河南省新乡市一中2017-2018九年级第22章二次函数培优测试

合集下载

人教版九年级数学上册:第22章:二次函数(培优卷)(含答案) (1)

人教版九年级数学上册:第22章:二次函数(培优卷)(含答案) (1)

二次函数(培优卷)一、选择题(10×3'=30')1.2y之间满足下面对应关系:则b(a+b+c)2a的值是()A. -6B. 6C. -3D. 32.将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A. (0,3)或(-2,3)B. (-3,0)或(1,0)C. (3,3)或(-1,3)D. (-3,3)或(1,3)3.二次函数y=ax2+bx+1(a≠0)与一次函数y=ax+1(a≠0)在同一直角坐标系中的图象大致是()A.B.C.D.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图1,则下列结论中正确的是()A.abc>0 B.b2-4ac<0 C.9a+3b+c>0 D.c+8a<05.已知二次函数y=ax2+bx+c的图象如图2所示,则下列说法正确的是()A.ac<0 B.b<0 C.b2-4ac<0 D.a+b+c<06.关于函数y=x2+2x-3的叙述:①当x>1时,y的值随x的增大而增大;②y的最小值是-3;③函数图象与x轴交点的横坐标是方程x2+2x-3=0的根;④函数图象与y轴交点的坐标是(0,-3);⑤函数图象不经过第四象限.其中正确的有()A.①③④B.①②④C.①③D.③④7.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0-x1)(x0-x2)<0.其中正确的是()A.①③④B.①②④C.①②③D.②③图1 图2 图3 图4 图58.已知二次函数y=ax2+bx+c的图象如图3所示,OA=OC,则下列式子:①4ac-b 24a=-1;②ac+b+1=0;③abc>0;④a-b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个9.已知函数y=|x2-2x-3|的大致图象如图4,如果方程|x2-2x-3|=m(m为实数)有2个不相等的实数根,则m的取值范围是( )A.m>3 B.m>4 C.m>3或m=0 D.m>4或m=010.若实数a使关于x的二次函数y=x2+(a-1)x-a+2,当x<-1时,y随x的增大而减小,且使关于y的分式方程4 2y-1-a-31-2y=1有非负数解,则满足条件的所有整数a值的和为( )A.3 B.4 C.5 D.6二、填空题(6×3'=18')11.如果函数y=(k-3)x k2−3k+2+kx+1是二次函数,那么k的值一定是13 2 3414.已知二次函数y=ax2+bx(a≠0)的最小值是-3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是15.函数y=ax2-2x+2,若对满足3<x<4的任意实数x都有y>0成立,则实数a的取值范围为16.已知二次函数y=(x-m)2+2m(m为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为4,则m的值为三、解答题(7'+8'+8'+8'+9'+9'+10'+10'+12'=72')17.已知二次函数经过(1,1),以(-1,4),(0,3).求这个二次函数解析式.18.已知抛物线l1:y=-x2+2x+4和抛物线l2:y=x2+2x-4相交于A,B两点,A点的横坐标比B点的横坐标大,求A,B两点的坐标.19.已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,4)是否在这个二次函数的图象上?20.已知二次函数y=-x2+bx-c的图象与x轴的交点坐标为(m-2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y=1时,自变量x有唯一的值,求二次函数的解析式.21.已知二次函数y=x2-2mx+m2+3(m是常数)(1)求证,不论m为何值,该函数的图象与x轴没有公共点;(2)设原点为O,该函数图象的顶点为M,若-1≤m≤2,求OM的取值范围.22.如图,张伯伯准备用180m的篱笆建一个矩形菜园,它的一边AB借用90m长的墙体,另三边用篱笆周成,设AB=xm.(1)用这个矩形菜园的长x的取值范围是(2)用现有材料能否围成面积是4000m2的菜园?如果能,求出x的值;如果不能,请说明理由;(3)在M点处有一棵树,到墙体AB的距离为40m,到边AD的距离为60m,要将这棵树围在菜园中,且树的周围至少留有6m的空地,求所围成的菜园的最大面积.23.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得168元的销售利润,销售价应定为多少?24.如图(1),在平面直角坐标系xOy中,直线y=2x+4与y轴交于点A,与x轴交于点B,抛物线C1:y= -1x2+bx+c4过A,B两点,与x轴的另一交点为点C.(1)求抛物线C1的解析式及点C的坐标;(2)如图(2),作抛物线C2,使得抛物线C2与C1恰好关于原点对称,C2与C1在第一象限内交于点D,连接AD,CD,①请直接写出抛物线C2的解析式和点D的坐标②求四边形AOCD的面积;(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为直线y=2x+4上一点,是否存在以点M,Q,P,B为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题1~10 BDADB ABADB 二、填空题:11. 0; 12. P(3,114); 13. -1; 14. 3;15. 解:若对满足3<x <4的任意实数x 都有y >0成立,即有ax 2-2x+2>0,即为a >2x −2x 2=-2[(1x -12)2-14] 对3<x <4成立,由函数y=-2[(1x -12)2-14]在14≤1x ≤13内y 随1x 的增大而增小,当1x =13即有x=3,可得y max =-2[(1x -12)2-14]=49 ,∵a>y 且3<x <4,∴有a ≥49 ,故答案为:a ≥4916. 解:∵y=(x-m )2+2m (m 为常数)的对称轴为x=m ,∵当x >m 时,y 随x 的增大而增大,当x <m 时,y 随x 的增大而减小,∴①若m <1≤x ≤3,x=1时,函数值y 的最小值为4,可得:4=(1-m )2+2m ,解得:m 1= 3 (舍去);m 2=−3;②若1≤m ≤3,x=m 时,函数值y 有最小值为4,可得4=2m ,解得m=2;③若1≤x ≤3<m ,x=3时,函数值y 的最小值为4,可得:4=(3-m )2+2m ,此方程无解; ∴m 的值为2或-3.三、解答题17. y=-12x 2-32x+318. A (2,4),B (-2,-4)19. (1)二次函数的解析式为y=-x2-2x+3;(2)点P (-2,3)在这个二次函数的图象上20. (1)由题意可知,二次函数图象的对称轴为x= 3m-12, ∵a=-1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大, ∴3m-12≥0,解得m ≥13,(2)由题意可知,二次函数的解析式为y=-(x-3m-12)2+1, ∵二次函数的图象经过点(m-2,0),∴0=-(m-2-3m-12)2+1,解得m=-1和m=-5, ∴二次函数的解析式为y=-x 2-4x-3和y=-x 2-16x-63.21. 解:(1)∵△=(-2m )2-4(m 2+3)=-12<0,∴函数的图象与x 轴没有公共点;(2)函数y=x 2-2mx+m 2+3的顶点为(m ,3),∴OM=m 2+9,22. 解:(1)由题意得:0<x ≤90;故答案为:0<x ≤90; (2)∵AB=x ,∴AD=12(180-x )=90-12x ,则x (90-12x )=4000,x 2-180x+8000=0,(x-100)(x-80)=0, x 1=100(舍),x 2=80,答:当x=80时,围成面积是4000m 2的菜园;(3)由题意得:⎩⎨⎧x ≥60+690−12x ≥40+6,解得66≤x ≤88,设矩形花园的面积为S ,S=x (90-12x )=-12x2+90x=-12(x-90)2+4050, ∵-12<0,∴当x <90时,S 随x 的增大而增大, ∴当x=88时,S 取得最大值,此时S=4048, 即所围成的菜园的最大面积是4048m 2.23. 解:(1)设y 与x 之间的函数关系式y=kx+b ,把(10,40),(18,24)代入得⎩⎨⎧10k+b =4018k+b =24,解得⎩⎨⎧k =−2b =60, ∴y 与x 之间的函数关系式y=-2x+60(10≤x ≤18); (2)W=(x-10)(-2x+60)=-2x 2+80x-600,对称轴x=20,在对称轴的左侧y 随着x 的增大而增大,∵10≤x ≤18,∴当x=18时,W 最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元 (3)由168=-2x 2+80x-600,解得x1=16,x2=24(不合题意,舍去) 答:该经销商想要每天获得168元的销售利润,销售价应定为16元.24. 解:(1)设y 与x 之间的函数关系式y=kx+b ,把(10,40),(18,24)代入得⎩⎨⎧10k+b =4018k+b =24 ,解得⎩⎨⎧k =−2b =60, ∴y 与x 之间的函数关系式y=-2x+60(10≤x ≤18); (2)W=(x-10)(-2x+60)=-2x2+80x-600,对称轴x=20,在对称轴的左侧y 随着x 的增大而增大,∵10≤x ≤18,∴当x=18时,W 最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元 (3)由168=-2x2+80x-600,解得x1=16,x2=24(不合题意,舍去) 答:该经销商想要每天获得168元的销售利润,销售价应定为16元.25. 解:(1)∵直线y=2x+4与y 轴交于点A ,与x 轴交于点B ,∴A(0,4),B(-2,0), ∵抛物线C 1:y=-14x 2+bx+c 过A ,B 两点,∴⎩⎨⎧c=40=-14×(-2)2-2b+4 , 解得b=32∴抛物线C 1的解析式为:y=-14x 2+32x+4令y=0,得-14x 2+32x+4=0,解得x 1=-2,x 2=8∴C(8,0);(2)①∵抛物线C 2与C 1恰好关于原点对称,∴抛物线C 2的解析式为y=14x 2+32x-4,解方程组⎨⎪⎧y =−14x2+32x+4得:⎨⎧x 1=−4,⎨⎧x 2=4,S 四AOCD =S 梯AOED +S △CDE =12(OA+DE)×OE+12DE ×CE=12(4+6)×4+12×6×4=32;(3)存在.过B 作BN ∥y 轴,过M 作MN ∥x 轴与BN 交于点N ,∵抛物线C 2的解析式为y=14x 2+32x-4=14(x+3)2- 254 ,∴顶点M(-3,- 254),∴BN=254,MN=1,抛物线C1的对称轴为:直线x=3,设P(3,m) ①以点M ,Q ,P ,B 为顶点的四边形为平行四边形,若MQ 为对角线,则BM ∥PQ ,BM=PQ ∴Q(4,m+254),又∵Q 为直线y=2x+4上一点,∴m+254=2×4+4,解得:m=234 ∴P(3,234); ②若BM 为对角线,设P(3,m),Q(n ,2n+4),∵BM 中点坐标为(-52,− 258)∴⎩⎨⎧n+3=−5m+2n+4=−254,解得⎩⎨⎧m =234n =−8,∴P(3,234), ③若BQ 为对角线,∵BM ∥PQ ,BM=PQ ,∴Q(2,8),设P(3,m),则m-254=8+0,解得:m=574,∴P(3, 574) 综上所述,存在以点M ,Q ,P ,B 为顶点的四边形为平行四边形,点P 的坐标为P(3, 234)或P(3,574).。

