全国2013年1月高等教育自学考试线性代数试题

合集下载

2013年1月自学考试02198线性代数试题和答案

2013年1月自学考试02198线性代数试题和答案

线性代数---2013年1月1.设A、B为同阶方阵,则必有A、|A+B|=|A|+|B|B、AB=BAC、(AB)T=ATBTD、|AB|=|BA|正确答案:D解析:只有D选项为矩阵的性质|AB|=|BA|=|A||B|.2.设n阶方阵A、B、C满足ABC=E,则必有A、ACB=EB、CBA=EC、BCA=ED、BAC=E正确答案:C解析:因为ABC=E,可以得到矩阵AB与矩阵C互为逆矩阵,所以CAB=E矩阵A与矩阵BC互为逆矩阵,所以BCA=E。

3.设A为三阶方阵,且|A|=2,则|-2A|=A、-16B、-4C、4D、16正确答案:A解析:由矩阵的性质4.若同阶方阵A与B等价,则必有A、|A|=|B|B、A与B相似C、R(A)=R(B)D、正确答案:C解析:因为等价矩阵有相同的等价标准型,故秩相等。

5.设α1= (1,0,0)、α2=(2,0,0)、α3=(1,1,0),则A、α1,、α2、α3线性无关B、α3可由α1、α2线性表示C、α1可由α2、α3线性表示D、α1、α2、α3的秩等于3正确答案:C解析:由,秩为2.可知线性相关;的秩为2;不能由线性表示;为一个极大无关组。

所以可以由线性表示,且.6.设向量空间V={ (x1,x2,x3)|x1+x2+x3=0},则V的维数是B、1C、2D、3正确答案:C解析:向量空间V是方程x1+x2+x3=0的解空间,V的维数即为方程的基础解系的个数。

因为未知数n=3,系数矩阵的秩r=1。

所以解空间维数为n-r=2.7.若3阶方阵A与对角阵=相似,则下列说法错误的是A、|A|=0B、|A+E|=0C、A有三个线性无关特征向量D、R(A)=2正确答案:B解析:A选项:A与对角阵相似,A的特征值为2、0、3,所以B选项:A的特征值为2、0、3,则A+E的特征值分别为3、1、4,所以|A+E|=12.此选项错误。

