七年级(上)数学期末模拟试题 (4)
江苏省苏州市2023-2024学年七年级上学期期末数学模拟试题

江苏省苏州市2023-2024学年七年级上学期期末数学模拟试题一、单选题1.2-的相反数是( )A .2-B .2C .12-D .122.截止北京时间2022年6月11日全球新冠肺炎确诊病例超过5.32亿例,5.32亿用科学记数法表示为( )A .85.3210⨯B .753.210⨯C .90.53210⨯D .75.3210⨯ 3.如图是一个几何体的侧面展开图,则该几何体是( )A .三棱柱B .三棱锥C .五棱柱D .五棱锥4.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .55.有理数a ,b 在数轴上的对应位置如图,则下列结论正确的是( )A .ab >0B .a b <0C .a +b <0D .a -b <0 6.已知xm ﹣1﹣6=0是关于x 的一元一次方程,则m 的值是( )A .1B .﹣1C .﹣2D .27.学校早上8:20上第一节课,40分钟后下课,这节课中分针转动的角度为( ) A .180° B .240° C .270° D .200°8.下列说法正确的是( )A .具有公共顶点的两个角是对顶角B .,A B 两点之间的距离就是线段ABC .两点之间,线段最短D .不相交的两条直线叫做平行线9.《九章算术》是我国古代数学名著,卷7“盈不足”中有题译文如下:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x 钱,根据题意可列出方程( )A .8374x x +=-B .3487x x +-=C .8374x x -=+D .3487x x -+= 10.如图,在长方形ABCD 中,6cm AB =,8cm BC =,点E 是AB 上的一点,且2AE BE =.点P 从点C 出发,以2cm/s 的速度沿点C D A E ---匀速运动,最终到达点E .设点P 运动时间为s t ,若三角形PCE 的面积为218cm ,则t 的值为( )A .98或194B .98或194或274C .94或6D .94或6或274二、填空题11.14的倒数是.12.已知40a ∠=︒,则a ∠的补角等于°13.若2x 3yn 与﹣5xmy 是同类项,则m +n =.14.若x =2是关于x 的方程ax +3=5的解,则a =.15.已知关于x 的不等式()11a x ->,可化为11x a <-,试化简12a a ---,正确的结果是. 16.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.17.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为°.18.10个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报3的人心里想的数是.三、解答题19.计算: (1)1(12)(4)4-÷-⨯; (2)22115(3)4⎡⎤--⨯--⎣⎦. 20.解方程:(1)2(x ﹣3)=1; (2)124364x x x +---=. 21.解不等式145123x x --<-,并把它的解集在数轴上表示出来. 22.先化简,再求值:2xy +(﹣3x 2+5xy +2)﹣2(3xy ﹣x 2+1),其中23x =-,32y =. 23.如图,△ABC 的三个顶点均在格点处.(1)过点B 画AC 的垂线BD ;(2)过点A 画BC 的平行线AE .(请用黑水笔描清楚)24.如图,是由几个大小完全相同的小正方体垒成的几何体.(1)图中共有个小正方体;(2)请分别画出你所看到的几何体的三视图(请用黑水笔描清楚).25.甲、乙、丙三位同学合作学习一元一次不等式组,要求每位同学给出关于x的不等式.甲:我写的不等式所有解为非负数;乙:我写的不等式解集为x≤8;丙:我给出的不等式在求解过程中需要改变不等号的方向,(1)请你填写符合上述条件的不等式,甲:;乙:;丙:.(2)将(1)中的三个不等式列成不等式组,并解此不等式组.26.新冠病毒疫情初期,口罩供应短缺,某口罩生产厂家接到一批口罩定制任务,要求10天完成.如果安排第一车间单独加工,则正好如期完成任务;如果安排第二车间单独加工,则会延期5天完成.(1)为尽快完成任务,厂长安排第一车间单独加工5天后,随即安排第二车间加入一起加工,那么该厂家可以提前几天完成任务?(2)已知第一车间一天投入生产的成本是1.2万元,第二车间一天投入生产的成本是0.7万元,现有三种加工方案:方案一:第一车间单独加工;方案二:第二车间单独加工;方案三:两个车间同时加工.如果你是厂长,在以上三种方案中,应选择哪一种方案安排生产,既可以节约成本,又在规定时间内完成这批口罩加工任务?请通过计算说明理由.27.数学实践课上,小明同学将直角三角板AOB 的直角顶点O 放在直尺EF 的边缘,将直角三角板绕着顶点O 旋转.(1)若三角板AOB 在EF 的上方,如图1所示.在旋转过程中,小明发现AOE ∠、BOF ∠的大小发生了变化,但它们的和不变,即AOE BOF ∠+∠=______°.(2)若OA 、OB 分别位于EF 的上方和下方,如图2所示,则AOE ∠、BOF ∠之间的上述关系还成立吗?若不成立,则它们之间有怎样的数量关系?请说明你的理由;(3)射线OM 、ON 分别是AOE ∠、∠BOE 的角平分线,若三角板AOB 始终在EF 的上方,则旋转过程中,MON ∠的度数是一个定值吗?若是,请求出这个定值;若不是,请说明理由.28.已知数轴上有A 、B 两点,点A 表示的数为8-,且20AB =.(1)点B 表示的数为;(2)如图1,若点B 在点A 的右侧,点P 以每秒4个单位的速度从点A 出发向右匀速运动. ①若点Q 同时以每秒2个单位的速度从点B 出发向左匀速运动,经过多少秒后,点P 与点Q 相距1个单位?②若点Q 同时以每秒2个单位的速度从点B 出发向右匀速运动,经过多少秒后,在点P 、B 、Q 三点中,其中有一点是另外两个点连接所成线段的中点?。
山东省淄博市张店区2023-2024学年七年级上学期期末数学模拟试题(含答案)