人教版初三数学上册第二十二章二次函数培优测题带答案和解析_1

人教版初三数学上册第二十二章二次函数培优测题带答案和解析_1

人教版初三数学上册第二十二章二次函数培优测题带答案和解析选择题已知函数y=是二次函数,则m的值为()A. ﹣3B. ±3C. 3D. ±【答案】A【解析】根据二次函数的定义结合二次项系数非零,即可得出关于m的一元二次方程及一元一次不等式,解之即可得出m的值.∵函数y=(m﹣3)是二次函数,∴,解得:m=﹣3.故选A.选择题二次函数y=x2+bx+1的图象与x轴只有一个公共点,则此公共点的坐标是()A. (1,0)B. (2,0)C. (﹣1,0)或(﹣2,0)D. (﹣1,0)或(1,0)【答案】D【解析】根据判别式的意义△=0得到关于k的方程,然后解方程求出b 的值,然后解关于x的方程即可.∵二次函数y=x2+bx+1的图象与x轴只有一个公共点,∴△=b2-4=0,解得b=±2,∴x2+2x+1=0或x2-2x+1=0,解得x=-1或x=1,即此公共点的坐标是(-1,0)或(1,0).故选:D.选择题已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A. y3最小,y1最大B. y3最小,y4最大C. y1最小,y4最大D. 无法确定【答案】A【解析】根据题意判定抛物线开口向上,对称轴在0和1之间,然后根据点到对称轴的距离的大小即可判断.∵二次函数图象经过P1(-3,y1),P2(-1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(-3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.选择题已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A. ﹣3<x<1B. x<﹣1或x>3C. ﹣1<x<3D. x<﹣3或x>1【答案】C【解析】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3.故选C.选择题抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2 ③a>0;④b<0.其中正确的结论是()A. ①②B. ②④C. ②③D. ③④【答案】C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故③正确;①④错误;当x=1时,函数值为2>0,∴a+b+c=2故②正确;∴正确的选项②③,故选:C.选择题下列关于二次函数y=﹣2(x﹣2)2+1图象的叙述,其中错误的是()A. 开口向下B. 对称轴是直线x=2C. 此函数有最小值是1D. 当x>2时,函数y随x增大而减小【答案】C【解析】根据二次函数的性质对各选项分析判断后利用排除法求解.由二次函数y=-2(x-2)2+1可知:a=-2<0,所以开口向下,顶点坐标为(2,1),对称轴为x=2,当x>2时,y随x的增大而减小,当x<2时,y随x的增大而增大,函数有最大值1,故A、B、D正确,C错误,故选:C.选择题如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①方程=ax2+bx+c=0的两个根是x1=﹣1,x2=3:②a﹣b+c=0;③8a+c <0;④当y>0时,x的取值范围是﹣1<x<3;⑤当y随x的增大而增大时,一定有x<O.其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对①进行判断;由对称轴方程得到b=-2a,然后根据x=-1时函数值为0可得到3a+c=0,则可对③进行判断;根据二次函数的性质对④进行判断.∵抛物线的对称轴为直线x=1,而点(-1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=-1,x2=3,所以①正确;当x=-1时,y=0,即a-b+c=0;故②正确,∵x=-=1,即b=-2a,而x=-1时,y=0,即a-b+c=0,∴a+2a+c=0,∴3a+c=0,∵抛物线的开口向下,∴a<0,∴5a<0,∴8a+c<0;故③正确;当y>0时,函数图象在x轴的上面,∴x的取值范围是-1<x<3;故④正确;⑤当x<1时,y随x增大而增大,当y随x的增大而增大时,一定有x<0,∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,当y随x的增大而增大时,一定有x<0,所以⑤错误.故选:D.选择题如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x k)2+h.已知球与O点的水平距离为6m 时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A. 球不会过网B. 球会过球网但不会出界C. 球会过球网并会出界D. 无法确定【答案】C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.选择题定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m ﹣1,1+m,﹣2m]的函数的一些结论:①当m=3时,函数图象的顶点坐标是(﹣1,﹣8);②当m>1时,函数图象截x轴所得的线段长度大于3;③当m<0时,函数在x>时,y随x的增大而减小;④不论m取何值,函数图象经过两个定点.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题①抛物线的顶点坐标为(,),当m=3时,特征数为[2,4-6],可求得顶点坐标为(-1,-8),所以①正确。

人教版九年级上册22章:二次函数 单元培优测试(有答案)

人教版九年级上册22章:二次函数 单元培优测试(有答案)

人教版九年级上册23章:二次函数单元培优测试一、单选题(40分)1.在平面直角坐标系xOy 中,将抛物线23y x =-先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为( )A .()2334y x =-+-B .()2334y x =--C .()2334y x =++D .()2334y x =--+2.下列函数的图象,不经过原点的是( )A .32x y =B .y =2x 2C .y =(x ﹣1)2﹣1D .3y x= 3.将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( ) A .y =(x +2)2﹣2B .y =(x ﹣4)2+2C .y =(x ﹣1)2﹣1 D .y =(x ﹣1)2+54.抛物线2y ax bx c =++的部分图象如图所示,当0y <时,x 的取值范围是( )A .x >2 或x <-3B .-3<x <2C .x >2或x <-4D .-4<x <25.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米6.在同一直角坐标系中,二次函数2y ax bx c =++与一次函数y ax c =+的大致图象可能( )A .B .C .D .2x… 0 1 2 4 … y … m k m n … 8.如图,四边形ABCD 是菱形,2,60AB ABC =∠=︒,点P 从D 点出发,沿DA AB BC →→运动,过点P 作直线CD 的垂线,垂足为Q ,设点P 运动的路程为x ,DPQ ∆的面积为y ,则下列图象能正确反映y 与x 之间的函数关系的是( ).A .B .C .D .9.将函数22(04)y x x m x =-++≤≤在x 轴下方的图像沿x 轴向上翻折,在x 轴上方的图像保持不变,得到一个新图像.若使得新图像对应的函数最大值与最小值之差最小,则m 的值为( )A .2.5B .3C .3.5D .410.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x<4时,有y 2<y 1,其中正确的是( )A .①④⑤B .①③④⑤C .①③⑤D .①②③二、填空题(24分)11.二次函数223y x x =--+的图像的顶点坐标是_________.12.二次函数y =3x 2-6x -3图象的对称轴是_________.13.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒),满足关系:h=20t-5t 2,当小球达到最高点时,小球的运动时间为第_________秒时.14.如图,在平面直角坐标系中,菱形OABC 的边长为2,∠AOC =60°,点D 为AB 边上的一点,经过O ,A ,D 三点的抛物线与x 轴的正半轴交于点E ,连结AE 交BC 于点F ,当DF ⊥AB 时,CE 的长为__.15.如图抛物线223y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE DF +的最小值为_____.16.若函数图象上存在点(),Q m n ,满足1n m =+,则称点Q 为函数图象上的奇异点.如:直线23y x =-上存在唯一的奇异点()4,5Q .若y 关于x 的二次函数211(1)22y x a h x b h =+-+++的图象上存在唯一的奇异点,且当32a -≤≤时,b 的最小值为2-,则h 的值为__________.三、解答题(86分)(8分)17.已知二次函数23y x bx =+- (b 是常数)的图象经过点()1,0A -,求这个二次函数的解析式和这个二次函数的最小值.(8分)18.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(4分)(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.(4分)(10分)19.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根;(3分)(2)写出不等式ax 2+bx +c >0的解集;(3分)(3)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.(4分)(8分)20.如图,已知直线y=-2x+3与抛物线y=x 2相交于A,B 两点,O 为坐标原点.(1)求点A 和B 的坐标;(4分)(2)连结OA,OB,求△OAB 的面积.(4分)(10分)21.“普洱茶”是云南有名的特产,某网店专门销售某种品牌的普洱茶,成本为30元/盒,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(4分)(2)如果规定每天该种普洱茶的销售量不低于240盒,该网店店主热心公益事业,决定从每天的销售利润中捐出500元给扶贫基金会,当销售单价为多少元时,每天获取的净利润最大,最大净利润是多少?(注:净利润=总利润-捐款)(6分)(14分)22.我们知道,经过原点的抛物线解析式可以是()2y=ax bx a 0+≠。