C选项:A与对角阵相似,则A有3个线性无关的特征向量。

高等教育自学考试《线性代数(经管类)》题库一

高等教育自学考试《线性代数(经管类)》题库一

高等教育自学考试《线性代数(经管类)》题库一1. 【单选题】(江南博哥)A.B.C.D.正确答案:B参考解析:2. 【单选题】A. a=-1,b=3,c=0,d=3B. a=-1,b=3,c=1,d=3C. a=3,b=-1,c=1,d=3D. a=3,b=-1,c=0,d=3正确答案:D参考解析:3. 【单选题】A.B.C.D.正确答案:B参考解析:合同矩阵A和B 有相同的秩和正惯性指数,只有B符合且都有一个正惯性指数4. 【单选题】设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A. A的行向量组线性相关B. A的行向量组线性无关C. A的列向量组线性相关D. A的列向量组线性无关正确答案:D参考解析:设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A的列向量组线性无关5. 【单选题】设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有()A. α1,α2,α3,kβ1+β2线性相关B. α1,α2,α3,β1+kβ2线性无关C. α1,α2,α3,β1+kβ2线性相关D. α1,α2,α3,kβ1+β2线性无关正确答案:D参考解析:6. 【填空题】我的回答:正确答案:参考解析:7. 【填空题】设A为三阶方阵,且|A|=-2,则|2A|=_____.我的回答:正确答案:参考解析:由|A|=|A T|,则|2A T|=23|A T|=8×(-2)=-16.8. 【填空题】我的回答:正确答案:参考解析:9. 【填空题】设实二次型f(x1,x2,x3)=.则f的秩为_______. 我的回答:正确答案:参考解析:10. 【填空题】我的回答:正确答案:参考解析:【答案】方程组只有零解,说明系数矩阵满秩.11. 【填空题】我的回答:正确答案:参考解析:【答案】x=k(1,1,1) T12. 【填空题】我的回答:正确答案:参考解析:【答案】313. 【填空题】设A为3阶方阵,其特征值分别为1,2,3,则|A+2E|=_______.我的回答:正确答案:参考解析:【答案】60|A+2E|=(1+2)X(2+2)X(3+2)=3 X 4 X 5=60.14. 【填空题】我的回答:正确答案:参考解析:【答案】15. 【填空题】我的回答:正确答案:参考解析:【答案】16. 【计算题】我的回答:参考解析:17. 【计算题】求向量组=(2,3,1),=(1,-1,3),=(3,2,4)的一个极大无关组,并将其余向量用该极大无关组表示出来.我的回答:参考解析:18. 【计算题】我的回答:参考解析:19. 【计算题】我的回答:参考解析:20. 【计算题】我的回答:参考解析:21. 【计算题】我的回答:参考解析:线性方程组的增广矩阵22. 【计算题】我的回答:参考解析:23. 【证明题】我的回答:参考解析:高等教育自学考试《线性代数(经管类)》模拟卷(二)1. 【单选题】设A为三阶方阵,其特征值分别为1,-2,-1,则|A+E|= ()A. 0B. 2C. -2D. 12正确答案:A参考解析:2. 【单选题】下列矩阵中能相似于对角阵的矩阵是()A.B.C.D.正确答案:C参考解析:3. 【单选题】A、B为n阶矩阵,且A~B,则下述结论中不正确的是()A. λE-A=λE-BB. |A|=|B|C. |λE-A|=|λE-B|D. r(A)=r(B)正确答案:A参考解析:4. 【单选题】A. -EB. EC. DD. A正确答案:B参考解析:5. 【单选题】二次型的秩为A. 1B. 2C. 3D. 4正确答案:D参考解析:6. 【填空题】设向量=(1,1,2,--2),=(1,1,-2,-4),=(1,1,6,0),则向量空间V={β|β=,∈R,i=1,2,3)的维数为_______.我的回答:正确答案:参考解析:6. 【计算题】我的回答:参考解析:7. 【填空题】设二次型)=,则二次型的秩是_______.我的回答:正确答案:参考解析:7. 【计算题】设二次型()=,用正变变换化上述二次型为标准形,并指出二次型的秩及其正定性。

(完整版)历年全国自考线性代数试题及答案

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2013级线性代数I试卷(A)

2013级线性代数I试卷(A)

,
α2
,
α3
,
α4
)
~
0 0 0
1 0 0
2 0 0
3 0 0
(10),

α3
α1 2α2 , α4
2α1 3α2.
(12)
本题
五、(本题满分 12 分) 设有线性方程组
得分
x1 x2 kx3 4,
x1
kx2
x3 k 2 ,
x1 x2 2x3 4,
问 k 为何值时, 该方程组有唯一解、无解、有无穷多解? 并在有无穷多解时求出其通解.
1 1 1 1
0 1 1 1

( β, β α1, β α2 ,
, β αr ) ( β, α1, α2 ,
,
αr
)
0
0
1
1 (4) ( β, α1, α2 , , αr )K ,
0 0 0 1
因 | K | 1, 故 R( β, β α1, β α2 , , β αr ) R( β, α1, α2 , , αr ) r 1, (5) 从而向量组 β, β α1, β α2 , , β αr 线性无关. (6)
1
3
1
3
2
0
3
1
2
2
0
0
1
5
31
1 4

X
1 5
3111.
(8)
考试形式开卷( )、闭卷(√),在选项上打(√)
开课教研室 大学数学部 命题教师 命题组 命题时间 2013-12-12 使用学期 2013-2014-1 总张数 3 教研室主任审核签字
d
第1页 共3页
江南大学考试卷专用纸

