全性。
同时,需要遵守相关的法律法规,保障用户的隐私权。
五、加强团队建设和培训要有效管理和利用大数据,需要加强团队建设和培训。
团队成员需要具备一定的数据分析和技术能力,能够熟练运用数据工具和算法进行数据分析。
同时,培训可以帮助团队成员不断更新知识和技能,适应技术的快速发展。
六、建立数据共享和合作机制在大数据的管理和利用过程中,建立数据共享和合作机制可以提高数据的价值。
企业可以与其他企业、研究机构等建立合作关系,共享数据资源,共同开展研究和创新。
通过数据的共享和合作,可以实现数据的互补和优化,提升数据的利用效率。
七、不断创新和优化数据管理和利用模式大数据的管理和利用是一个不断创新和优化的过程。
随着技术的不断进步和商业模式的变革,企业需要不断地调整和优化数据管理和利用模式,以适应市场的需求和变化。
企业实施数据治理的必要性及核心内容

企业实施数据治理的必要性及核心内容摘要:随着网络和信息技术的不断普及,产生了大量非结构化、半结构化数据,数据的单位向TB-PB-EB-ZB级别暴增,因此数据治理成为各行各业关注的热点。
基于此,本文对企业实施数据治理的必要性及核心内容进行了探讨,以供参阅。
关键词:企业;实施;数据治理;必要性;核心内容1企业实施数据治理的必要性1.1企业整合数据资源提升竞争力的需要在企业的生产经营活动中会产生大量的数据,企业需要对事务性数据、机器生成数据、社交媒体数据等内外部数据进行整合,特别是对与企业重大商业利益相关的数据资源的整合、分析与利用,从而指导企业的经营与发展。
数据技术带来的不仅是技术的更新,还有管理方式的改变,数据治理不仅局限在企业的决策层,还包含管理层和业务层,数据治理能改善企业管理层与其他利益相关者的关系,大家共同关心企业的发展,致力于企业目标的实现,使企业变得更加敏捷和高效,更注重用户体验的提升和需求的满足。
1.2实现数据资源在组织内部的对接和共享的需要现如今大部分企业已经完成了ERP、CRM、供应链、协同办公等企业信息化系统的建设,但是由于数据分散在众多系统中,缺乏统一的数据定义和数据分类,因此在数据使用上存在数据不标准、数据不一致、数据完整性差等问题。
数据不标准主要表现在不同系统之间描述同一业务问题的数据定义标准不同;数据不一致主要表现在相关联业务系统的数据不同步、各应用系统间存在数据编码规则不一致的问题,还有重复编码的问题;数据完整性差表现为缺少关键ID。
为此企业必须对各个系统的数据源以及输出的数据资产进行统一的数据治理,实现数据在不同组织和系统内的交换与共享。
只有解决了数据的问题,才能实现IT的价值。
1.3提升海量数据资源质量的需要在当今的这个大数据时代数据产生的价值越来越大,各企业都在探索基于数据的相关技术和应用模式,最终目的就是挖掘数据的价值,推动企业的发展。
因为数据有可能是成本,也有可能是资产,能给企业带来重要的价值,是企业宝贵的资源。
大数据发展概述及关键技术

随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会管理、国家管理、人民生活都产生了重大影响。
近年来,我国政府、企业、科研机构都投入了大量的精力开展大数据相关的研究工作,大数据在政策、技术、产业、应用等方面均获得了长足发展。
大数据是信息化发展的新阶段。
随着信息技术和人类生产生活交汇融合,互联网快速普及,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会管理、国家管理、人民生活都产生了重大影响。
近年来大数据在政策、技术、产业、应用等多个层面都取得了显著发展。
在政策层面,大数据的重要性进一步得到巩固。
党的十九大提出“推动互联网、大数据、人工智能和实体经济深度融合”,深刻分析了我国大数据发展的现状和趋势,对我国实施国家大数据战略提出了更高的要求。
在技术层面,以分析类技术、事务处理技术和流通类技术为代表的大数据技术得到了快速的发展。
以开源为主导、多种技术和架构并存的大数据技术架构体系已经初步形成。
大数据技术的计算性能进一步提升,处理时延不断降低,硬件能力得到充分挖掘,与各种数据库的融合能力继续增强。
在产业层面,我国大数据产业继续保持高速发展。
权威咨询机构 Wikibon 的预测表示,大数据在 2022 年将深入渗透到各行各业。
在应用层面,大数据在各行业的融合应用继续深化。
大数据企业正在尝到与实体经济融合发展带来的“甜头”。