人教版九(上)数学第二十二章二次函数培优测试卷(附答案)

人教版九(上)数学第二十二章二次函数培优测试卷(附答案)

人教版九(上)数学第二十二章二次函数培优测试卷(附答案)一.选择题1.下列函数中,一定是二次函数的是()A.y=﹣x2+1 B.y=ax2+bx+c C.y=2x+3 D.y=2.抛物线y=4(x+3)2+12的顶点坐标是()A.(4,12)B.(3,12)C.(﹣3,12)D.(﹣3,﹣12)3.关于抛物线y1=(2+x)2与y2=(2﹣x)2的说法,不正确的是()A.y1与y2的顶点关于y轴对称B.y1与y2的图象关于y轴对称C.y1向右平移4个单位可得到y2的图象D.y1绕原点旋转180°可得到y2的图象4.抛物线y=ax2+bx+c与x轴的交点是(﹣4,0),(6,0),则抛物线的对称轴是()A.1 B.直线x=1 C.2 D.直线x=25.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.6.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y =x2﹣2x+1,则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,187.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒8.若函数y=(a﹣3)x2﹣2ax+a﹣与x轴有交点,且关于x的不等式组无解,则符合条件的整数a的和为()A.7 B.10 C.12 D.159.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①abc>0;②4a+b=0;③9a+c>3b;④5a+2c>0,其中正确的结论有()A.1个B.2个C.3个D.4个10.知:如图抛物线y=ax2+bx+与y轴交于点A,与x轴交于点B、点C.连接AB,以AB为边向右作平行四边形ABDE,点E落在抛物线上,点D落在x轴上,若抛物线的对称轴恰好经过点D,且∠ABD=60°,则这条抛物线的解析式为()A.y=﹣x2xB.y=﹣x2xC.y=﹣x2xD.y=﹣x2﹣xE.故函数的表达式为:y=﹣x2x二.填空题(共6小题)11.抛物线y=x2﹣2x,当y随x的增大而减小时x的取值范围为.12.某种火箭背向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=﹣5t2+160t+10表示.经过s,火箭到达它的最高点.13.已知点P(x,y)在抛物线y=(x﹣1)2+2的图象上,若﹣1<x<2,则y的取值范围是.14.若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k=0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=.15.开口向下的抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,当抛物线与x轴围成的封闭区域(不包含边界)内,仅有4个整数点(整数点就是横、纵坐标均为整数的点)时,a的取值范围是.16.将二次函数y=2x2向上平移1个单位,得到的抛物线的解析式是.三.解答题17.在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,m取满足条件的最小的整数(1)求此二次函数的解析式(2)当n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,求n的值18.若抛物线上y=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),1P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?19.已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.20.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.21.血橙以果肉酷似鲜血的颜色而得名,果实一般在1月下旬成熟,由于果农在生产实践中积累了丰富的经验,采取了留树保鲜技术措施,将鲜果供应期拉长到了5月初.重庆市万州区孙家村晚熟柑橘以血橙为主,主要销售市场是成都、重庆市区、万州城区,据以往经验,孙家村上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数).其销售量P(千克)与月份x之间的函数关系如图.(1)请你求出月销售量P(千克)与月份x之间的函数关系式(不必写出自变量的取值范围);(2)血橙在上半年1﹣5月的哪个月出售,可使销售金额W(元)最大?最大金额是多少(3)由于气候适宜以及留树保鲜技术的提高,预计该产区今年5月将收获60000千克的血橙,由于人力、物力等各方面成本的增加,孙家村决定,将5月的销售价格提高a%,当以提高后的价格销售50000千克血橙后,由于保存技术的限制,剩下的血橙制成一种新型研发出的果肉饼进行销售,每千克的血橙可生产0.8千克果肉饼,果肉饼的售价格在血橙提高后的价格的基础上将再提高a%,最后该产区将这批果肉饼全部售完后,血橙和果肉饼的销售总金额达到了480000元.求a的值.22.在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0),分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)求点D的坐标.(2)如图1,若该抛物线经过原点O,且a=﹣.①求该抛物线的解析式;②连结CD.问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由;(3)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.23.如图1.已知直线l :y =﹣1和抛物线L :y =ax 2+bx +c (a ≠0),抛物线L 的顶点为原点,且经过点A (2,)直线y =kx +1与y 轴交于点F ,与抛线L 交于点B (x 1,y 1),C (x 2,y 2),且x 1<x 2.(1)求抛物线L 的解析式;(2)求证:无论k 为何值,直线l 总是与以BC 为直径的圆相切;(3)①如图2,点P 是抛物线L 上的一个动点,过点P 作PM ⊥l 于点M ,试判断PM 与PF 之间的数量关系,并说明理由;②将抛物线L 和点F 都向右平移2个单位后,得到抛物线L 1和点F 1,Q 是抛物线L 1上的一动点,且点Q 在L 1的对称轴的右侧,过点Q 作QN ⊥l 于点N ,连接QA .求|QA ﹣QN |的最大值,并直接写出此时点Q 的坐标.参考答案一.选择题1.解:A 、是二次函数,故本选项符合题意;B 、当a =0时,函数不是二次函数,故本选项不符合题意;C 、不是二次函数,故本选项不符合题意;D 、不是二次函数,故本选项不符合题意;故选:A .2.解:∵抛物线y =4(x +3)2+12,∴该抛物线的顶点坐标为(﹣3,12),故选:C .3.解:∵抛物线y 1=(2+x )2=(x +2)2,∴抛物线y 1的开口向上,顶点为(﹣2,0),对称轴为直线x =﹣2; 抛物线y 2=(2﹣x )2=(x ﹣2)2,∴抛物线y 2的开口向上,顶点为(2,0),对称轴为直线x =2;∴y 1与y 2的顶点关于y 轴对称,∴它们的对称轴相同,y 1与y 2的图象关于y 轴对称,y 1向右平移4个单位可得到y 2的图象,∵y 1绕原点旋转180°得到的抛物线为y =﹣(x +2)2,与y 2开口方向不同, ∴关于抛物线y 1=(2+x )2与y 2=(2﹣x )2的说法,不正确的是D , 故选:D .4.解:∵抛物线与x 轴的交点为(﹣4,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x ==1,即x =1.故选:B .5.解:∵一次函数和二次函数都经过y 轴上的(0,c ),∴两个函数图象交于y 轴上的同一点,排除B 、C ;当a >0时,二次函数开口向上,一次函数经过一、三象限,排除D ; 当a <0时,二次函数开口向下,一次函数经过二、四象限,A 正确;6.解:∵得到函数解析y=x2﹣2x+1∴y=(x﹣1)2∴将新二次函数y=(x﹣1)2向下平移3个单位,再向右平移2个单位,得到的解析式为y=(x﹣1﹣2)2﹣3,即y=x2﹣6x+6又∵y=x2+bx+c∴b=﹣6,c=6故选:C.7.解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.8.解:当a﹣3≠0且△=4a2﹣4×(a﹣3)(a﹣)≥0,解得a>且a≠3,当a﹣3=0,函数为一次函数,它与x轴有一个交点,所以a>,解两个不等式得,因为不等式组无解,所以a≤5,所以a的范围为<a≤5,所以满足条件的a的值为0,1,2,3,4,5所以所有满足条件的整数a之和为0+1+2+3+4+5=15.故选:D.9.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a>0,∵抛物线与x轴的交点在x轴上方,∴abc<0,所以①错误;∵b=﹣4a,∴4a+b=0,所以②正确;∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,所以③错误;把(﹣1,0)代入解析式得a﹣b+c=0,而b=﹣4a,∴c=﹣5a,∴5a+2c=5a﹣10a=﹣5a>0,所以④正确.故选:B.10.解:如下图所示,OA=,∠ABD=60°,则OB==1,过点B(﹣1,0),∵四边形ABDE平行四边形,则∠AED=∠ABD=60°,OH=OA=,同理可得:HE=1=AH,过点E(2,),将点B、E的坐标代入函数表达式得:,解得:,故函数的表达式为:y=﹣x2x故选:B.二.填空题11.解:∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴当y随x的增大而减小时x的取值范围为x<1,故答案为:x<1.12.解:函数的对称轴为:t=﹣=﹣=16,即经过16s,火箭到达它的最高点,故答案为16.13.解:∵抛物线y=(x﹣1)2+2,∴该函数开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点P(x,y)在抛物线y=(x﹣1)2+2的图象上,﹣1<x<2,1﹣(﹣1)=2,2﹣1=1,∴当x=1时,y取得最小值,此时y=2,当x=﹣1时,y取得最大值,此时y=(﹣1﹣1)2+2=6,∴﹣1<x<2,则y的取值范围是2≤y≤6,故答案为:2≤y≤6.=3,14.解:∵关于x的一元二次方程x2﹣2x+k=0的解一个为x1∴二次函数y=x2﹣2x+k与x轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x=1,∴二次函数y=x2﹣2x+k与x轴的另一个交点坐标为(﹣1,0),∴方程x2﹣2x+k=0另一个解x=﹣1.2故答案为﹣1.15.解:∵y=a(x+1)(x﹣3)=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a).当x=0时,y=a(x+1)(x﹣3)=﹣3a,∴抛物线与y轴的交点坐标为(0,﹣3a).则,解得:﹣≤a<﹣,故答案为:﹣≤a<﹣.16.解:将抛物线y=2x2向上平移1个单位,得到的抛物线的解析式为y=2x2+1.故答案为:y=2x2+1.三.解答题17.解:(1)∵二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,∴关于x的方程mx2﹣(2m+1)x+m﹣4=0有两个不相等的实数根,∴解得:m>﹣且m≠0.∵m>且m≠0,m取其内的最小整数,∴m=1,∴二次函数的解析式为y=x2﹣3x﹣3;(2)∵抛物线的对称轴为x=﹣=,∵1>0,∴当x≤时,y随x的增大而减小.又∵n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,∴n2﹣3n﹣3=1﹣n,1﹣3﹣3=﹣5,解得:n=1﹣.18.解:(1)k=4时,由交点式得y=a(x+1)(x﹣4),(0,4)代入得a=﹣1,∴y=﹣3x2+3x+4,则B(4,0),连OP,设P (m ,﹣m 2+3m +4),S △BCP =S △OPB +S △OPB ﹣S △OBC ==﹣2(m ﹣2)2+8m =2时,最大值为8,∴P 的横坐标为2时有最大值.(2)a =1时,c =4,设y =x 2+bx +4,A (﹣1,0)代入得b =5,∴y =x 2+5x +4.令y =0求得B (﹣4,0),则直线BC 方程为y =x +4,过P 作PH 平行于y 轴交直线BC 于H ,设P (n ,n 2+5n +4)、H (n ,n +4),==﹣2(n +2)2+8n =﹣2面积最大值为8,此时P 的横坐标为﹣2.(3)由(1)知,当面积最大时,P 的横坐标等于B 的横坐标的一半,由(2)知,面积最大时,P 的横坐标等于B 的横坐标的一半,故:可以推断,当面积最大时,P 的横坐标等于B 的横坐标的一半.19.解:(1)(﹣1,0)代入得0=1+2a +4a +2,∴,∴y =x 2+x ,∴另一交点为(0,0).(2)①整理得y=a(4﹣2x)+x2+2,令x=2代入y=6,故定点为(2,6),②∵y=x2﹣2ax+4a+2=(x﹣a)2+(﹣a2+4a+2),顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,当a=2时,纵坐标有最大值6,此时x=2,y=6,顶点(2,6),故定点(2,6)是所有顶点中纵坐标最大的点.20.解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:a=﹣,故函数的表达式为:y=﹣(x﹣8)2+8,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)点A、D关于函数对称轴对称,则设AD=2m,则点A(8﹣m,y),则AB=y=﹣(x﹣8)2+8=8﹣m2,设:w=AB+AD+DC=2m+2AB=﹣m2+2m+16,∵﹣<0,故w有最大值,当m=4时,w的最大值为20,故AB、AD、DC的长度之和的最大值是20.21.解:(1)设P=kx+b,将(1,70000),(5,50000)代入得:,解得∴P=﹣5000x+75000.(2)∵上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数)∴W=Py=(﹣5000x+75000)(x+2.5)=﹣2500x2+25000x+187500∴当x=﹣=5时,销售金额W(元)最大,最大金额是250000元.(3)设a%=t,5月份的销售价格y=×5+2.5=5由题意得:5(1+t)×50000+(60000﹣50000)×0.8×5(1+t)(1+)=480000∴25(1+t)+4(1+t)(1+t)=48∴化简得:6t2+35t﹣19=0∴(2t﹣1)(3t+19)=0∴t=50%或t=﹣(舍)故a=50.22.