(完整版)历年全国自考线性代数试题及答案

(完整版)历年全国自考线性代数试题及答案

浙02198#线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中, 列式;E 表示单位矩阵。

A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R(A)表示矩阵A 的秩;|A|表示A 的行1•设3阶方阵A=[ a 1, a 2, a 3],其中a i (i= 1,2,3)为A 的列向量, 若|B|=|[a 1+2 a 2, a 2, a 3]|=6,则 |A|= () A.-12 B.-6 C.6 D.1232 02 10 5 0 0 0 2 0 232 34. 设a 1, a 2 , a 3, a 4都是3维向量,则必有 A. a 1, a 2, a3, a 4 线性无关 B. a 1 , a 2, a 3, a 4 线性相关 C. a 1可由a 2, a3, a 4线性表示D. a 1不可由a 2 , a 3, a 4线性表示 5.若A 为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为 2,贝UR(A)= ( ) A . 2 B 3C . 4 D . 56. 设A 、B 为同阶矩阵,且 R(A)=R(B),则( )A . A 与B 相似 B . A|=|B|C . A 与B 等价 D . A 与B 合同7 .设A 为3阶方阵,其特征值分别为 2, 1, 0则|A+2E|= () A . 0 B . 2C . 3 D . 24&若A 、B 相似,则下列说法错误.的是( )A . A 与B 等价B . A 与B 合同C . |A|=|B| D . A 与B 有相同特征9.若向量 a =(1 , -2, 1)与 B = (2 , 3, t)正交,则 t= ( ) A . -2 B . 0C . 2 D . 410 .设3阶实对称矩阵 A 的特征值分别为 2, l , 0,则()A . A 正定 B . A 半正定C . A 负定 D . A 半负定二、填空题(本大题共10小题海小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)全国自考历年线性代数试题及答案

(完整版)全国自考历年线性代数试题及答案

(完整版)全国⾃考历年线性代数试题及答案浙02198# 线性代数试卷第1页(共54页)全国2010年1⽉⾼等教育⾃学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表⽰矩阵A 的转置,αT 表⽰向量α的转置,E 表⽰单位矩阵,|A |表⽰⽅阵A 的⾏列式,A -1表⽰⽅阵A 的逆矩阵,r (A )表⽰矩阵A 的秩.⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共30分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.设⾏列式==1111034222,1111304z y x zy x则⾏列式()A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆⽅阵,则(ABC )-1=() A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=() A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则() A. α1,α2,α3,α4⼀定线性⽆关 B. α1⼀定可由α2,α3,α4线性表出 C.α1,α2,α3,α4⼀定线性相关D. α1,α2,α3⼀定线性⽆关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为() A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性⽅程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是() A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯⼀解浙02198# 线性代数试卷第2页(共54页)C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =??---496375254,则以下向量中是A 的特征向量的是() A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元⼆次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.??963642321 B.??963640341 C.??960642621 D.??9123042321⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。

全国2012年1,4,7月自考线性代数(经管类)试题及答案详解

全国2012年1月自考《线性代数(经管类)》试题课程代码:04184说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||α||表示向量α的长度,αT 表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a aa a aa a a=2,则111213313233213122322333333a a aa a aa a a a a a------=()A.-6 B.-3C.3 D.62.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1B.E-AC.E+A D.E-A-13.设矩阵A,B均为可逆方阵,则以下结论正确的是()A.⎛⎫⎪⎝⎭AB可逆,且其逆为-1-1⎛⎫⎪⎝⎭ABB.⎛⎫⎪⎝⎭AB不可逆C.⎛⎫⎪⎝⎭AB可逆,且其逆为-1-1⎛⎫⎪⎝⎭BAD.⎛⎫⎪⎝⎭AB可逆,且其逆为-1-1⎛⎫⎪⎝⎭AB4.设α1,α2,…,αk是n维列向量,则α1,α2,…,αk线性无关的充分必要条件是()A.向量组α1,α2,…,αk中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2 C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( )A .12,4,3B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零 D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2007年4月-2013年1月全国高等教育自学考试线性代数(经管类)试题课程代码:04184试卷及答案

全国2007年4月高等教育自学考试线性代数(经管类)试题课程代码:04184说明在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为3阶方阵,且|A |=2,则|2A -1|=( ) A .-4 B .-1 C .1 D .4 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BAC D .CBA 3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( )A .A +A T B .A -A T C .AA T D .A T A 4.设2阶矩阵A =⎪⎪⎭⎫⎝⎛d c b a ,则A *=( )A .⎪⎪⎭⎫ ⎝⎛--a c b d B .⎪⎪⎭⎫ ⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫ ⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( ) A .A 的列向量组线性相关B .A 的列向量组线性无关C .A 的行向量组线性相关D .A 的行向量组线性无关8.设3元非齐次线性方程组Ax=b 的两个解为α=(1,0,2)T ,β=(1,-1,3)T ,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2, 方程组的通解可表为( ) A .k 1(1,0,2)T +k 2(1,-1,3)T B .(1,0,2)T +k (1,-1,3)T C .(1,0,2)T +k (0,1,-1)T D .(1,0,2)T +k (2,-1,5)T9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( )A .4 B .3 C .2 D .110.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( )A .4 B .3 C .2 D .1 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案20XX年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。