....A.85︒=A.AC DF∠=∠ABC D...⨯8.如图,在66()-1,6A.6B.A.6A15.甲,乙车同时从地出发去地三、解答题(本题共8小题,请把解答过程写在答题纸上)16.计算:(1)()2212--17.如图,已知和线段,用尺规作一个三角形,使其一个内角等于α∠a ABC △BAD △BC AD (1)请判断与的数量关系,并说明理由;OA OB(1)当,且54A ∠=︒AB AC ==小明仔细阅读了通讯公司的手机话费收费套餐方案说明,发现话费与通话时间有关联.小明设采用套餐的通话费用为(元)采用套餐的通话费用为A A y B .(1)已知,两点,请直接写出,两点的距离;()2,1A -()3,3B -A B (2)如图2,已知,两点,请求出,两点的距离;(用,,()11,C x y ()22,D x y C D 1x 1y ,表达)2x 2y (3)如图3,直线与轴,轴分别交于点,,是射线上一动点,4y x =+x y E F M EF 是轴上点右边的一动点,在第一象限取点,连接,,.问N x E ()3,1P PM PN MN 的周长是否存在最小值?若存在,请求出周长的最小值;若不存在,请说明PMN △PMN △理由.图1图2图3(作出得3分,作出得α∠2α∠18.(本题共10分)△≌△(2)由(1)ABC⊥(2)作AM BC==因为,AB ACABC △AB C '△所以,,20BAE BAD ∠=∠=︒∠因为,,20BAD CAD ∠=∠=︒AD(每个图象2分)(2)由题意得,,解,得0.1150.15x x +=所以,当通话时间为300分钟时,套餐,A 图2所以,,DH x x =-图3因为,点,所以,点的坐标为()3,1P 2P 连接,交轴于点,作PP x F。
四川省达州市万源市长坝学校2023-2024学年七年级上学期期末数学模拟试题

四川省达州市万源市长坝学校2023-2024学年七年级上学期期末数学模拟试题一、单选题1.如图所示是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是()A.B.C.D.2.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2 B.4.3 C.4.4 D.4.53.下面计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.75ab+34ba=04.从一个五边形的某个顶点出发,分别连接这个点与其余各个顶点,可以将这个五边形分割成三角形的个数是()A.2个B.3个C.4个D.5个5.一元一次方程12x-1=2的解表示在数轴上,是图中数轴上的哪个点()A.D点B.C点C.B点D.A点6.为了解九年级学生的体能情况,随机抽查了30名学生,测试1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图.那么仰卧起坐的次数在2530~次的人数占抽查总人数的百分比是( )A .40%B .30%C .20%D .10%7.如图,OC 是AOB ∠的平分线,若75AOC ∠=︒,则AOB ∠的度数为( )A .145︒B .150︒C .155︒D .160︒8.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是()231x x --=+■,怎么办呢?他想了想便翻看书后的答案,方程的解是9x =,则黑色方框里的值为( ) A .1B .2C .3D .49.数轴上表示整数的点叫作整点.某数轴的单位长度为1cm ,若在这条数轴上任意画出一条长度为2024cm 的线段,则线段盖住的整点个数为( ) A .2025个B .2024个C .2025或2024个D .2024或2023个10.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题11.如图,是一个简单的数值运算程序当输入x 的值为1-时,则输出的数值为.12.如图所示是一个正方体纸盒的展开图,若在其中三个正方形的,,a b c 内分别填入适当的数,使得它们折成正方体后a 与其相对面上的数互为相反数,b 与其相对面上的数互为倒数,则a =,b =.13.若13a +与273a -互为相反数,则a=.14.规定a b cd=ad -bc ,若2253523x x -+-=6,则-11x 2+6=.15.已知有理数a ,b 满足0ab <,a b >,2a b b a +=-,则ab的值为.三、解答题 16.计算:(1)()1173.25 6.7599⎛⎫---+-+ ⎪⎝⎭;(2)()()20241110.543--+⨯÷-.17.解下列方程: (1)()432x x -=-; (2)211134x x -+-=. 18.若代数式(4x 2-mx -3y +4)-(8nx 2-x +2y -3)的值与字母x 的取值无关,求代数式(-m 2+2mn -n 2)-2(mn -3m 2)+3(2n 2-mn)的值.19.小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子. (1)共有________种添补的方法; (2)任意画出一种成功的设计图.20.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为2280cm 100cm 、,且甲容器装满水,乙容器是空的.若将甲容器中的水全部倒入乙容器中,则乙容器中的水位高度比原来甲容器的水位高度低8cm ,求原来甲容器的水位高度.21.近年来,“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n 名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n 名学生对使用计算器影响计算能力的发展看法人数统计表(1)求n 的值; (2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.22.如图,B 是线段AD 上一动点,沿A →D →A 以2cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10cm ,设点B 运动时间为t 秒(0≤t ≤10). (1)当t =2时,①AB =cm .