解:(1)过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),(2)①根据题意,得a=﹣,c=0,且a×32+b×3+c=1,解得:b=,∴抛物线的解析式为y=.②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴点P的坐标为().(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴P点坐标为(),综上所述,在抛物线上是否存在点P()或,使得∠POB与∠BCD 互余.(3)如图4,∵D(3,1),E(1,1),抛物线y=ax2+bx+c过点E、D,代入可得,解得,∴y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个.(i)当点Q在x轴的下方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;(ii)当点Q在x轴的上方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,∴3a+1<0,解得a<﹣;②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个.根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,∴,设Q(2a,﹣a)在直线OQ上,设直线OQ的解析式为y=kx,∴k=﹣,则直线OQ的解析式为y=﹣x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,∴方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根,∴,整理得:,解得:或(舍去),综上所示,a的取值范围为a<﹣或.23.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2;(2)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切;(3)①设点P(m, m2)、点M(m,﹣1),点F(0,1),则PF2=m2+(m2﹣1)2=(m2+4)2,PM=m2+1=(m2+4)=PF,即:PM与PF之间的数量关系为:PM=PF;②抛物线新抛物线的表达式为:y=(x﹣2)2…①,如图2,设平移后点F的对应点为F′(2,1),由①知:PM=PF,同理QN=QF′,故当A、F′、Q三点共线时,|QA﹣QN|有最大值,|QA﹣QN|的最大值=|QA﹣QF′|=AF′,则AF′==;将点A、F′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AF′的表达式为:y=x﹣…②,联立①②并解得:x=1或6(舍去1),故点Q(6,4);故:|QA﹣QN|的最大值为,此时点Q的坐标为(6,4).人教版九年级数学上册第二十二章二次函数单元练习含答案一.选择题(共10小题)1.若y=(m+1)x是关于x的二次函数,则m的值为()A.﹣2 B.1 C.﹣2或1 D.2或12.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)3.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+2 4.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.5.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1 B.2 C.3 D.46.抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3 B.m≤3或m≥4 C.2<m<3 D.3<m<47.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定8.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y 轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣59.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4 10.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为()A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm 二.填空题(共6小题)11.若x=,y=a﹣1,求出y与x的函数关系式.12.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)13.已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:则该二次函数y=ax2+bx+c在x=3时,y=.14.二次函数y=x2﹣2mx+1在x≤1时y随x增大而减小,则m的取值范围是.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为.三.解答题(共5小题)17.形状与y=﹣2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式.18.已知抛物线y=x2﹣4x+3.(1)该抛物线的对称轴是,顶点坐标;(2)选取适当的数据填入如表,并在如图的直角坐标系内描点画出该抛物线的图象;(3)根据图象,直接写出当y>0时,x的取值范围.19.关于x的方程x2+(k+4)x+3k+3=0(1)若方程的两个根小于﹣2,求k的取值范围.(2)若方程有两个不相等的负根,求k取值范围.20.某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y(千克)与每千克售价x(元)的关系如表所示(1)写出每周销售量y(千克)与每千克售价x(元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.21.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案一.选择题(共10小题)1.解:若y=(m+1)x是关于x的二次函数,则m2+m=2且m+1≠0.,解得:m=﹣2或m=1.故选:C.2.解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.3.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.4.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.5.解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.6.解:把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,∴16a+4b=1,∴4a+b=,∵对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,∴∴,∴||≤1,∴或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m2(2a+b)+3=m2(2a+﹣4a)+3=m﹣4a=m,a=,∴或,∴m≤3或m≥4.故选:B.7.解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.8.解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.故选:B.9.解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y =t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.10.解:设左侧抛物线的方程为:y=ax2,点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,则抛物线的表达式为:y=x2,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将y=2代入抛物线表达式得:2=x2,解得:x=(负值已舍去),则AD=2AH+2x=6+3,故选:A.二.填空题(共6小题)11.解:∵x=,∴a=x2,∵y=a﹣1,∴y=x2﹣1,故答案为:y=x2﹣1.12.解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x =2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.13.解:由上表可知函数图象经过点(0,)和点(2,),∴对称轴为x==1,∴当x=﹣1时的函数值等于当x=3时的函数值,∵当x=﹣1时,y=﹣4,∴当x=3时,y=﹣4.故答案为:﹣4.14.解:二次函数y=x2﹣2mx+1的对称轴为x=m,∵a=1>0,∴在对称轴的左侧(即当x≤m),y随x的增大而减小,又∵在x≤1时y随x增大而减小,∴m的取值范围为m≥1.故答案为:m≥1.15.解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.16.解:由题意可得:D点坐标为:(0,8),∵AB=4,∴B点,横坐标为:2,故x=2时,y=2×4+8=16,即B(2,16),则DC=16﹣8=8,故CE=DC+DE=3+8=11.故答案为:11.三.解答题(共5小题)17.解:设所求的抛物线解析式为y=ax2+1,因为抛物线y=ax2+1与抛物线y=﹣2x2+3形状相同,但开口方向不同,所以a=2,所以该抛物线的解析式为y=2x2+1.18.解:(1)抛物线y=x2﹣4x+3的对称轴是x=﹣=﹣=2,x=﹣=﹣=2,y===﹣1,顶点坐标是(2,﹣1);(2)列表:描点:在平面直角坐标系中描出各点,连线:用平滑的线连接起来;(3)观察图象,函数图象在x轴上方的部分相应自变量的取值范围,得x<1或x>3时,y>0.19.解:(1)由原方程可得(x+3)(x+k+1)=0,则x+3=0或x+k+1=0,解得:x=﹣3或x=﹣(k+1),∵方程的两个根小于﹣2,∴﹣(k+1)<﹣2,解得:k>3;(2)根据题意知,﹣(k+1)<0且﹣(k+1)≠﹣3,解得:k>﹣1且k≠2.20.解:(1)由表格中数据可得:y=,把(30,200)代入得:y=;(2)当y=300时,300=,解得:x=20,即该种水果每千克售价最多定为20元;(3)由题意可得:w=y(x﹣15)=(x﹣15)=1200,解得:x=经检验:x=是原方程的根,答:超市销售该种水果能到达每周获利1200元.21.解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.人教版九年级数上册第22章:二次函数单元提优测试(附答案)一.选择题1.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)2.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5003.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到4.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直1于y轴的直线l(x轴除外)与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),t=x1+x2+x3,则t的取值范围是()A.0≤t<2或10<t≤12 B.0≤t≤2或10≤t≤12C.0≤t<2或6<t≤8 D.0≤t≤2或6≤t≤85.二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个6.已知A(4,y1),B(1,y2),C(﹣3,y3)在函数y=﹣3(x﹣2)2+m(m为常数)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y3<y2 C.y3<y2<y1D.y1<y2<y3 7.一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m,在这次跳投中,球在头顶上方0.25m处出手球出手时,他跳离地面的高度是()A.0.1m B.0.2m C.0.3m D.0.4m8.二次函数y=ax2+2ax+c的图象如图所示,当x=t时,y>0,则x=t+2时函数值()A.c<y<0 B.y<c C.y>0 D.y<09.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有()A.1个B.2个C.3个D.4个10.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之个间,以下结论:①abc>0 ②b2﹣4ac=0,③2a﹣b=0,④a+b+c <0;⑤c﹣a=3,其中正时的有()个A.2 B.3 C.4 D.511.定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫做“整点”.如:B(3,0)、C(﹣1,3)都是“整点”.抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于点M,N两点,若该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,则a的取值范围是()A.﹣1≤a<0 B.﹣2≤a<﹣1 C.﹣1≤a<D.﹣2≤a<0 12.二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()①abc<0②b2﹣4ac<0③2a>b④(a+c)2<b2A.1个B.2个C.3个D.4个二.填空题13.抛物线y=x2﹣2x,当y随x的增大而减小时x的取值范围为.14.若二次函数y=ax2+bx+c的图象经过点(4,3),且对称轴是x=1,则关于x的方程ax2+bx+c=3的解为.15.抛物线y=(x﹣3)2+4的顶点坐标是.16.如图,在平面直角坐标系xOy中,已知抛物线y=﹣3与x轴交于点A、B (A在B左侧),与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,则点P的坐标是.三.解答题17.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.18.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?19.如图,已知在平面直角坐标系xOy中,抛物线过点A(﹣3,0),B(1,0),C(0,3).求抛物线的解析式.。