利用大数据可以对实体经济行业进行市场需求分析、生产流程优化、供应链与物流管理、能源管理、提供智能客户服务等,这非但大大拓展了大数据企业的目标市场,更成为众多大数据企业技术进步的重要推动力。
随着融合深度的增强和市场潜力不断被挖掘,融合发展给大数据企业带来的益处和价值正在日益显现。
在利用大数据提升政府管理能力方面,我国在 2022 年出台了《政务信息系统整合共享实施方案》、《政务信息资源目录编制指南(试行)》等多项政策文件推进政府数据汇聚、共享、开放,取得了诸多发展。
大数据发展五大关键要素

大数据发展五大关键要素随着互联网的快速发展和智能设备的普及,大数据已经成为当今社会的热门话题之一。
大数据的应用潜力无限,它可以为企业提供市场竞争的优势,为政府决策提供科学依据,为个人提供定制化的服务。
然而,要实现大数据的落地应用,需要考虑和解决一系列的问题。
本文将探讨大数据发展的五大关键要素。
一、数据数据是大数据的核心要素。
大数据是指规模庞大、复杂度高且难以处理的数据集合。
这些数据来源广泛,包括社交媒体、传感器、移动设备等。
然而,大数据的真正价值在于对数据进行深入分析和挖掘,从中提取出有用的信息和洞察力。
因此,构建高质量的数据集是大数据应用的关键一步。
数据的准确性、完整性和及时性对于大数据分析的结果至关重要。
二、技术技术是大数据发展的基础。
随着数据规模不断增大,传统的数据处理方法已经无法满足需求。
因此,大数据技术应运而生。
大数据技术包括数据存储、数据处理、数据挖掘等多个方面。
分布式存储和计算、云计算、机器学习等技术都为大数据分析提供了强有力的支持。
同时,人工智能的快速发展也为大数据应用带来了新的可能性。
三、人才在大数据时代,人才是最宝贵的资源。
一方面,大数据的技术和方法层出不穷,需要专业领域的专家来研究和应用;另一方面,需要懂技术又懂业务的数据科学家来对数据进行深入分析和挖掘。
因此,拥有优秀的数据科学家和技术团队是大数据应用成功的关键。
同时,培养和吸引更多的数据科学家也是大数据发展的重要任务。
四、隐私和安全随着大数据的蓬勃发展,隐私和安全问题也日益引人关注。
大数据集包含大量的个人信息和敏感数据,一旦被滥用和泄露,将对个人和社会带来极大的风险。
因此,确保大数据的隐私和安全是大数据应用的必要条件。
制定相关政策和法规、加强数据加密和安全措施、提高用户对隐私的意识等都是保护隐私和安全的关键措施。
五、合作与共享大数据的应用往往需要跨领域、跨组织的合作。
数据的收集和分析需要各方的共同努力和协作。
同时,促进数据的共享和开放也是大数据发展的重要方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们已经给大家介绍了大数据在企业运营的不同层面的应用场景。
了解了这些应用场景后,企业比较关心的是,如果企业实施大数据战略,如何规划、如何实施、如何保障大数据的相关工作可以顺利开展。
本文将试图解决这些问题。
我们认为,企业要实时大数据战略,需要从五大关键方面规划:1.制定大数据规划找准切入点;2.强化大数据领导力设立CDO;3.设计合理的大数据组织结构;4.搭建富有执行力的大数据团队;5.用制度和文化保障大数据实施。
本文将从这五大方面展开。
1、制定大数据规划找准切入点成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑这四大方面,管理者需要在这四方面做好规划,才能给企业带来更好的业务价值。
首先是应用场景,企业需要确定不同业务投入大数据的优先级,确定大数据的切入点。
企业需要优先考虑业务的哪些方面投入大数据可以为企业提升绩效。
在《大数据应用于企业运营》中,我们已经介绍了常见的大数据应用场景,包括业务运营监控、用户洞察与用户体验优化、精细化运营和营销、业务市场传播、经营分析等常见的方面。
当然在人力资源、IT运维以及财务等方向也可以引入大数据。
企业高管需要和各业务的整体负责人、数据专家一起开展研讨会,分析哪些业务投入大数据可以使得业务的绩效提升最为显著,从而确定不同业务投入大数据的优先级,找准大数据的切入点。
“数据能够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升”这些问题很重要,一开始就必须提出来。
每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。