②求线段CD 的长度. (2)①点B 沿点A →D 运动时,AB = cm ;②点B 沿点D →A 运动时,AB = cm .(用含t 的代数式表示AB 的长)(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化,若不变,求出EC 的长;若发生变化,请说明理由.23.定义一种新运算:观察下列各式:1⊙3=1×4+3=7;3⊙(-1)=3×4-1=11;5⊙4=5×4+4=24;4⊙(-3)=4×4-3=13(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a-b)⊙(2a+b),其中a=1,b=224.观察下表三行数的规律,回答下列问题:(1) 第1行的第四个数a是;第3行的第六个数b是;(2) 若第1行的某一列的数为c,则第2行与它同一列的数为;(3) 已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.25.如图,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN (用m,n表示).(3)利用发现的结论解决下列问题:数轴上表示x的点P与点E之间的距离是3,求x的值.。
人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题一、选择题(共10小题,每小题3分,共30分)1.﹣(﹣3)的绝对值是()A.﹣3B.C.3D.﹣2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A.8×108B.8×109C.0.8×109D.0.8×10103.下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个4.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元6.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣17.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm8.若关于x的方程x m﹣1+2m+1=0是一元一次方程,则这个方程的解是()A.﹣5B.﹣3C.﹣1D.59.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>一b C.a+b>0D.ab<010.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d二、填空题(共6小题,每小题3分,共18分)11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是.12.若∠α的补角为76°28′,则∠α=.13.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=.14.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有间教室.15.现定义某种运算“☆”,对给定的两个有理数a,b,有a☆b=2a﹣b.若||☆2=4,则x的值为.16.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.三、解答题17.(10分)计算(1)(﹣1)2018×5+(﹣2)3÷4(2)()×24﹣÷(﹣)3﹣|﹣25|.18.(10分)解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)19.(6分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.20.(8分)已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.21.(6分)一个角的补角比它的余角的3倍小20°,求这个角的度数.22.(10分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC 和∠COB的度数.23.(10分)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了9小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.24.(12分)某地区居民生活用电基本价格为每千瓦时0.40元,为了提倡节约用电,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)某户八月份用电100千瓦时,共交电费43.20元,求a.(2)若该用户九月份的平均电费为0.42元,则九月份共用电多少千瓦时?应交电费是多少元?2018-2019学年内蒙古巴彦淖尔市临河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】先根据相反数的定义化简,再根据正数的绝对值等于它本身解答.【解答】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C.【点评】本题考查了绝对值的性质,相反数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80亿=8×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,故②错误;③3ab﹣2ab=ab,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B.【点评】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.【分析】先设成本为x元,则获利为20%x元,售价为0.8×240元,从而根据等量关系:售价=进价+利润列出方程,解出即可.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.即成本为160元.故选:B.【点评】本题考查一元一次方程的应用,是中考的热点,对于本题来说关键是设出未知数,表示出售价、进价、利润,然后根据等量关系售价=进价+利润列方程求解.6.