分类加法计数原理与分步乘法计数原理(一)

合集下载

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

√A.9 B.2
C.20
D.6
(2)从A村去B村的道路有3条,从B村去C 村的道路有2条,从A村经B村去C村,不同的 路线有 ( )条.
A.3 B.4
C.5
√D.6
3.解答题
(1)由数字l,2,3,4,5可以组成多少个允 许重复数字的三位数.
解:
由于此三位数的数字允许重复,分三步: 百、十、个位数各有5种取法, 所以可以组成
如果完成一件事有n种不同方案,在每一 类中都有若干种不同方法,那么如何计数呢?
2、分步乘法计数原理
用前6个大写英文字母和1~9九个阿拉伯 数字,以A1,A2,…,B1,B2,…的方式 给教室里的座位编号,总共能变出多少个不 同的号码?
解答
由题意画图如下:
字母 A
数字
1 2 3 4 5 6 7 8 9
A.48个
分析:
B.36个
C.24个
D.18个
先分类,再分步,据题意,当个位数是2时, 万位数是3,4,5,其他随便,共有 3×3×2×1=18种;当个位数是4时,万位数是2, 3,5,其他随便,共有3×3×2×1=18种
所以共有36种.
课堂练习
1.填空
(1)从甲地到乙地有2种走法,从乙地到丙地有4 种走法,从甲地不经过乙地到丙地有3种走法,则 从甲地到丙地的不同的走法共有 __1_1___种.
高考链接
1(202X年福建卷7)某班级要从4名男生、2名 女生中选派4人参加某次社区服务,如果要求至少 有1名女生,那么不同的选派方案种数___A__ .
A. 14 B. 24
C. 28
D. 48
先分类,再分 步!
2. (202X年四川文科第9题)用数字1,2,3, 4,5可以组成没有重复数字,并且比20000大的 五位偶数共有______.B

分类加法与分步乘法计数原理-PPT

分类加法与分步乘法计数原理-PPT
(1)4+3+2=9(种)
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值

高中数学新教材选择性必修第三册《6.1分类加法原理和分步乘法原理》课件

高中数学新教材选择性必修第三册《6.1分类加法原理和分步乘法原理》课件

§6.1 分类加法计数原理与分步乘法计数原理(二)
学习目标
巩固分类加法计数原理和分步乘法计数原理,并能应用这两个计数 原理解决实际问题.
问题导学
新知探究 点点落实
1.两计数原理的联系 分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同 方法的种数问题. 2.两计数原理的区别 分类加法计数原理针对的是分类 问题,其中各种方法相互独立,用其中任 何一种方法都可以做完这件事,分类要做到 不重不漏;分步乘法计数原理 针对的是分步 问题,各个步骤中的方法相互依存,只有各个步骤都完成才 算做完这件事,分步要做到步骤 完整 .
反思与感悟
对于组数问题,应掌握以下原则: (1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键. 一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素) 优先的策略分步完成;如果正面分类较多,可采用间接法求解. (2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长, 有多少种不同的选法? 解 由题设知共有三类: 第1类,从(1)班男生中任选一名学生,有30种不同选法; 第2类,从(2)班男生中任选一名学生,有30种不同选法; 第3类,从(3)班女生中任选一名学生,有20种不同选法. 由分类加法计数原理知,不同的选法共有N=30+30+20=80(种).
§6.1 分类加法计数原理与分步乘法计数原理(一)
学习目标
1.理解分类加法计数原理与分类乘法计数原理. 2.会用这两个原理分析和解决一些简单的实际计数问题.
问题导学
新知探究 点点落实
知识点一 分类加法计数原理 第十二届全运会在中国辽宁盛大召开,一名志愿者从济南赶赴沈阳为游客 提供导游服务,每天有7个航班,6列火车. 思考1 该志愿者从济南到沈阳的方案可分几类? 答案 两类,即乘飞机、坐火车. 思考2 这几类方案中各有几种方法? 答案 第1类方案(乘飞机)有7种方法,第2类方案(坐火车)有6种方法. 思考3 该志愿者从济南到沈阳共有多少种不同的方法? 答案 共有7+6=13种不同的方法.

