同济大学线性代数期末考试试题(多套)
2020-2021学年线性代数期末考试题(含答案)

线性代数20-21学年第二学期期末考试试卷一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每空3分,共15分)1.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 2.设A 是n 阶矩阵,秩(A )<n ,且A *≠0,则齐次线性方程组Ax=0的基础解系中所含解向量的个数为_____________________.3.若A ,B 均为3阶矩阵,且|A |=2,B =-3E ,则|AB |=_____________________. 4.设A 为n 阶矩阵,若行列式|5E -A |=0,则A 必有一特征值为__________________.5.二次型3223222122x x x x x +--的秩为_____________________. 1.若A ,B 为3阶矩阵,且|A |=3,B =-3E ,则|AB |=_____________________. 2.若向量组α1=(1,0,0),α2=(2,t,4),α3=(0,0,6)线性相关,则t=_____________. 3.设矩阵A =⎪⎪⎪⎭⎫⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,其中a i b i ≠0(i =1,2,3).则秩(A )=_______________. 4.设A 为n 阶矩阵,若齐次线性方程组Ax =0只有零解,则非齐次线性方程组Ax=b 的解的个数为_____________________.5.()()===⎪⎪⎪⎭⎫⎝⎛=A R A 则秩设,,3,2,1,321 αββα____________________()==A R A 则秩已知1101001100001100001100101 .1________________________.2224, 4., ,000200011132200233121232221是负定的二次型时取值为.当则相似与.已知矩阵x x x tx x x x f t y x y B x A ++---===⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=., ,222252322323121232221==+=+++++=b a y y f x bx x x x ax x x x f 则经正交变换化为标准形.已知二次型二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
同济大学2010-11线性代数B期末考试试卷_A卷_

同济大学课程考核试卷(A 卷)2010—2011学年第一学期命题教师签名: 审核教师签名: 课号:122009 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( √ )、重修( )试卷年级 专业 学号 姓名 任课教师题号 一 二 三 四 五 六 七 总分 得分(注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟. 要求写出解题过程,否则不予计分)一、填空与选择题(均为单选题)(27分)1、 已知4阶方阵123456789054a b A c d ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,函数()||f x xE A =−,这里E 为4阶单位阵,则函数()f x 中3x 项的系数为_______a+b+c+d____________.2、 设12312,,,,αααββ均为4维列向量,已知4阶行列式1231,,,m αααβ=,又1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=______n m −_______________.3、 已知3阶方阵A 满足320A E A E A E +=−=−=,其伴随矩阵为*A ,则行列式*A =_____36_________.4、 已知α是3维实列向量,且111111111Tαα−⎛⎞⎜⎟=−−⎜⎟⎜⎟−⎝⎠,则α=5、设α是3R 空间中的某一向量,它在基123,,εεε下的坐标为()123,,Tx x x ,则α在基1323,,k εεεε+下的坐标是_________1231(,,)T x x x kx −________________.6、 下列关于矩阵乘法的结论中错误的是____________B_________.1(). ).(). ().n A A A A B C n cE c D −若矩阵可逆,则与可交换(可逆阵必与初等矩阵可交换任一个阶方阵均与可交换,这里为任意常数 初等矩阵与初等矩阵乘法未必可交换7、 设A B 、均为n 阶方阵,且()2AB E =,则下列式子中成立的是_____D_______.()222(). (). (). ().A AB E B AB E C A B E D BA E==−==8、 设Ax b =为n 元非齐次线性方程组,则下面说法中正确的是_____C____(). 