【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.7.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.8.【分析】根据一元一次方程的定义求出m的值,代入后求出方程的解即可.【解答】解:∵x m﹣1+2m+1=0是一元一次方程,∴m﹣1=1,∴m=2,即方程为x+5=0,解得:x=﹣5,故选:A.【点评】本题考查了对一元一次方程的定义和解一元一次方程的应用,关键是求出m的值.9.【分析】根据数轴上点的位置判断出a与b的正负,比较即可.【解答】解:由数轴上点的位置得:b<0<a,且|a|<|b|,∴|a|<﹣b,a+b<0,ab<0,故选:D.【点评】此题考查了数轴,绝对值,以及有理数的加法与乘法,熟练掌握运算法则是解本题的关键.10.【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据角的和差计算即可.【解答】解:∠2=∠AOB﹣∠1=90°﹣35°=55°.故答案为:55°【点评】本题主要考查了角的和差,属于基础题,比较简单.12.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.13.【分析】解方程x+5=7﹣2(x﹣2)得到x的值,代入6x+3k=14,得到关于k的一元一次方程,解之即可.【解答】解:解方程x+5=7﹣2(x﹣2)得:x=2,把x=2代入6x+3k=14得:12+3k=14,解得:k=,故答案为:【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】设有x间教室,根据若每间教室安排20名学生,则缺少3间教室,若每间教室安排24名学生,则空出一间教室,可列方程求解.【解答】解:设有x间教室.由题意,得:20(x+3)=24(x﹣1),解得x=21.故答案为:21.【点评】本题考查了列一元一次方程解实际问题的运用,解答时根据学生人数不变建立方程是关键.15.【分析】根据“a☆b=2a﹣b”,设||=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【解答】解:设||=m,则m☆2=4,根据题意得:2m﹣2=4,解得:m=3,则||=3,即=3或=﹣3,解得:x=﹣5或7,故答案为:﹣5或7.【点评】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.16.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.【点评】本题考查了两点间的距离.解题时,注意“数形结合”数学思想的应用.三、解答题17.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)(﹣1)2018×5+(﹣2)3÷4=1×5+(﹣8)÷4=5﹣2=3;(2)()×24﹣÷(﹣)3﹣|﹣25|=15﹣16﹣÷(﹣)﹣25=15﹣16+2﹣25=﹣24.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】原式去括号合并得到最简结果,将m的值代入计算即可求出值.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.21.【分析】首先设这个角的度数为x°,则这个角的补角为(180﹣x)°,余角为(90﹣x)°,根据题意列出方程即可.【解答】解:设这个角的度数为x°,由题意得:180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数为35°.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角22.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.【分析】设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,根据顺流航行的时间+逆流航行的时间=9h建立方程求出其解即可.【解答】解:设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,由题意,得解得:x=30,则A、B两码头间的距离为:30+10=40(km)答:A,B两地之间的路程是40km.【点评】本题考查了一元一次方程的应用,航行问题的数量关系的运用,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,列一元一次方程解实际问题的运用,解答时根据行程问题的数量关系建立方程是关键.24.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出.【解答】解:(1)根据题意可得:0.4a+0.4(1+20%)(100﹣a)=43.20解得:a=60答:a为60(2)设九月份共用电x千瓦0.42x=0.4×60+0.48×(x﹣60)解得:x=80∴0.42×80=33.6元答:九月份共用电80千瓦时,应交电费是33.6元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
苏科版数学七年级上学期期末测试题 (4)含答案

苏科版数学七年级上学期期末测试题一.选择题(共8小题,每小题3分,共24分。
将正确答案的序号填在答题................纸的相应位置..。