分类加法计数原理与分步乘法计数原理(1)

分类加法计数原理与分步乘法计数原理(1)

龙源期刊网
分类加法计数原理与分步乘法计数原理
作者:廖军
来源:《数学金刊·高考版》2014年第02期
分类加法计数原理与分步乘法计数原理是学习概率统计的基础,在高考中占有特殊的地位,大多以选择题和填空题的形式出现,有时与概率统计知识综合出现在解答题中,主要考查基础知识、基本运算与思维能力,难度不大,多为送分题.
重点难点
重点:理解分类加法计数原理与分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的问题.
难点:分类加法计数原理与分步乘法计数原理的区别.
方法突破
(1)正确使用两个原理,注意两者的区别:分类加法计数原理与分类有关,各种方法相互独立,用其中任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成了.
(2)使用两个原理时,要注意以下问题:①分类要做到“不重不漏”,分类后再分别对每
一类进行计数,最后用分类加法计数原理求和,得到总数;②分步要做到“步骤完整”,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
点评两个计数原理的混合应用是学习的难点,注意分类讨论思想的不重不漏原则.。

1.1.1分类加法计数原理与分步乘法计数原理1

1.1.1分类加法计数原理与分步乘法计数原理1

狐狸共有多少种不同的方法,可以从草地 逃回到自己的房子(安全地)
5种方法 a 1a 2 草地 a3 a5 a4
小岛
2种方法 b1
b2
房 安全地 子
问题剖析 要完成什么事情 完成这个事情要分几步
(2) 草地到安全地
两步 不能 5种 2种
每步方法能否独立完成这件事情
每步方法中分别有几种不同的方法
完成这件事情共有多少种不同的方法 5×2=10种
(1) 草地到安全地 两类 能 2种 3种
完成这件事情共有多少种不同的方法 2+3=5种
互不相容
完成一件事有两类不同方案,在第1类方案中
有m种不同的方法,在第2类方案中有n种不同的方 法,那么完成这件事共有:N=m+n 种不同的方法。
思考 原理使用的前提条件是什么?
你能举出生活中的一些分类 计数问题吗?
问1.一个书架共有三层,第1层放有4本不 同的计算机书,第2层放有3本不同的文艺 书,第3层放有2本不同的体育书。从书架 上任取1本书,有多少种不同的取法? 分析: 分三类: 第一类:从第1层取,有4种方法; 第二类:从第2层取,有3种方法; 第三类:从第3层取,有2种方法。 所以从书架上任取1本书共有 4+3+ 2 =9 种不同的取法
练1.三种作物种植在如图所示的五块实验田里, 每块实验田种植一种作物且相邻的试验田不能 种植同一种作物,不同的种植方法共有 _________种? 练2.求乘积 (a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)的展 开式的项数
练3.将标有数字1、2、3、4、5的五张卡片放 入标有数字1、2、3、4、5的五个盒子中,每 个盒子放一张卡片,且卡片上的数字与盒子的 数字均不相同,则共有多少种不同的放法?

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)


探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.

6.1分类加法计数原理与分步乘法计数原理(1)课件-2021-2022学年高二下学期数学人教A版(2


成这件事
了,才能完成这件事
区别三
各类办法之间是互斥的、并列 的、独立的
各步之间是关联的、独立的,“关 联”确保不遗漏,“独立”确保不重 复
N= m×n 种不同的方法.
无论第1步采用哪种方 法,与之对应的第2步都有 相同的方法数.
三、例题讲解 例2 设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参 加比赛,共有多少种不同的选法?
分析 选出一组参赛代表,可分两步:第一步, 选男生;第二步,选女生.
解 第一步,从30名男生中选出1人,有30种不同选择;第二步,从24名 女生中选出1人,有24种不同选择;根据分步计数原理,共有不同选法的 种数为
你能用树状图列 出所以可能的号
码吗?
方法二:由于6个英文字母中的任意一个都能与6个数字中的任意一个组成一个号 码,而且它们互不相同,因此共有6×9=54种不同的号码.
ቤተ መጻሕፍቲ ባይዱ
二、讲授新课
一般地,有如下分步乘法计数原理: 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同 的方法,则完成这件事共有:
四、巩固训练
(2)P(a,b)可表示平面上多少个第二象限的点?
解 确定第二象限的点,可分两步完成: 第一步,确定a,由于a<0,所以有3种不同的确定方法; 第二步,确定b,由于b>0,所以有2种不同的确定方法. 根据分步乘法计数原理,得到第二象限点的个数为3×2=6.
五、课堂小结
分类加法计数原理
30×24=720
三、例题讲解 例3 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放 有2本不同的体育杂志. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、 2、 3层各取1本书,有多少种不同取法?