每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。

每小题2分,共20分)请在每小题的空格中填上正确答案。

错选、不填均无分。

1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题1.B 2.D 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.A二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数20XX年10月自考线性代数试题答案全国20XX 年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2013年1月高等教育自学考试线性代数试题
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A 、B 为同阶方阵,则必有 A.|A +B |=|A |+|B | B.AB =BA C.(AB )T =A T B T
D.|AB |=|BA |
2.设n 阶方阵A 、B 、C 满足ABC =E ,则必有 A .ACB =E B .CBA =E C .BCA =E
D .BAC =E
3.设A 为三阶方阵,且|A |=2,则|-2A |= A .-16 B .-4 C .4
D .16 4.若同阶方阵A 与B 等价,则必有 A .|A |=|B | B .A 与B 相似 C .R (A )=R (B )
D .1
1
n n
ii ii
i i a b
===∑∑
5.设α1= (1,0,0)、α2=(2,0,0)、α3=(1,1,0),则 A .α1,、α2、α3线性无关 B .α3可由α1、α2线性表示 C .α1可由α2、α3线性表示
D .α1、α2、α3的秩等于3
6.设向量空间V ={ (x 1,x 2,x 3)|x 1+x 2+x 3=0},则V 的维数是 A .0 B .1 C .2
D .3
7.若3阶方阵A 与对角阵Λ=200000003⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
相似,则下列说法错误..的是 A .|A |=0
B .|A +E |=0
C .A 有三个线性无关特征向量
D .R (A )=2
8.齐次方程x 1+x 2-x 3=0的基础解系所含向量个数是 A .0 B .1 C .2
D .3
9.若α=(1,1,t )与β=(1,1,1)正交,则t = A .-2
B .-1
C .0
D .1
10.对称矩阵A =2112⎡⎤
⎢⎥⎣⎦
是 A .负定矩阵 B .正定矩阵 C .半正定矩阵
D .不定矩阵
二、填空题(本大题共10小题,每小题2分,共20分)
11.设A 、B 均为三阶可逆方阵,且|A |=2,则|-2B -1A 2B |=________. 12.四阶行列式中项21321344αααα的符号为________. 13.设1112-⎡⎤
=⎢⎥
-⎣⎦
A ,则A 的伴随阵A *=________. 14.设12102310t ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
A ,且R (A )=2,则t =________. 15.设三阶方阵A =123[,,]ααα,其中i α为A 的列向量,且|A |=3,若
B =112123[,,]+++αααααα,
则|B |=________.
16.三元方程组13120
0x x x x +=⎧⎨-=⎩的通解是________.
17.设2114⎡⎤
=⎢⎥-⎣⎦
A ,则A 的特征值是________. 18.若三阶矩阵A 的特征值分别为1,2,3,则|A +2E |=________. 19.若A =20000101x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦与
B =200010001⎡⎤
⎢⎥⎢⎥
⎢⎥-⎣⎦相似,则x =________. 20.实对称矩阵A =1111-⎡⎤
⎢⎥-⎣⎦
的正交相似标准形矩阵是________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算四阶行列式123
4123
41234123
4⎡⎤⎢⎥-⎢
⎥⎢⎥--⎢
⎥---⎣⎦
.
22.设A =21
5042431⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦
,B 是三阶方阵,且满足AB-A 2=B -E ,求B . 23.求向量组12345112454,2,5,5,424124⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪ ⎪
==-=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
ααααα的一个最大无关
组,并把其余向量表示为这个最大无关组的线性组合.
24.设四元方程组123412341
234323222277x x x x x x x x x x x x t
-++=⎧⎪
-+-=⎨⎪-++=⎩,问t 取何值时该方程组有解?并在有解时
求其结构解.
25.已知A =2125312a b -⎡⎤
⎢⎥⎢⎥⎢⎥--⎣⎦
的一个特征向量是ξ=(1,1,-1)T
(1)求a ,b ;
(2)求A 的全部特征值及特征向量.
26.求正交变换X =PY ,化二次型f(x l,x 2,x 3)=-2x 1x 2+2x 1x 3+2x 2x 3为标准形. 四、证明题(本大题共1小题,6分) 27.证明任意4个3维向量组线性相关.。

相关文档
最新文档