)1.的倒数是(▲)A.﹣2 B.2 C .D .2.计算:(﹣)2﹣1=(▲)A .﹣B .﹣C .﹣D.03.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(▲)A.1.8×105B.1.8×104C.0.18×106D.18×1044.下列运算正确的是(▲)A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a35.如图,线段AB=8cm,M为线段AB的中点,C为线段MB上一点,且MC=2cm,N为线段AC的中点,则线段MN的长为(▲)A.1 B.2 C.3 D.4(第5题图)(第6题图)6.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是(▲)A.传B.统C.文D.化7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程(▲)A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.用棋子摆出如图所示的一组“口”字,按照这种方法照,则摆第n(n为正整数)个“口”字需用棋子(▲枚.A.4n B.4n﹣4 C.4n+4 D.n2二.填空题(共8小题,每空3分,共24分。
将答案填在答题纸的相应位置.............。
)9.某天的最高气温为8℃,最低气温为﹣2℃,则这天的温差是▲℃.10.若∠α=31°42′,则∠α的补角的度数为▲.11.若x2y m与2x n y6是同类项,则m+n= ▲.12.若关于x的方程2x+a=5的解为x=﹣1,则a= ▲.13.已知4a+3b=1,则整式8a+6b﹣3的值为▲.14.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB= ▲度.15.如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于▲.16.如图,直线AB与CD相交于E点,EF⊥AB,垂足为E,∠1=125°,则∠2的度数是▲.(第14题图)(第16题图)苏州路实验学校七年级数学(上)期末试卷答题纸总分:150分时间:100分钟一.选择题(共8小题,每小题3分,共24分。
2024-2025学年新北师大版(2024年新教材)七年级上册数学期末达标测试卷含解析

北师大版(2024年新教材)七年级上册数学期末达标测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10103.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣96.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=07.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.17.(6分)先化简,再求值:,其中.18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣【答案】A2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×1010【答案】B3.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.【答案】C4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣9【答案】D6.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=0【答案】C7.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩【答案】D8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【答案】B9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7【答案】D二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.【答案】见试题解答内容12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.【答案】19.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.【答案】7.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.【答案】120°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.【答案】.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.【答案】(1)25;(2)﹣5.17.(6分)先化简,再求值:,其中.【答案】见试题解答内容18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【答案】见试题解答内容19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.【答案】(1)抽样调查,60;(2)18°;(3)305.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.【答案】(1)40°;(2)45°.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)买卡合算,小张能节省400元;(2)这台冰箱的进价是2480元.22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.【答案】(1)67.5°;(2)①∠MCN的度数不改变,∠MCN的度数为67.5°.理由见解析;②t=15或25.。
天津市河西区2023-2024学年七年级上学期期末数学模拟试题