企业高管实施大数据战略的时候需要高度重视这一步,但在国内很多企业往往忽略的这一方面,投入大数据往往不是以提升业绩导向,而是以学术导向,使得很多企业实施大数据的看不到数据对企业绩效提升,从而使得大数据战略流产。
第二方面是数据产品。
在确定了大数据的业务投入优先级后,我们需要考虑的是如何通过数据产品来帮助提升业务的绩效。
为什么是“数据产品”而不是“数据工具”,这是因为“数据产品”比“数据工具”更加强调易用性和用户体验。
数据和分析模型本身的输出可能会比较复杂,比较难理解,这样往往导致经理或者一线员工等数据用户不能理解,更称不上运用。
所以,只有数据产品在业务具体的场景运用的时候,以非常简单易用的方式来呈现,才能让更多的数据用户使用。
企业数据用户在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮忙提升绩效,不会太关注大数据这些产品背后的逻辑、分析模型等“黑洞”。
如果我们在提供数据产品的时候需要数据用户理解很多“黑洞”,那么数据一定运用不起来,数据的价值就会大打折扣。
比如,数据产品可以告诉营销人员,您这次合作的营销推广渠道有所带来的用户40%是作弊而来,我们把这些作弊渠道带过来的用户叫“假量”,数据产品不需要告诉营销人员“假量”是如何计算的,但知道结果和优化方向即可。
或者数据产品可以直接告诉营销人员哪些产品和其他产品可以做交叉销售,如果这些产品实施交叉销售,可以进一步提高销售额。
第三方面是数据模型。
数据产品背后的“黑洞”是数据模型。
数据的堆砌不会创造太多的业务价值,需要数据模型、数据挖掘的方法来实现海量数据的商业洞察。
常见的模型如预测和分类。
在预测方面,如通过高级的模型来预测哪些用户可能会付费,他们的特征是什么,经常在什么地方出没;通过数据模型来预测付费客户的数量,以提前发现考核期结束后付费客户数量和KPI的差距以及优化方向;通过预测模型来洞察用户的未来购买需求;在分类模型方面,我们可以通过分类模型结合大数据实现更准确更实时的用户细分;或者通过分类模型对不同价值的客户进行合理的分类,确定服务的优先级和服务内容。
企业在制定大数据战略方向时,需要介入数据专家根据应用场景和数据产品的输出来选择模型以及优化模型,从而确定模型研发的方向和优先级。
第四方面是数据资产。
有了应用场景、数据产品和数据模型这三大方面,我们就能更清楚的知道为了实现这三大方面,我们需要哪些数据,什么数据是企业现在拥有,什么数据可以通过合作产生,什么数据需要外部整合,什么数据需要进行购买或者投资。
有了前面这三大方面(应用场景、数据产品和数据模型)的规划,大数据的采集、整合、管理的策略便能比较容易理清头绪和相应的规划。
当我们合理的整理企业所拥有的数据,并整合有利于业务发展的外部的数据,形成系统化的管理,才能很好的形成企业的数据资产。
但在国内,最大的问题常常是各业务部门、各事业部以及职能部门的数据经常各自为政,数据存放在不同的数据库中,数据无法整合打通,企业内部形成各种孤岛,导致企业数据资产无法发挥整合效益,数据资产流失。
要让企业的数据成为长期的数据资产,企业高管则需牵头规划,整合不同业务部门、不同事业部的数据,推动建设高数据质量的数据治理标准。
值得注意的是,为了加快大数据的推进速度,企业高管同时需要确定哪些方面自己实现,哪些方面委托第三方实现,哪些方面需要购买。
在数据产品和数据模型方向,不一定所有工作都需要内部员工实现。
领导层需要根据时间和自身资源(尤其是人力资源)的情况判断,哪些数据产品自己开发、哪些数据产品可以委托第三方公司开发、哪些数据模型自己开发、哪些数据模型委托第三方公司开发。
在收集外部数据的时候,我们既可以组建自己的团队进行数据收集,或者委托第三方公司帮忙收集,或者直接采购,或者收购相关的数据公司,企业需要根据自身情况进行合理的规划。
2、强化高管团队大数据能力,设立数据CDO在互联网和大数据高速发展的时代,大数据正在深刻地改变商业的前景,如果企业要想抓住这个机遇,企业高管的数据决策力,数据管理能力也需要加强。
抓住和大数据相关的机会可以增加企业营收、提高企业运营效率,甚至开拓出全新业务。
大数据在推进的过程中,最关键是要高管重视,高管重视不仅仅是嘴上说说,而是要考虑在决策层有强化数据方向的决策力和领导力,否则企业很难把大数据用好。
如果不增加新的数据高管力量,很多组织的大数据大计将难以启动。
因此,高管团队中需要有专人负责制定大数据战略、跟进、监控和指导大数据战略的实施。