0 (). 0(). 0().() A Ax Ax b B Ax Ax b C Ax b Ax D Ax b R A n =======⇔=若只有零解,则有唯一解若有无穷多个解,则有无穷多个解若有两个不同的解,则有无穷多个解 有唯一解9、 下列向量组中线性无关的是_______C__________.()()()()()()()()()()()()()()(). 1,1,0,20,1,1,10,0,0,0). ,,,,,,,,,,, (). ,1,,0,0,,0,,1,0,,0,,0,1().1,2,1,5,1,2,1,6,1,2,3,7,0,0,0,1A B a b c b c d c d a d a b C a b c d e f D −−,, (二、(10分) 已知n 阶行列式12312001030100n n D n="""###%#",求第一行各元素的代数余子式之和.三、(10分)参数,a b 满足什么条件的时侯,线性方程组1234512345234512345132322635433x x x x x x x x x x a x x x x x x x x x b ++++=⎧⎪+++−=⎪⎨+++=⎪⎪+++−=⎩有解?并在有解的情况下,求出它的通解.四、(15分)已知3阶方阵3221423A k k −⎛⎞⎜⎟=−−⎜⎟⎜⎟−⎝⎠,问参数k 满足什么条件的时候A 可以对角化?并求出可逆阵P 及对角阵Λ,使得1P AP −=Λ.五、(12分)设向量组12341111,,1,4115k k k αααα−−⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟====⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠⎝⎠,问: (1) 参数k 为何值时,123,,ααα为向量组的一个最大线性无关组?(2) 参数k 为何值时,12,αα为向量组的一个最大线性无关组?并在此时,求出34,αα由最大线性无关组表出的线性表达式.六、(12分)设V 为实数域R 上全体2阶方阵关于矩阵的加法和数乘运算所成的线性空间,在V中定义映射:()a b T T X X c d ⎛⎞=⎜⎟⎝⎠,(1) 证明T 是V 中的线性变换,(2) 求线性变换T 在自然基11122122,,,E E E E 下的矩阵,(3) 若1,2,3,4a b c d ====,试求线性变换T 的核ker T 与像空间Im T .七、(1)(7分)已知A 为3阶方阵,123,,λλλ为A 的三个不同的特征值,123,,ααα分别为相应的特征向量,又123βααα=++,试证:2,,A A βββ线性无关.(2) (7分)设A 为3阶实对称阵,且220A A +=,又()2R A =,试求出A 的全体特征值,并问参数k 为何值时,矩阵A kE +为正定阵?。
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线代期末试题及答案解析

线代期末试题及答案解析一、选择题1. 下列哪个矩阵是零阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}2 & -2 \\ -3 & 3\end{bmatrix}$答案:B解析:零阵是所有元素都为0的方阵,选项B满足此条件。
2. 若矩阵$A$、$B$满足$AB=I$,其中$I$为单位矩阵,则矩阵$B$是矩阵$A$的:A. 逆矩阵B. 转置矩阵C. 相反矩阵D. 对角矩阵答案:A解析:若矩阵$A$的逆矩阵存在,则$A$的逆矩阵为$B$。
3. 下列哪个矩阵是对称矩阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}-1 & 2 \\ 2 & -1\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}$答案:D解析:对称矩阵是指矩阵的转置等于自身的矩阵,选项D满足此条件。
4. 若矩阵$A$、$B$满足$AB=BA$,则矩阵$A$和$B$是:A. 可逆矩阵B. 特征矩阵C. 对角矩阵D. 可交换矩阵答案:D解析:可交换矩阵是指满足$AB=BA$的矩阵,选项D满足此条件。
5. 若行矩阵$\mathbf{u}$、$\mathbf{v}$满足$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$,其中$\mathbf{0}$为零向量,则下列哪个说法是正确的?A. $\mathbf{u}$和$\mathbf{v}$一定不相等B. $\mathbf{u}$和$\mathbf{v}$一定相等C. $\mathbf{u}$和$\mathbf{v}$可能相等也可能不相等D. 不能确定$\mathbf{u}$和$\mathbf{v}$是否相等答案:C解析:行向量的内积为零意味着两个向量正交,不一定相等,所以选项C是正确的。
同济大学线性代数试卷题库 (3)