天津市河西区2023-2024学年七年级上学期期末数学模拟试题一、单选题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果( ) A .70.132610⨯ B .61.32610⨯ C .513.2610⨯ D .3132610⨯ 3.如图,核酸检测时,为了让队伍排列整齐,在队伍的两端拉了一条直线AB ,这样做的依据是( )A .垂线段最短B .两点确定一条直线C .线段可以度量D .两点之间,线段最短4.如果关于x 的方程3x ﹣1=kx 的解为1,那么k 的值为( )A .12B .1C .2D .45.如图,BAC ∠和DAE ∠都是直角,108BAE ∠=︒,则DAC ∠的度数为( )A .36︒B .54︒C .72︒D .108︒6.若单项式23m x y -与7n xy 是同类项,则m n +的值是( )A .2B .3C .4D .57.下列方程变形正确的是( )A .由21x -=得2x =-B .由13x -=得31x =-C .由312x -=得23x =-D .由27x +=得72x =+8.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b ->B .0a b +>C .0a b >D .0ab >9.“鸡兔同笼”问题是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题:今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有多少只鸡和兔?如果我们设有x 只鸡,则可列方程( )A .24(35)94x x +-=B .42(35)94x x +-=C .24(94)35x x +-=D .42(94)35x x +-=10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第100个图形中⊙的个数为( )A .298B .302C .304D .305二、填空题11.比较大小:45-78-.(用“>”“=”或“<”连接) 12.若1x =是关于x 的方程31ax bx +=的解,则39a b +=.13.单项式232xy z -的次数是.14.已知221a a -=,则代数式2364a a --的值是.15.如图,10AB =,7CB =,D 是AC 的中点,DB 的长是.16.如图,将三个同样大小的正方形的一个顶点重合放置,已知45EOF ∠=︒,30AOB ∠=︒,那么下列说法中正确的有.(填写序号)①EFO ∠与BOC ∠互为余角;②1∠与AOF ∠互为补角;③115∠=︒;④OE 平分DOF ∠.三、解答题17.计算:(1)()()23716--+-; (2)4111623⎛⎫--⨯- ⎪⎝⎭. 18.解下列方程:(1)2(21)(51)6x x +--= (2)212143x x -+=- 19.先化简,再求值:()()22224223x xy y x xy y -++--,其中12x y =-=,.20.如图,已知B 、C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6BM =,求AD 的长.21.如图,已知∠BOC =2∠AOB ,OD 平分∠AOC ,∠BOD =14°,求∠AOC 的度数.22.“水是生命之源”,某自来水公司为鼓励用户节约用水,对“一户一表” 居民用水按以下规定收取水费:例如:某用户11 月份用水16 吨,共需交纳水费为:()⨯+-⨯+⨯=元.10 2.61610 3.5160.859.8请根据以上信息,回答下列问题:(1)若小聪家11 月份用水12 吨,那么共需交纳水费多少元?(2)若小明家11 月份共交纳水费64.1元, 那么小明家11 月份用水多少吨?(3)若小聪和小明家12 月份共用水23 吨,共交纳水费81.8元,其中小聪家用水量少于10 吨,那么小聪家和小明家12 月份各用水多少吨?23.已知线段AB=m(m为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,若AB=6,当点C恰好在线段AB中点时,则PQ=;(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ 与1的大小关系,并说明理由.。
2022-2023学年上学期七年级数学期末模拟测试卷(04)
2022-2023学年上学期七年级数学期末模拟测试卷(04)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.2B.﹣C.20%D.π2.计算:(﹣1)2022+(﹣1)2021的结果是()A.﹣2B.2C.0D.﹣13.单项式的系数和次数分别是()A.,2B.,3C.﹣,2D.﹣,34.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.>0B.ab>0C.a<b D.a﹣b>05.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是()A.E B.C C.D D.A6.钟面上3点20分时,时针与分针的夹角度数是()A.30°B.25°C.15°D.20°7.下列说法中正确的有()①对顶角相等;②点到直线的垂线段叫两点的距离;③两点之间的所有连线中,垂线段最短;④过直线外一点有且只有一条直线与已知直线平行.A.0个B.1个C.2个D.3个8.按一定规律排列的一列数依次为,,……按此规律排列下去,这列数的第9个数是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分。
不需写出解答过程,请将答案直接填写在答题卡相应位置上)9.比﹣2小8的数是.10.亚洲陆地面积约为44000000平方千米,将44000000用科学记数法表示为.11.比较大小:(填“>”,“<”或“=”).12.已知x=1是一元一次方程2x﹣a=3的解,则a的值是.13.若a2﹣2a=1,则3a2﹣6a+5=.14.某眼镜店假期间开展学生配镜优惠活动.某款式眼镜的广告如下,那么广告牌上填的原价是元.原价:______元暑假八折优惠现价:160元15.如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=度.16.如图,点A、O、B都在直线MN上,射线OA绕点O按顺时针方向以每秒4°的速度旋转,同时射线OB绕点O按逆时针方向以每秒6°的速度旋转(当其中一条射线与直线MN叠合时,两条射线停止旋转).经过秒,∠AOB的大小恰好是60°.三、解答题(本大题共9小题,共72分。
河北省石家庄市2023-2024学年七年级上学期期末数学模拟试题