人教版 九年级上数学 第22章 二次函数 培优训练(含答案)

人教版 九年级上数学 第22章 二次函数 培优训练(含答案)

人教版九年级数学第22章二次函数培优训练一、选择题(本大题共10道小题)1. 下列函数解析式中,一定是二次函数的是( )A.y=3x-1 B.y=ax2+bx+cC.s=2t2-2t+1 D.y=x2+1 x2. 已知二次函数y=ax2+2ax+c的图象与x轴的一个交点的坐标为(1,0),则它与x轴的另一个交点的坐标是()A.(1,0) B.(-1,0) C.(-3,0) D.(3,0)3. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s4.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是( )A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度5. 若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(3+2,y3)三点,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y26.已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()7. (2019•随州)如图所示,已知二次函数的图象与轴交于两点,与轴交于点,,对称轴为直线,则下列结论:①;②;③;④是关于的一元二次方程的一个根.其中正确的有A.1个B.2个C.3个D.4个8.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为( )A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+39.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.有下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB=-ca.其中正确的结论有()A.4个B.3个C.2个D.1个10. 如图,将函数y=1 2(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数解析式是( )A.y=12(x-2)2-2 B.y=12(x-2)2+7C.y=12(x-2)2-5 D.y=12(x-2)2+4二、填空题(本大题共6道小题)11.若物体运动的路程s(m)与时间t(s)之间的关系式为s=5t2+2t,则当物体运动时间为4 s时,该物体所经过的路程为________.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为___ _____.13.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.14.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.15. (2019•天水)二次函数的图象如图所示,若,.则、的大小关系为__________.(填“”、“”或“”)16.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点为P(m,n).给出下列结论:①2a+c<0;②若(-32,y1),(-12,y2),(12,y3)在抛物线上,则y1>y2>y3;③若关于x的方程ax2+bx+k=0有实数解,则k>c-n;④当n=-1 a时,△ABP为等腰直角三角形.其中正确的结论是________.(填序号)三、解答题(本大题共4道小题)17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. (2020台州)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.19. 如图,用一块长为50 cm,宽为30 cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角各截去一个相同的小正方形,设小正方形的边长为x cm.(1)盒子底面的长AB=________ cm,宽BC=________ cm.(用含x的代数式表示)(2)若做成的盒子的底面积为300 cm2,求该盒子的容积.(3)该盒子的侧面积S(cm2)是否存在最大值?若存在,求出此时x的值及S的最大值;若不存在,说明理由.20. (2019·山西)综合与探究如图,抛物线经过点A(–2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,D C.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.人教版九年级数学第22章二次函数培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C[解析] 抛物线的对称轴为直线x=-2a2a=-1.因为抛物线与x轴的两个交点关于对称轴对称,所以它与x轴的另一个交点的坐标是(-3,0).3. 【答案】A4. 【答案】 D [解析] A.将函数y=x2的图象向左平移1个单位长度得到函数y=(x+1)2的图象,它经过点(1,4);B.将函数y=x2的图象向右平移3个单位长度得到函数y=(x-3)2的图象,它经过点(1,4);C.将函数y=x2的图象向上平移3个单位长度得到函数y =x2+3的图象,它经过点(1,4);D.将函数y=x2的图象向下平移1个单位长度得到函数y=x2-1的图象,它不经过点(1,4).故选D.5. 【答案】B[解析] 解法一:y=x2-6x+c=(x-3)2-9+c,其大致图象如图,对称轴为直线x=3,由图可得y1>y3>y2.解法二:把A,B,C三点的坐标分别代入解析式并化简,得y1=7+c,y2=-8+c,y3=-7+c,所以y1>y3>y2.故选B.6. 【答案】 B [解析] 根据二次函数的图象开口向上,得a>0,根据c是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.7. 【答案】B【解析】∵抛物线开口向下,∴,∵抛物线的对称轴为直线,∴,∵抛物线与轴的交点在轴上方,∴,∴,所以①正确;∵,∴,∵,∴,所以②错误;∵,,∴,把代入得,∴,所以③错误;∵,对称轴为直线,∴,∴是关于x的一元二次方程的一个根,所以④正确,综上正确的有2个, 故选B .8.【答案】A [解析]因为矩形ABCD 的两条对称轴为坐标轴,所以矩形ABCD 关于坐标原点成中心对称.因为A ,C 是矩形对角线上的两个点,所以点A ,C 关于原点对称,所以点C 的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y =(x +4)2-2=x2+8x +14.故选A.9. 【答案】B [解析] ∵抛物线开口向下,∴a <0.∵抛物线的对称轴在y 轴的右侧,∴b >0. ∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确.∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0, 而a <0,∴b2-4ac4a <0,故②错误.∵C(0,c),OA =OC ,∴A(-c ,0).把(-c ,0)代入y =ax 2+bx +c ,得ac 2-bc +c =0, ∴ac -b +1=0,故③正确. 设A(x 1,0),B(x 2,0),∵二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点, ∴x 1和x 2是方程ax 2+bx +c =0的两根, ∴x 1·x 2=ca .又∵x 1<0,∴OA·OB =-c a,故④正确.故选B.10. 【答案】 D [解析] 如图,连接AB ,A′B′,则S 阴影=S 四边形ABB′A′.由平移可知,AA′=BB′,AA′∥BB′,所以四边形ABB′A′是平行四边形.分别延长A′A ,B′B 交x 轴于点M ,N ,因为A(1,m),B(4,n),所以MN =4-1=3.因为S 阴影=AA′·MN ,所以9=3AA′,解得AA′=3,即原抛物线沿y 轴向上平移了3个单位长度,所以新图象的函数解析式为y =12(x -2)2+4.二、填空题(本大题共6道小题)11. 【答案】88 m [解析] 把t =4代入函数解析式,得s =5×16+2×4=88.故填88 m.12. 【答案】43【解析】本题考查了已知二次函数的图象与一次函数的图象的交点个数,求字母未知数的值.把y =3x 2+c 与y =4x 联立方程组并消去y 得3x 2+c =4x ,化简得3x 2-4x +c =0,由于它们的图象只有一个交点,故此方程有两个相等的实数根,所以b 2-4ac =(-4)2-4×3c =0,解得c =43.13. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t =1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同.故该距离为0.5秒,所以此时第一个小球抛出后t =1.1+0.5=1.6秒时与第二个小球的离地高度相同.14. 【答案】(1+2,2)或(1-2,2)【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P的纵坐标是2,当y =2时,∴-x 2+2x +3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).15. 【答案】<【解析】当时,,当时,, ,即,故答案为:.16. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误;(2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y=-1n(x-m)2+n(n<0).令y=0,得-1n(x-m)2+n=0.∴n2-(x-m)2=0,∴(n-x+m)(n+x-m)=0.∴x1=m+n,x2=m-n.AB=|x1-x2|=-2n.设对称轴交x轴于点H,则AH=BH=PH=-n ,∴△ABP为等腰直角三角形,④正确.三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y=ax2经过点A(-2,-8),∴4a=-8,解得a=-2,∴此抛物线的解析式为y=-2x2.(2)当x=-1时,y=-2,∴点B(-1,-4)不在此抛物线上.(3)把y=-6代入y=-2x2,得-2x2=-6,解得x=±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(20+m)2,∴当h时,smax=20+m=20+16,∴m=16,此时h18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.19. 【答案】解:(1)(50-2x) (30-2x)(2)依题意,得(50-2x)(30-2x)=300,整理,得x2-40x+300=0,解得x1=10,x2=30(不符合题意,舍去).当x=10时,盒子的容积=300×10=3000(cm3).(3)存在.盒子的侧面积S=2x(50-2x)+2x(30-2x)=100x-4x2+60x-4x2=-8x2+160x=-8(x2-20x)=-8[(x-10)2-100]=-8(x-10)2+800,∴当x=10时,S有最大值,最大值为800.20. 【答案】(1)抛物线经过点A(–2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(–2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.。