同济大学课程考核试卷(B 卷) 2009—2010学年第一学期课名:线性代数(2学分) 考试考查:考查(注意:本试卷共七大题,三大张,满分100分.考试时间为100分钟.要求写出解题过程,否则不予计分)一、填空与选择题(6-8小题均为单选题)(24分)1、 设A 为3阶方阵,已知||2A =-,把A 按行分块为123a a a ⎛⎫⎪⎪ ⎪⎝⎭,则行列式312123a a a a -=___6_____. 解:根据行列式的最后一个性质(书上的那个),31312221112233+3a a a a a a a a a a --=,31122213123-3630a a a a a a a a a -===,,所以原式为62、 已知4阶行列式34222207005322D =--,且ij M 和ij A 分别为D 中元素ij a 的余子式和代数余子式,则441jj A==∑__0_________.解:根据代数余子式性质44130402222007001111j j A ===-∑.(这是代数余子式经常出的一种形式的习题)3、 已知3阶方阵A 的特征值分别为1,2,-3,则*32A A E ++=__25____________. 解:根据特征值的性质,有-6A =,设*32B A A E =++,则B 对应的三个特征值分别为123-6-6-63262-9212-3λλλ=++=++=+,,,则 *12332-15-525A A E λλλ++==⨯⨯=()4、设123(,1,1),(0,2,3),(1,2,1)k ααα===,则当__14k =__________时,123,,ααα线性相关.解:因为这三个向量构成的矩阵为方阵,则对该矩阵求行列式,因为三个向量线性相关,所以行列式的值等于0,解得14k =5、已知二次型2221231213235224f x x x ax x x x x x =+++-+为正定二次型,则参数a 满足___405a -<<____________. 解:先写出二次型对应的矩阵,为1-112-125a a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,由于二次型是正定二次型,则矩阵也一定是正定矩阵,根据正定矩阵的性质,它的顺序主子式都应大于0,则有221041-005450a a a a >⎧⎪>−−→-<<⎨⎪-->⎩6、 设A 是m n ⨯矩阵,3,3m n >>,若A 与B 行等价,则__D______________.().().().().A A B B A B C A B D 若的前三行线性无关,则的前三行也线性无关若的前三列线性无关,则的前三列也线性无关若的左上角的三阶行列式非零,则的左上角的三阶行列式也非零以上都不对(解:A 和B 都是m n ⨯的矩阵,且A 和B 的行等价,则A 和B 的行向量可以相互表示 ,也就是说对A 做初等行变换可以得到B ,所以存在可逆矩阵P 使得PA B =对,A B 进行列分块就有()()1212,,...,,,...,n n P a a a b b b =,也就是要说明在P 可逆的情况下 ,A 的某几列无关和B 的对应的某几列无关等价. 随意取3列()123,,a a a 无关于()123,,b b b 无关等价这是显然的,因为()()1212,,...,,,...,n n P a a a b b b =因为P 可逆所以()()()121212,,...,(,,...,)(,,...,)n n n r a a a r P a a a r b b b ==)7、 设,,A B C 为同阶方阵,且ABC E =,则下列各式中不成立的是___B_________.111111(). (). (). ().A CAB E BC A B E C BCA ED B A CE ------====解:因为ABC E =,所以我们可知-1A BC =和-1C AB =,又因为-1-1XX X X E ==,所以A ,C 正确,现在,对ABC E =两边求逆,有-1-1-1C B A E =,可以看出B 错,对于D ,-1A BC =,所以-1-1A C B =,所以-1CA B =,带入D ,可知其正确性8、 非齐次线性方程组Ax b =中,A 是m n ⨯矩阵,()R A r =,则____A___________.(). (). (). (). A r m B r n C m n D r n ===<时方程组有解时方程组有唯一解时方程组有唯一解时方程组有无穷多解解:这题我直接看到A 就选了,其它的也不好分析,因为他们的条件和结论根本没什么明显联系。
同济大学线性代数期末考试试题(多套)

(B) 向量组 β + α1 ,α2 ,α3 线性无关.
(C) β 由α1 ,α2 ,α3 线性表示的表达式唯一.
(D) 向量组 β − α1 ,α1 + α2 ,α1 + α3 线性相关.
8、设 A 为 n 阶方阵,已知 R( A) = n ,则下面说法不正确的是
.
(A) A 的列向量组一定是线性无关的. (B) A 的特征值一定都不等于零. (C) A 一定有 n 个线性无关的特征向量.
化为标准型.
六、(14 分)设V 为所有 2 阶方阵在矩阵的加法和数乘下构成的线性空间.定义V 上的变换 T
如下:
对任意
X
∈V
,T
(X
)
=
AX
−
XT
A ,其中
A
=
⎛1
⎜ ⎝
−2
2 1
⎞ ⎟ ⎠
,
XT
表示
X
的转置矩阵.