河北省石家庄市2023-2024学年七年级上学期期末数学模拟试题一、单选题1.如果水库水位上升3m 记作3m +,那么水库水位下降2m 记作( ) A .2-B .4-C .2m -D .4m -2.()3--的绝对值是( ) A .3-B .13C .13-D .33.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ) A .③⑤⑥B .①②③C .①③⑥D .④⑤4.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( )A .0B .2C .0或2D .-25.甲商场商品一律打八折销售,乙商场商品一律每满100元送20元的购物券.李阿姨打算买一台550元的早餐机,在( )商场购买更加划算. A .甲B .乙C .都一样D .无法确定6.如图,点A ,O ,B 在一条直线上,∠AOC =∠BOC ,若∠1=∠2,则图中互余的角共有( )A .5对B .4对C .3对D .2对7.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022B .2022-C .2021D .2021-8.体重指数(BMI )是体重(千克)与身高(米)的平方的比值,是反映人体胖瘦的重要指标(如表所示).小张的身高1.8米,体重50千克,则小张的体重状况是( )A .消瘦B .正常C .超重D .肥胖9.如图,已知△AOB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°10.如果α∠和∠β互补,且αβ∠>∠,则下列表示∠β的余角的式子中:①90β︒-∠;②90α∠-︒;③1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( )A .4个B .3个C .2个D .1个11.某食品厂中秋节前要制作一批盒装月饼,每盒有2块大月饼和4块小月饼,制作1块大月饼要用0.05kg 面粉,制作1块小月饼要用0.02kg 面粉,若现有面粉540kg ,设可以生产x 盒盒装月饼,则可列方程为( )A .0.0220.054540x x ⨯+⨯=B .0.0520.024540x x ⨯+⨯=C .0.050.02540x x +=D .24540(0.020.05)x x +=⨯+12.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .6070二、填空题13.已知5x 2y |m|-1(2)2m -y+3是四次三项式,则m=.14.期中考试布置教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很容易就整整齐齐了.这其中蕴含的数学道理是.15.在直线m 上取P ,Q 两点,使10cm PQ =,再在直线m 上取一点R ,使2cm PR =,M ,N 分别是PQ ,PR 的中点,则MN =.16.在长为2,宽为x (12x <<)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为.三、解答题 17.计算:(1)()()241110.5233⎡⎤---⨯⨯--⎣⎦; (2)()247113131********34⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.解方程(1)3x +7=32﹣2x ; (2)2157123y y ---= 19.夏季快要到了,某服装厂为我校学生们新订制了一批夏季校服,已知校服每套的成本是130元,为了合理定价,卖出时以每套150元为标准,超过150元的部分记为正,不足150元的部分记为负.每批的销售量以50套为标准,超过或不足的数量分别用正、负来表示,服装厂的老板记录了五批校服的售价情况和售出情况:(1)这五批校服中,哪批校服售出销售额最高?最高销售额是多少?(2)这五批校服销售后,共盈利多少元?20.已知2121304x y ⎛⎫++-= ⎪⎝⎭,求()22463421x y xy xy x y ⎡⎤----+⎣⎦的值. 21.如图,114AOB ∠=︒,OF 是AOB ∠平分线,1290∠+∠=︒,求1∠的度数.22.如图,B ,C 两点把线段AD 分成2:3:4三部分,M ,N 分别是AD ,AB 的中点,CD 8cm =,求MN 的长.23.“绿水青山就是金山银山”.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4 mg ,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62 mg .(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?24.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(∠MON=90︒).(1)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分∠BOC ,问:ON 是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在∠BOC 的内部,如果∠BOC=60︒,则∠BOM 与∠NOC 之间存在怎样的数量关系?请说明理由.。
七年级(上)期末目标检测数学试卷(4套)及答案
D.C.B.A.七年级(上)期末目标检测数学试卷(一)一、精心选一选(每题2分,共20分)1.在跳远测试中,及格的标准是4.00米,王菲跳出了4.12米,记为+0.12米,何叶跳出了3.95米,记作( )A.+0.05米B.-0.05米C.+3.95米D.-3.95米 2.用大小一样的正方体搭一几何体(左图), 该几何体的左视图是右图中的( )3.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定( )A.1根B.2根C.3根D.4根 4.下列各式中运算正确的是( )A.156=-a aB.422a a a =+C.532523a a a =+D.b a ba b a 22243-=-5.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。