人教版九年级上 册 第22章 《二次函数》培优练习卷

人教版九年级上 册 第22章 《二次函数》培优练习卷

第22章《二次函数》培优练习卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.二次函数y=3(x﹣2)2﹣1的图象顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)2.当函数y=(a﹣1)x2+bx+c是二次函数时,a的取值为()A.a=1 B.a=﹣1 C.a≠﹣1 D.a≠13.已知二次函数y=(x+m﹣2)(x﹣m)+2,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,()A.若x1+x2>2,则y1>y2B.若x1+x2<2,则y1>y2C.若x1+x2>﹣2,则y1>y2D.若x1+x2<﹣2,则y1<y24.抛物线y=x2+2先向右平移2个单位,再向下平移3个单位得到的抛物线的表达式是()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣1 C.y=(x﹣3)2+2 D.y=(x﹣3)2﹣2 5.抛物线y=x2﹣9与x轴交于A、B两点,则A、B两点的距离是()A.3 B.6 C.9 D.186.已知二次函数y=﹣x2,下列说法正确的是()A.该抛物线的开口向上B.顶点坐标是(0,0)C.对称轴是x=﹣D.当x<0时,y随x的增大而减小7.在二次函数y=﹣(x﹣1)2+2的图象中,若y随x的增大而增大,则x的取值范围是()A.x>﹣1 B.x<1 C.x<﹣1 D.x>18.在平面直角坐标系中,二次函数y=x2﹣2x的图象可能是()A.B.C .D .9.二次函数y =ax 2+bx +c 的图象如图所示,下面结论:①a >0;②c =0;③函数的最小值为﹣3;④当x >4时,y >0;⑤当x 1<x 2<2时,y 1<y 2(y 1、y 2分别是x 1、x 2对应的函数值).正确的个数为( )A .2B .3C .4D .510.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =﹣,结合图象分析下列结论:①abc >0; ②3a +c >0;③当x <0时,y 随x 的增大而增大,④一元二次方程cx 2+bx +a =0的两根分别为x 1=﹣,x 2=;⑤若m ,n (m <n )为方程a (x +3)(x ﹣2)+3=0的两个根,则m >﹣3且n <2,其中正确的结论有( )A .3个B .4个C .5个D .6个二.填空题(每题4分,共20分)11.若二次函数y =x 2﹣6x +3a 的图象与x 轴有且只有一个交点,则a 的值为 . 12.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度AB =8m ,然后用一根长为4m 的小竹竿CD 竖直的接触地面和门的内壁,并测得AC =2m ,则门高OE 为 .13.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x = .14.二次函数y =ax 2+bx +c 的图象如图所示,若点A (1,y 1),B (3,y 2)是图象上的两点,则y 1 y 2(填“>”、“<”、“=”).15.在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′).给出如下定义:若y ′=,则称点Q 为点P 的“可控变点”.如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y =x +3图象上点M 的“可控变点”,则点M 的坐标为 .(2)若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16≤y ′≤16,则实数a 的取值范围是 .三.解答题(每题10分,共50分)16.已知抛物线L :y =x 2+bx +c 经过点(1,15)和(0,8),顶点为M ,抛物线L 关于原点O 对称的抛物线为L ′,点M 的对应点为点N .(1)求抛物线L 的表达式及点M 的坐标;(2)点P 在抛物线L ′上,点Q 在抛物线L 上,且四边形PMQN 为周长最小的菱形,求点P 的坐标.17.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.(1)求抛物线L和L′的表达式;(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.18.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.19.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升,书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于20元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤10)元给困难职工,每天扣除捐赠后可获得最大利润为1440元,求a的值.20.水果店购进某种水果的成本为10元/千克,经市场调研,获得销售单价p(元/千克)与销售时间t(1≤t≤15,t为整数)(天)之间的部分数据如表:销售时间t(1≤t≤15,t为整数)(天) 1 4 5 8 12 销售单价p(元/千克)20.25 21 21.25 22 23 已知p与t之间的变化规律符合一次函数关系.(1)试求p关于t的函数表达式;(2)若该水果的日销量y(千克)与销售时间t(天)的关系满足一次函数y=﹣2t+120(1≤t≤15,t为整数).①求销售过程中最大日销售利润为多少?②在实际销售的前12天中,公司决定每销售1千克水果就捐赠n元利润(n<3)给“精准扶贫”对象.现发现:在前12天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.参考答案一.选择1.解:∵二次函数y=3(x﹣2)2﹣1,∴该函数图象的顶点坐标为(2,﹣1),故选:D.2.解:由题意得:a﹣1≠0,解得:a≠1,故选:D.3.解:如图,当x=m或x=﹣m+2时,y=2,∴抛物线的对称轴x==1,∴当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,观察图象可知,此时y1>y2,故选:B.4.解:y=x2+2先向右平移2个单位,再向下平移3个单位得到的抛物线的表达式是y=(x ﹣2)2﹣1.故选:B.5.解:令y=0,即x2﹣9=0,解得x1=3,x2=﹣3,∴A、B两点的坐标为(﹣3,0),(3,0),∴A、B两点的距离=3﹣(﹣3)=6.故选:B.6.解:A 、∵a =﹣<0,∴开口向下,故错误,不符合题意;B 、顶点坐标是(0,0),正确,符合题意;C 、对称轴为直线x =0,故错误,不符合题意;D 、∵a =﹣<0,∴开口向下,当x <0时,y 随x 的增大而增大,故错误,不符合题意,故选:B .7.解:∵二次函数y =﹣(x ﹣1)2+2,∴当x >1时,y 随x 的增大而减小,当x <1时,y 随x 的增大而增大, 故选:B .8.解:∵二次函数y =x 2﹣2x =(x ﹣1)2﹣1, ∴开口向上,顶点为(1,﹣1),且经过原点. 故选:A .9.解:∵该函数图象开口向上, ∴a >0,故①正确;∵该函数图象经过点(0,0), ∴c =0,故②正确;∵该函数图象开口向上,有最低点(2,﹣3), ∴函数的最小值为﹣3,故③正确;∵该函数的对称轴为直线x =2,经过点(0,0), ∴该函数与x 轴的另一个交点为(4,0), ∴当x >4时,y >0,故④正确;由函数图象可知,当x <2时,y 随x 的增大而减小,故当x 1<x 2<2时,y 1>y 2(y 1、y 2分别是x 1、x 2对应的函数值),故⑤错误; 故选:C .10.