高二上册数学《分类加法计数原理与分步乘法计数原理(1)》课时作业

第一章计数原理1.1分类加法计数原理与分步乘法计数原理(1)一、选择题1.某小组有8名男生,6名女生,要从中选出一名当组长,不同的选法有() A.48种B.24种C.14种D.12种解析:由分类加法计数原理共有8+6=14(种)选法.答案:C2.将1,2,3,…,9这9个数字填入如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种解析:根据题意,1,2,9的位置是确定的,如图所示,则数字5,6,7,8应位于a,b,c,d中的位置.第一类,若5,6在a,b位置,则7,8在c,d位置.且a=5, b=6, c=7, d =8, 或者5,6与7,8换位置,所以共2种情况;第二类,5,6在a,c位置,则7,8在b,d位置,则共有2×2=4(种)情况.综上所述,空格的填写方法共2+4=6(种),故选A.答案:A3.(2019·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.答案:B4.(2020·天津市南开中学滨海生态城学校高二期中)4名同学分别报名参加学校的手工、绘画、机器人设计三个校本课程,每人限报其中一个课程,不同报法的种数是()A.81 B.64C.24 D.16解析:∵每名同学都有3种报名方案,∴四名同学共有3×3×3×3=81种报名方案.故选A.答案:A5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种解析:第一步,先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步,从5个球里选出两个球放入刚才选到的盒子里,有10种选法;第三步,把剩下的3个球依次放入余下的3个盒子中,有3×2×1=6(种)放法.由分步乘法原理得不同的放球方法有4×10×6=240(种),故选C.答案:C二、填空题6.十字路口来往的车辆,如果不允许回头,共有________种行车路线.解析:若从西来,有南、北、东3种行车路线,同理从南、北、东来也各有3种行车路线.因此共有3+3+3+3=12种.答案:127.等腰三角形的三边均为正整数,且其周长不大于10,这样的三角形共有________个.解析:可分4类,第一类,等腰三角形底边长为1,腰长可以是1,2,3,4,共4个;第二类,等腰三角形底边长是2,腰长可以是2,3,4,共3个;第三类,等腰三角形底边长是3,腰长可以是2,3,共2个;第四类,等腰三角形底边长是4,腰长可以是3,共1个.∴共有三角形4+3+2+1=10(个).答案:108.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法有________种(用数字填空).解析:先把A,B放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D在同一盒中,只能是余下的1个盒,1种放法;若C,D在不同盒中,则必有一球在余下的1个盒中,另一球在A球或B球所在的盒中,有2×2=4(种)放法.故共有6×(1+4)=30(种)放法.答案:30三、解答题9.(2020·唐山市第十一中学高二期中)某班有男生28名、女生20名,从该班选出学生代表参加校学代会.(1)若学校分配给该班1名代表,则有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?解:(1)选出1名代表,可以选男生,也可以选女生,因此完成“选1名代表”这件事分2类:第1类,从男生中选出1名代表,有28种不同方法;第2类,从女生中选出1名代表,有20种不同方法;根据分类加法计数原理,共有28+20=48种不同的选法.(2)完成“选出男、女生代表各1名”这件事,可以分2步完成:第1步,选1名男生代表,有28种不同方法;第2步,选1名女生代表,有20种不同方法.根据分步乘法计数原理,共有28×20=560种不同的选法.10.(2020·宜昌市第二中学高二月考)已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)因为a不能取0,所以有5种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a不能取小于等于0的数,所以a有2种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。

第1讲 分类加法计数原理与分步乘法计数原理


从 21 至 30 中选 1 个号,从 31 至 36 中选 1 个号组成一注,若这个人把满
足这种特殊要求的号买全,要花( )
A.3360 元
B.6720 元
C.4320 元
D.8640 元
解析 从 01 至 10 中选 3 个连续的号共有 8 种选法;从 11 至 20 中选 2
个连续的号共有 9 种选法;从 21 至 30 中选 1 个号有 10 种选法;从 31 至
解析 答案
使用分类加法计数原理时应注意的三方面 (1)各类方法之间相互独立,每种方法都能完成这件事,且方法总数是 各类方法数相加得到的. (2)分类时,首先要在问题的条件之下确定一个分类标准,然后在确定 的分类标准下进行分类. (3)完成这件事的任何一种方法必属于某一类,且分别属于不同类的方 法都是不同的.
步,从 F→G,有 3 条可以选择的最短路径.由分步乘法计数原理可知有 6×3
=18 条可以选择的最短路径.故选 B.
解析 答案
(2)某体育彩票规定:从 01 至 36 共 36 个号中选出 7 个号为一注,每注
2 元.某人想从 01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,
合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐
标系中可表示第一、第二象限内不同的点的个数是( )
A.12
B.8
C.6
D.4
解析 第一象限内不同点共有 2×2=4 个,第二象限内不同点共有 1×2
=2 个,故共有 4+2=6 个.故选 C.
解析 答案
6.某人有 3 个电子邮箱,他要发 5 封不同的电子邮件,则不同的发送 方法有________________________种.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第01课时
1.1.1 分类加法计数原理与分步乘法计数原理(一)
学习目标
1.理解分类加法计数原理与分步乘法计数原理;2.会利用两个原理分析和解决简单的应用问题.
学习过程
一、学前准备
阅读课本P1内容,知道:(1)现实生活中的计数问题普遍存在的;(2)计算问题的思路;(3)明确本章学习的主要内容。