若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水. 请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水( ) A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升6.某同学解方程5x -1 +3时,把 处数字看错得=x ,他把 处看成了( )A.3 B.-9 C.8 D.-8 7.下列展开图中,不能围成几何体的是( )8.关于x 的方程m x 342=-和m x =+2有相同的解,则m 的值是( ) A. -8B. 10C. -10D. 89.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家( ) A.不赔不赚 B.赚了8元 C.赚了10元 D.赚了32元10.一列数:0,1,2,3,6,7,14,15,30,__ __,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接43-着往下写,那么这串数的最后三个数应该是下面的( )A .31,32,64B .31,62,63C .31,32,33D .31,45,46 二、细心填一填(每题3分,共30分)11.我市12月中旬的一天中午气温为5℃,晚6时气温下降了8℃,则晚6时气温为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学期末模拟试题(4)
(满分:100分,时间:90分钟)
班级:___________姓名:______________学号:__________ 得分:__________ 一、填空题(每小题2分,共20分)
1. 的相反数是4, 的绝对值是3。
2. “x 平方的3倍与﹣5的差”用代数式表示为: 。
当x=﹣1时,代数式的值为。
3.2004年4月4号,美国“勇气号”宇宙飞船成功登陆火星,从火星发回的第一张照片的信号经过9分钟到达地球,信号传输的速度是300000/km
秒。
则火星到地球有 km (用科学计数法表示)。
4.92.37°= °
′ ″。
5.M 、N 是数轴上的二个点,线段MN 的长度为3,若点
M 表示的数为﹣1,则点N 表示的数为 。
6.一根长长的电线上停了三只小鸟,我们可以近似地看作一条直线上有三个点A 、B 、C (如图所示)
(1)请写出图中所有的线段,他们分别是 ; (2)若点B 是线段AC 的中点,cm BC 50=,则=AC cm 。
7.华氏温度f (℉)与摄氏温度
c (℃)之间存在着如下的关系:325
9
+=c f 。
如果某地某天早晨的摄氏温度为5℃,那么此地这天早晨的华氏温度是 ℉。
得到图③。
按上面的方法继续下去,第n 个图形中有 个三角形(用含字母n 的代数式表示)。
10.写出一个满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解是3;这样的方程是 。
二、选择题(每小题3分,共18分)
11.正方体的平面展开图可能是下列图形中的( )
D ()
C ()B ()A ()
12.下列图形中可能错误的是( )
(A )过一点有且只有一条直线与已知直线平行;(B )过一点有且只有一条直线与已知直线垂直;
M
(C )两条直线相交,有且只有一个交点;(D )若两条直线相交所成直角,则这两条直线互相垂直。
13.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为( )
(A )26元 (B )27元 (C )28元 (D )29元 14.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体 中既可以堵住圆形空洞,又可以堵住方形空洞的是( )
(A ) (B ) (C ) (D ) 15. 设p =2y -2,q =2y+3,且3p -q =1,则y 的值为 ( ) A.
5
2
B.
2
5
C. -
52 D. -2
5 16.观察下列算式:22=1
,422
=,823=,1624=,3225=,6426
=,12827=,25628=……
根据上述算式中的规律,你认为20
2的末位数字是 ( ) (A )2 (B )4 (C )6 (D )8 三、解下列各题(每小题6分,共24分)
17.)4
11(30)43
()4(3
-÷--⨯-; 18.化简:)6(4)2(322-++--xy x xy x
19.解方程:)12(5111+=+x x ; 20.解方程:16
1
5312=--+x x
四、(21题6分,22题6分,共12分)
21.如图,在方格纸中,直线AC 与CD 相交于点C. ⑴ 过点E 画直线EF ,使EF ⊥AC ;
⑵ 分别表示(1)中三条直线之间的位置关系;
⑶ 根据你观察到的EF 与CD 间的位置关系,用一句话来解释你的结论.
22.已知AOB ∠与BOC ∠有一条公共边OB ,并且BOC AOB ∠>∠ (1)画出所有符合题意的图形;
(2)写出你所画图形中AOB ∠、BOC ∠与AOC ∠之间的等量关系。
五、(23题6分,24题6分,共12分) 23.在如图所示的2005年1月份日历中,
(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为 ;
(2)这个长方形的方框圈出的9个数的和能为216吗?答 :(填“能”或“不能”); (3)如果任意选择如上的阴影部分,那么其中的四个数a 、b 、c 、d 又有什么规律呢?请用含的a 、
b 、
c 、
d 等式表示: 。
(其中a 、b 、c 、d 四个数之间的大小关系是d c b a <<<,a 、b 、c 、d 整数)
24.如图,七巧板由图中标号为“1” 、“2” 、“3” 、“4” 、“5” 、“6” 、“7” 的七块板组成,七巧板是我们祖先的一项卓越创造,被称为“东方魔板”。
种各样的图形。
(1)写出图中三条互相平行的线段;
(2)请你按下列要求画出所拼的图,图中注上标号:
六、(25题6分,26题8分,共14分)
25.用若干个小立方体搭一个几何体,其俯视图和左视图如图所示,根据俯视图、左视图,请你画出该
26.据电力部门统计,每天8︰00至21︰00是用电高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?。