解:由函数图象可得,a <0,b <0,c >0,则abc >0,故①正确; ﹣=,得a =b ,∵x =﹣3时,y =9a ﹣3b +c =0, ∴6a +c =0,∴c =﹣6a ,∴3a +c =3a ﹣6a =﹣3a >0,故②正确;由图象可知,当x <﹣时,y 随x 的增大而增大,当﹣<x <0时,y 随x 的增大而减小,故③错误;∵抛物线y =ax 2+bx +c (a ≠0)与X 轴交于点(﹣3,0),其对称轴为直线x =﹣, ∴该抛物线与x 轴的另一个交点的坐标为(2,0), ∴ax 2+bx +c =0的两个根为x 1=﹣3,x 2=2, ∴a +b+c ()2=0的两个根为x 1=﹣3,x 2=2,∴一元二次方程cx 2+bx +a =0的两根分别为x 1=﹣,x 2=,故④正确; ∵该函数与x 轴的两个交点为(﹣3,0),(2,0), ∴该函数的解析式可以为y =a (x +3)(x ﹣2), 当y =﹣3时,﹣3=a (x +3)(x ﹣2)∴当y =﹣3对应的x 的值一个小于﹣3,一个大于2,∴若m ,n (m <n )为方程a (x +3)(x ﹣2)+3=0的两个根,则m <﹣3且n >2,故⑤错误; 故选:A .二.填空题(共5小题)11.解:∵二次函数y =x 2﹣6x +3a 的图象与x 轴有且只有一个交点, ∴△=b 2﹣4ac =(﹣6)2﹣4×3a =0, 解得:a =3, 故答案为:3.12.解:由题意得,抛物线过点A (﹣4,0)、B (4,0)、D (﹣2,4), 设y =a (x +4)(x ﹣4),把D (﹣2,4)代入y =a (x +4)(x ﹣4), 得4=a (﹣2+4)(﹣2﹣4), 解得a =﹣,∴y =﹣(x +4)(x ﹣4).令x=0得y=,即(0,),∴OE=∴门的高度约为m.故答案为:m.13.解:∵函数y=x2﹣bx+c的图象上有两点A(3,﹣2),B(﹣9,﹣2),且两点的纵坐标相等,∴A、B关于抛物线的对称轴对称,∴对称轴为:直线x==﹣3,故答案为:﹣314.解:∵抛物线的对称轴在y轴的左侧,且开口向下,∴点A(1,y1),B(3,y2)都在对称轴右侧的抛物线上,∴y1>y2.故答案为:>.15.解:(1)根据“可控变点”的定义可知M的坐标(﹣1,2);故答案为:(﹣1,2);(2)依题意可得,y=﹣x2+16图象上的点P的“可控变点”必在函数y′=的图象上(如图),∵﹣16≤y′≤16,∴﹣16=﹣x2+16,∴x=4,当x=﹣5时,x2﹣16=9,当y′=9时,9=﹣x2+16(x≥0),∴x=,∵0的时候对应的﹣16取不到,要得到﹣16只能是4的时候,∴a的取值范围是a=4.故答案为:a=4,三.解答题(共5小题)16.解:(1)∵y=x2+bx+c经过点(1,15)和(0,8),∴,解得,∴抛物线的解析式为y=x2+6x+8,∵抛物线L:y=x2+6x+8=(x+3)2﹣1,∴顶点M(﹣3,﹣1),(2)∵抛物线L′与抛物线L关于原点对称,抛物线L的顶点M(﹣3,﹣1),∴抛物线L′的顶点M′(3,1),解析式为y=﹣(x﹣3)2+1=﹣x2+6x﹣8∵四边形PMQM′是菱形,∴PQ⊥MM′,∵直线MM′的解析式为y=x,∴直线PQ的解析式为y=﹣3x,由,解得或,∴P(1,﹣3)或(8.﹣24).∵菱形PMQM′的周长最小,∴P(1,3).17.解:(1)∵抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,∴,解得:,∴抛物线L的解析式为:y=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点坐标为(,﹣),∵抛物线L关于原点O的对称的为抛物线L′,∴抛物线L′的解析式为:y=﹣(x+)2+;(2)∵点A关于原点O对应点为点A′,∴点A '(1,0),∴AA '=2,∵以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形,∴PQ =AA '=2,PQ ∥AA ',设点P (x ,x 2﹣x ﹣2),当点P 在点Q 的左侧,∴点Q 的横坐标为x +2,∴x 2﹣x ﹣2=﹣(x +2+)2+,∴x =﹣1,∴点P (﹣1,0)(不合题意舍去);当点P 在点Q 的右侧,∴点Q 的横坐标为x ﹣2,∴x 2﹣x ﹣2=﹣(x ﹣2+)2+,∴x 1=+1,x 2=﹣+1, ∴点P 1(+1,),P 2(﹣+1,﹣). 18.解:(1)∵抛物线y =x 2+2x 与x 轴交于B 、C 两点,∴0=x 2+2x ,∴x 1=0,x 2=﹣2,∴点B (﹣2,0),点C (0,0),∵y =x 2+2x =(x +1)2﹣1,∴点A (﹣1,﹣1);(2)设平移后抛物线的表达式为:y =(x +1﹣m )2﹣1+n (m >1),∴点D (m ﹣1,﹣1+n ),∵y =(x +1﹣m )2﹣1+n =x 2+2×(1﹣m )x +m 2﹣2m +n ,∴点E (0,m 2﹣2m +n ),如图1,当点D 在点A 的下方时,过点A 作AM ⊥y 轴于N ,过点D 作DM ⊥AM 于M ,∴∠ANE=∠AMD=90°,∵以A、D、E、F为顶点的四边形是正方形,∴AE=AD,∠EAD=90°,∴∠EAN+∠DAM=90°,∵∠AEN+∠EAN=90°,∴∠AEN=∠DAM,∴△AEN≌△DAM(AAS),∴AN=DM,EN=AM,∴1=﹣1﹣(﹣1+n),m﹣1﹣(﹣1)=m2﹣2m+n﹣(﹣1),∴n=﹣1,m=3,∴平移后抛物线的表达式为:y=(x﹣2)2﹣2;(2)如图2,点D在点A上方时,过点D作DM⊥y轴于N,过点A作AM⊥DM于M,同理可证△EDN ≌△DAM ,∴DN =AM ,EN =DM ,∴m ﹣1=﹣1+n +1,m 2﹣2m +n ﹣(﹣1+n )=m ﹣1+1,∴m =,n =,∴平移后抛物线的表达式为:y =(x ﹣)2﹣,综上所述:平移后抛物线的表达式为:y =(x ﹣2)2﹣2或y =(x ﹣)2﹣. 19.解:(1)由题意得:y =250﹣10(x ﹣25)=﹣10x +500(30≤x ≤40).∴函数关系式及自变量的取值范围是y =﹣10x +500(30≤x ≤40). (2)设每天扣除捐赠后可获得利润为W 元,则:W =(﹣10x +500)(x ﹣20﹣a )=﹣10x 2+(700+10a )x ﹣500a ﹣10000(30≤x ≤40), ∴对称轴为x =35+, 又∵0<a ≤10,∴35<35+≤40,∵30≤x ≤40,∴x =35+时,W max =1440,∴﹣10+(700+10a )(35+)﹣500a ﹣10000=1440,整理得:a 2﹣60a +324=0,解得a 1=6,a 2=54(舍).∴a =6.20.解:(1)设p 与t 之间的变化的一次函数关系为:p =kt +b ,将点(4,21)、(8,22)代入上式得:,解得:,故p 关于t 的函数表达式为:p =t +20(1≤t ≤15,t 为整数);(2)①设日销售利润为w ,由题意得:w =y (p ﹣10)=﹣(t ﹣60)(t +40)(1≤t ≤15,t 为整数), ∵<0,故w 有最大值,当t =10时,w 的最大值为1250;故销售过程中最大日销售利润为1250元;②设捐赠后的日销售利润为m ,由题意得:m =w ﹣n =﹣(t ﹣60)(t +40)﹣n =﹣t 2+(10+2n )t +1200﹣120n , ∵在前12天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,∴﹣≥11.5,∴n ≥.又∵n <3,∴n 的取值范围为≤n <3.1、最困难的事就是认识自己。