(1). (6 分)证明 T 是V 上的一个线性变换;
(2).
(8
分)求 T
在V
的基 E11
量.
(2). 用正交变换将此二次型化为标准型.
六、(12 分)
设 a1, a2 , a3 为 3 维线性空间V 的一组基, V 上的线性变换 T 在 a1, a2 , a3 下的矩阵为
⎛1 2 4⎞
A
=
⎜ ⎜⎜⎝
0 0
1 2
0 1
⎟ ⎟⎟⎠
(1). 求线性变换 T 在V 的基 a1, a1 + a2 , a1 + a3 下的矩阵; (2). 试证V 中不存在一组基使 T 在该基下的矩阵为对角阵.
关
(C).当 r < s 时,向量组(I)必线性相关
同济大学线性代数B期末试卷-含参考答案

同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 的特征值, B 的所有对角元的和为 5 , 则矩阵 B 的全部特征值为 1,-2,6
.
8、 设 Jn 是所有元素均为 1 的 n 阶方阵( n ≥ 2 ),则 Jn 的互不相同的特征值的个数为
2.
⎛2 0 0⎞
⎛1 0 0⎞
⎛1 1 2 ⎞
二、(10
分)已知矩阵
A
=
⎜ ⎜⎜⎝
0 0
1 3
1 1
⎟ ⎟⎟⎠
⎧b1 = a1 + a2
⎪⎪⎪b2 ⎨
=
a2 M
+
a3
,
⎪⎪bn−1 = an−1 + an
⎪⎩bn = an + a1
分别讨论当 n = 4 和 n = 5 时,向量组 b1, b2 ,L, bn 是否线性相关?
(2). (8 分)设 λ1, λ2 为方阵 A 的两个不同的特征值, α1,α2 为 A 相应于 λ1 的两个线性无关
化为标准型.
铺
货
杂
料 六、(14 分)设V 为所有 2 阶方阵在矩阵的加法和数乘下构成的线性空间.定义V 上的变换 T 资 如下:
学习 对任意
X
∈V
,T
(X
)
=
AX
−
XT
A ,其中
A
=
⎛1
⎜ ⎝
−2
2 1
⎞ ⎟ ⎠
,
XT
表示
X
的转置矩阵.
: (1). (6 分)证明T 是V 上的一个线性变换;
众号 (2).
(8
分)求 T
在V
的基 E11
=
⎛ ⎜ ⎝
1 0
0 0
⎞ ⎟ ⎠
,
E12
=
⎛0
⎜ ⎝
0
1 0
⎞ ⎟ ⎠
,
E21
=
⎛ ⎜ ⎝
0 1
0 0
⎞ ⎟ ⎠
,
E22
=
⎛0
⎜ ⎝
0
0 1
⎞ ⎟ ⎠
下的
矩阵.
公
信
微
七 、 (1). (8 分 ) 已 知 向 量 组 a1, a2 ,L, an 线 性 无 关 , 向 量 组 b1, b2 ,L, bn 满 足 :
关
(B).当 r > s 时,向量组(II)必线性相
号 (C).当 r < s 时,向量组(I)必线性相关
(D).当 r > s 时,向量组(I)必线性相
关
众
公 5、 已知方阵 A 满足 2A2 + 3A = O , 则 ( A + E )−1 = E+2A
.
信 6、 当矩阵 A 满足下面条件中的 ABC
-12 .
2、
设分块矩阵 C
=
⎛ ⎜ ⎝
A O
O B
⎞ ⎟ ⎠
,
A, B 均为方阵,则下列命题中正确的个数为
4
.
(A).若 A, B 均可逆, 则 C 也可逆.
(B).若 A, B 均为对称阵, 则 C 也为对称阵.
铺 (C).若 A, B 均为正交阵, 则 C 也为正交阵. (D).若 A, B 均可对角化, 则 C 也可对角化.
同济大学课程考核试卷(A 卷) 2009—2010 学年第一学期
一、填空题(每空 3 分,共 24 分)
1、 设α1 、α 2 、α3 均为 3 维列向量,已知矩阵 A = (α1,α2 ,α3 ) ,
B = (α1 + α2 + α3,3α1 + 9α2 + 27α3, 2α1 + 4α2 + 8α3 ) ,且 A = 1,那么 B =
B = −2 ,则行列式 A + B = 6
.