二、新课导学
◆探究新知(预习教材P2~P6,找出疑惑之处)
问题1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?你能说说这个问题的特征吗?
问题2:用前6个大写英文字母和九个阿拉伯数字,以的方式给教室里的座位编号,总共能编出多少个不同的号码?你能说说这个问题的特征吗?
◆应用示例
例1.(课本P2例1)在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:
A大学B大学
生物学数学
化学会计学
医学信息技术学
物理学法学
工程学
如果这名同学只能选一个专业,那么他共有多少
种选择呢?
例2. (课本P4例2)设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
例3. (课本P5例3)书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.
(1)从书架中任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
例4. (课本P5例4) 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?
◆反馈练习
1.(课本P6练1)填空:
( 1 )一件工作可以用2 种方法完成,有5 人只会用第1 种方法完成,另有4 人只会用第2 种方法完成,从中选出l 人来完成这件工作,不同选法的种数是; ( 2 )从A 村去B 村的道路有3 条,从B 村去C 村的道路有2 条,从A 村经B村到C村
的路线有条.
2.(课本P6练3)在例1中,如果数学也是A 大学的强项专业,则A 大学共有6 个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择共有6 + 4 = 10 (种) . 这种算法有什么问题?
学习评价
1.从甲地到乙地每天有直达班车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地,不同的乘车法有( )
A.12种
B.19种
C.32种
D.60种
2.若x∈{1,2,3},y∈{5,7,9},则的不同值有( )
A.2个
B.6个
C.9个
D.3个
3.某同学逛书店,发现三本喜欢的书,决定至少买其中一本,则购买方案有( )
A.3种
B.6种
C.7种
D.9种
课后作业
1.(课本P6练2)现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?
( 2 )从3 个年级的学生中各选1 人参加接待外宾的活动,有多少种不同的选法?
2.(课本P12A1)一个商店销售某种型号的电视机,其中本地的产品有4种,外地的产品有7种,要买1台这种型号的电视机,有多少种不同的选法?
3.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?
高二数学创优课教案
高中二年级《数学》选修2-3第一章:计数原理
§1.1分类加法计数原理和分步乘法计数原理(第二课时)
教材地位:
分类计数原理和分步计数原作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类
进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理由于其思想方法独特,它也是培养和发展抽象思维能力和逻辑思维能力的好素材。

教材作用:
分类计数原理和分步计数原理是解决计数问题的最基本、最重要的方法。

它起到承前启后的作用:它可以弥补列举法一一数出这个数的不足,使其计数时更加灵活,同时又为研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出组合数的两个性质,以简化组合数的计算和为推导二项式定理作好铺垫。

一、教学目标:
1、知识与技能:
(1)进一步熟悉分类计数原理与分步计数原理的内容.
(2)归纳总结分类或分步标准的确定.
(3)正确运用两个基本原理分析、解决一些实际应用题.
(4)了解基本原理在实际生产、生活中的应用.
2、过程与方法:
(1)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力.。

教学内容
两个原理的复习
1、分类计数原理和分步计数原理的概念
①分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有
N=m1+m2+…+mn种不同的方法.
②分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
2、分类计数原理和分步计数原理的共同点是什么?不同点什么?
共同点是:它们都是研究完成一件事情,共有多少种不同的方法.
不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事.
分步计数原理是“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情.
3.何时用分类计数原理、分步计数原理呢?
完成一件事情有n类方法,若每一类方法中的任何一种方法均能将这件事情从头至尾完成,则计算完成这件事情的方法总数用分类计数原理.
完成一件事情有n个步骤,若每一步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事,则计算完成这件事的方法总数用分步计数原理.
教学内容。

相关文档
最新文档