如果没有在高管团队设立相关的数据负责人的职位CDO(首席数据官),则很难把数据分析和数据挖掘所发现的机会应用于企业战略层的业务发展决策以及相应的组织层面的变革。
所以,我们建议,如果企业确实要推动大数据,一定要考虑设立CDO职位。
这里面还有一个比较重要的问题是:CDO是向CEO汇报还是COO汇报或者是向CTO汇报。
企业往往陷入一个误区,觉得数据是技术活,所以不少企业设立数据高管后,让数据高管直接向CTO汇报。
这样的做法最大的问题是数据和业务还是有较大的脱节。
我们建议是,数据高管应该向COO汇报或者CEO汇报。
这样数据才能离业务更近,更能敏捷的应用于业绩的提升上,而不是躲在技术后面。
我们所看到的大数据运用的较好的企业,数据负责人经常和业务负责人一起制定公司大数据实施计划,一起推进大数据在业务绩效提升。
CDO是一个综合能力要求非常高的职位。
CDO主要是负责根据企业的战略发展需求,CDO需要跟各业务负责人有很好的互动,深入了解业务,在此基础上,制定在数据应用场景、数据产品化、数据建模、数据资产管理的战略并推动实施,在实施数据战略的过程中,梳理企业的数据化思维方式,推动构建相应的数据企业文化和制度,使得大数据可以有效的促进业务绩效的提升,企业运营效率的提升,甚至是新商业模式的变革。
3、设计合理的大数据组织架构企业的组织结构是企业战略能够顺利实施的基础,所以,大数据团队合理的在组织架构设置对于大数据战略能否成功实施尤为关键。
国内很多企业往往忽略的这一方面。
很多企业设立数据团队缺乏统一的规划,哪个事业部需要数据人员则在该事业部(或业务部门)设立,如下图的“组织结构1”,这种组织架构是国内最常见的,这种组织架构最大的问题是数据分散,缺乏统一管理和整合,企业内部各事业群(或业务部门)数据各自为政,形成数据孤岛,数据无法整合使用,导致数据资产流失。
另一种常见的做法是在公司只设立一个中央数据部门,该数据部门统一服务各个事业部(或业务部门),各个事业部(或业务部门)没有数据人员或者团队,如图中的“组织结构2”。
这种组织架构的问题在于数据虽然集中管理,但数据远离业务,导致很多数据人员不理解业务,无法挖掘数据的价值,无法通过数据很好的辅助业务提升绩效或者运营效率。
由于数据人员无法理解业务,导致数据库中存储的很多数据变成“死”数据,数据的业务含义少有人理解,数据的价值便容易流失。
我们认为较为合理的数据团队在组织架构应该这样设立(如图中的组织架构3):首先,设立公司级的中央数据部门,集中存储和管理数据;其次是每个事业部(或业务部门)设立数据团队;第三是在总办设立CDO的岗位。
这样的好处在于数据能够集中管理,数据贴近业务,可以很好的发挥数据的价值;同时,在总办(高管团队)设立CDO岗位,可以让数据更好的为决策层服务,数据分析所发现的商业价值也可以更快的应用于业务战略调整。
大家比较关心的是,在这个组织结构下,中央数据部门和各事业部(或业务部门)的数据团队有何差异。
我们可以从两大方面来区分:(1)从汇报关系的差异来看事业部的数据团队负责人向所属事业部的总负责人汇报,中央数据部门的负责人向CDO汇报,这样的汇报关系的好处在于,前者让数据能为具体的事业部服务辅助提升业绩,每个事业部必然有其不同的数据分析重点,这样可以让数据服务更有针对性,后者让数据更有大局观,能为总办做深度的数据洞察服务。
(2)从团队工作职责差异来看中央数据部门负责数据的规范化集中存储和管理,负责公司各业务线数据的整合打通,形成公司级统一的用户(客户)画像,负责标准化的数据产品并应用到各业务线中,形成深度的公司级的数据模型和算法,做出公司集团层面视角的分析和洞察;事业部中的数据团队负责该事业群的日常统计分析和事业群专题类的深度洞察,并辅助事业群的技术人员合理的把数据规范的上报到中央数据部门,与中央数据部门合作,共同深刻理解该业务的数据结构、做更精细且与本部门关联性更高的用户画像等与业务关联度更高的数据工作,推动该事业群所有数据的集中化到中央数据部门,并辅助推动公司级的数据产品应用到本业务部门或者向中央数据部门提出数据产品化、数据建模的需求。
4.搭建有效的大数据团队人才是大数据战略实施至关重要的方面,因此,设置符合大数据能力要求的团队显得尤为重要。
如果组织缺乏合适的人才或能力,大数据战略实施的结果很可能会令人沮丧。
因此,企业做好相应的人才规划,按照合理的规模和构成来建设人才库。
在上文提到,在合理的大数据组织架构下,有两类数据团队,一类是各事业部中的数据团队;第二类是中央数据部门的数据团队。