1131
1000
2、 设行列式 D = 2
1
0
3 , Ai j 是 D 中元素 ai j 的代数余子式,则 A41 + A4 2 =
4512
-9 .
⎛a 2 2⎞
3、 已知矩阵
A
=
⎜ ⎜
2
a
2
⎟ ⎟
,伴随矩阵
A∗
≠
0 ,且
A∗ x
=
0 有非零解,则
C
.
时,推理“若 AB = O , 则 B = O ”可成
微 立. (注:此题可多选)
(A). A 可逆
(B). A 为列满秩(即 A 的秩等于 A 的列
数)
(C). A 的列向量组线性无关
(D). A ≠ O
7、 设矩阵 A, B 分别为 3 维线性空间V 中的线性变换T 在某两组基下的矩阵,已知1, −2 为
⎛2⎞
p1
+
p2
=
⎜ ⎜ ⎜
2 0
⎟ ⎟ ⎟
,
⎜⎟ ⎝4⎠
⎛3⎞
p2
+
p3
=
⎜ ⎜ ⎜
0 1
⎟ ⎟ ⎟
,
⎜⎟ ⎝2⎠
⎛2⎞
p3
+
p4
=
⎜ ⎜
1
⎟ ⎟
⎜0⎟
⎜⎟ ⎝1⎠
(1).(6 分) 求齐次方程组 Ax = 0 的一个基础解系. (2).(4 分) 求 Ax = b 的通解.
五、(16 分)将二次型 f (x1, x2 , x3 ) = x12 + 4x22 + 6x32 + 4x1x2 + 4x1x3 + 8x2 x3 用正交变换
⎜⎝ 2 2 a ⎟⎠
(A) a = 2 ; (C) a = −4 ;
(B) a = 2 或 a = −4 ; (D) a ≠ 2 且 a ≠ −4 .
4、 向量组α 1 ,α
2 ,L,α
s
(s
≥2)
线性无关,且可由向量组 β 1 ,β
2 ,L,β
线性表示,
s
则以下结论中不能成立的是 B .
,
B
=
⎜ ⎜⎜⎝
0 0
5 2
2 1
⎟ ⎟⎟⎠
,
C
=
⎜ ⎜⎜⎝
1 0
0 3
−01⎟⎟⎠⎟ .
矩阵 P , X 满足 PA = B , PX = C . 求矩阵 X .
三、(10分)设线性方程组
⎧ ⎪ ⎨
x1 − 3x2 x1 − 4x2
− x3 − ax3
=0 =b
,
⎪⎩2x1 − x2 + 3x3 = 5
问当参数 a, b 取何值时,
铺
货 (1). 此方程组无解? (2). 此方程组有唯一解? (3).此方程组有无穷多解?
杂
料
资
习
学
:
号
众
公
信 四、(10 分)设 A 为 4 阶方阵,4 维列向量 b ≠ 0 , R( A) = 2 .若 p1, p2 , p3, p4 都是非齐次 微 方程组 Ax = b 的解向量,且满足
的特征向量,α3,α4 为 A 相应于 λ2 的两个线性无关的特征向量,证明向量组α1,α2 ,α3,α4 线
性无关.
铺 货 杂 料 资 习 学 : 号 众 公 同济微20大信09学—课20程10考学核年试第卷一(学B期卷)
一、填空题(每空 3 分,共 24 分)
1 、 已 知 4 阶 方 阵 为 A = (α2 , α1, α3 , β1 ) , B = (α1, 2α2 , α3 , β2 ) , 且 A = −4 ,
2 3 41
货
杂 3 4 5 1
3、 设 D =
,则 D 的第一列上所有元素的代数余子式之和为 0
.
4 5 61 7 8 91
料 资
习 4、 设向量组(I):α1,α2 ,L,αr 可由向量组(II): β1, β2 ,L, βs 线性表示,则
D
成立.(注:此题单选)
学
: (A).当 r < s 时,向量组(II)必线性相关