人教版 九年级数学上册 第22章 二次函数 尖子生培优 (含答案)

人教版 九年级数学 第22章 二次函数 尖子生培优一、选择题(本大题共10道小题)1. 抛物线y =2x 2-5的顶点坐标为( )A .(2,5)B .(-2,5)C .(0,-5)D .(0,5)2. 在平面直角坐标系中,二次函数y =a (x -h )2 的图象可能是( )3. 抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限4. (2019•咸宁)已知点()()()()1,,1,,2,0Am B m C m n n -->在同一个函数的图象上,这个函数可能是 A .y x = B .2y x=-C .2y x =D .2y x =﹣5. (2020·温州)9.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312yx x m=--+上的点,则A .3y <2y <1yB .3y <1y <2yC .2y <3y <1yD .1y <3y <2y6. (2020·泰安)在同一平面直角坐标系内,二次函数y ﹦ax 2+bx +b (a ≠0)与一次函数y ﹦ax +b 的图象可能是( )A .B .C .D .7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. 已知二次函数y =ax 2+bx +c 的图象如图所示,则以下结论同时成立的是( )A.⎩⎪⎨⎪⎧abc>0,b 2-4ac<0 B.⎩⎪⎨⎪⎧abc<0,2a +b>0 C.⎩⎪⎨⎪⎧abc>0,a +b +c<0 D.⎩⎪⎨⎪⎧abc<0,b 2-4ac>09. (2020·遵义)抛物线y =ax 2+bx +c 的对称轴是直线x =-2,抛物线与x 轴的一个交点在点(-4, 0)和点(-3,0)之间,其部分图象如图所示,下列结论中正确的个数有:①4a -b =0;②c ≤3a ;③关于x 的方程ax 2+bx +c =2有两个不相等实数根;④b 2+2b > 4ac .A .1个B .2个C .3个D .4个10. 如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC.有下列结论:①abc<0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB =-ca .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共8道小题)11. 若抛物线y =x 2+bx +25的顶点在x 轴上,则b 的值为________.12. (2020·襄阳)汽车刹车后行驶的距离s (单位:米)关于行驶时间t (单位:秒)的函数关系式是s=15t-6t2,则汽车从刹车到停止所用时间为__________秒.13. 某抛物线与抛物线y=7x2的形状、开口方向都相同,且其顶点坐标为(-2,5),则该抛物线的解析式为__________________.14. 若二次函数y=x2+bx-5的图象的对称轴为直线x=2,则关于x的方程x2+bx-5=2x -13的解为______________.15. 将抛物线y=2x2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.16. (2019•襄阳)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为2h t t=-,则小球从飞出到落地所用的时间为205__________s.17. 如图,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则此抛物线的解析式为__________________.18. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.三、解答题(本大题共4道小题)19. 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在O 点正上方1 m 的P 处发出一球,羽毛球飞行的高度y (m )与水平距离x (m )之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5 m ,球网的高度为1.55 m .(1)当a =-124时,①求h 的值,②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7 m ,离地面的高度为125 m 的Q 处时,乙扣球成功,求a 的值.20. 如图所示,在矩形ABCD中,AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,点Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.当一点到达终点时,两点均停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2. (1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.21. (2020·鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.22. (2020·青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用m=2(k≠0)表示.求该抛物线kxy+的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户m.已知GM=2m,求每个B型活动板房的成本是多少?(每个B 的成本为50元/2型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?人教版九年级数学第22章二次函数尖子生培优-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】D3. 【答案】A [解析] 二次函数y =ax 2+bx +c 的顶点坐标为(-b2a ,4ac -b 24a ).∵-b 2a =--22=1>0,4ac -b 24a =4(m 2+2)-44=m 2+1>0,故此抛物线的顶点在第一象限.故选A.4. 【答案】D【解析】()()1,,1,A m B m -, ∴点A 与点B 关于y 轴对称;由于2y x y x==-,的图象关于原点对称,因此选项A ,B 错误;∵0n >,∴m n m -<,由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确,故选D .5. 【答案】B【解析】本题考查了二次函数的增减性,当a >0,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0时,在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小,由对称轴x =12222(3)b a --=-=-⨯-,知(-3,y 1)和(-1,y 1)对称,因为a =-3<0,所以当x ≥-2时,y 随x 的增大而减小,-2<-1<1,所以y 2>y 1>y 3,因此本题选B .6. 【答案】C【解析】本题考查了一次函数与二次函数的图像性质,选项A 中y =ax 2+bx +c 的图像可知a >0、b <0,y =ax +b 的图像可知a >0、b >0,则选项A 不正确;选项B 中y =ax 2+bx +c 的图像可知a <0、b <0,y =ax +b 的图像可知a >0、b <0,则选项B 不正确;选项C 中y =ax 2+bx +c 的图像可知a >0、b <0,y =ax +b 的图像可知a >0、b <0,则选项C 正确;选项D 中y =ax 2+bx +c 的图像可知a >0、b <0,y =ax +b 的图像可知a <0、b =0,则选项D 不正确;,因此本题选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>. 0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】C [解析] 由图象可知,当x =1时,y <0,∴a +b +c <0;∵二次函数图象与x轴有两个交点,∴b 2-4ac>0;∵二次函数图象与y 轴的交点在y 轴负半轴上,∴c <0;∵二次函数图象开口向上,∴a >0;∵对称轴-b2a >0,a >0,∴b <0.∴abc >0.故选C.9. 【答案】C【解析】本题考查二次函数的图象与性质.由-ba2=-2得4a -b =0,故①正确;由ac b a -244=3得4ac -b 2=12a ,又4a =b ,代入消去b 得c =4a +3,故②错误; 由图,象得,关于x 的方程ax 2+bx +c =2有两个不相等实数根正确; 由ac b a-244=3得4ac -b 2=12a ,∴4ac =12a +b 2=3b +b 2,∵a <0,b <0,c <0,∴4ac <2b +b 2 ,故④正确.故选C .10. 【答案】B [解析] ∵抛物线开口向下,∴a <0.∵抛物线的对称轴在y 轴的右侧,∴b >0. ∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确.∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0, 而a <0,∴b 2-4ac4a <0,故②错误.∵C(0,c),OA =OC ,∴A(-c ,0).把(-c ,0)代入y =ax 2+bx +c ,得ac 2-bc +c =0, ∴ac -b +1=0,故③正确. 设A(x 1,0),B(x 2,0),∵二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点, ∴x 1和x 2是方程ax 2+bx +c =0的两根, ∴x 1·x 2=ca .又∵x 1<0,∴OA·OB =-ca ,故④正确.故选B.二、填空题(本大题共8道小题)11. 【答案】±1012. 【答案】2.5.【解析】令s =0,得15t -6t 2=0,解得t 1=2.5,t 2=0(不合题意,舍去),故答案为2.5.13. 【答案】y =7x 2+28x +33 [解析] 设该抛物线的解析式为y =a(x -h)2+k.∵该抛物线与抛物线y =7x 2的形状、开口方向都相同,∴a =7.又∵其顶点坐标为(-2,5),∴它的解析式为y =7(x +2)2+5,整理,得y =7x 2+28x +33.14. 【答案】x 1=2,x 2=4 [解析] ∵二次函数y =x 2+bx -5的图象的对称轴为直线x =2,∴-b 2=2,∴b =-4,∴原方程化为x 2-4x -5=2x -13,解得x 1=2,x 2=4.15. 【答案】y =2(x +1)2-216. 【答案】4【解析】依题意,令0h =得:∴20205t t =-,得:(205)0t t -=,解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s ,故答案为:4.17. 【答案】 y =-x2+2x +318. 【答案】3-3[解析] 设点A的坐标为(0,b),则B(b,b),C(3b,b),D(3b,3b),E(3 b,3b).所以AB=b,DE=3 b-3b=(3-3) b.所以DEAB=(3-3)bb=3- 3.三、解答题(本大题共4道小题)19. 【答案】【思维教练】(1)将点P坐标代入解析式求出h的值,当抛物线到达球网位置的时候,对比抛物线与球网的高度判断是否能过网;(2)球能过网说明抛物线过点(0,1)和点(7,125),代入抛物线解析式求解即可.解:(1)①把(0,1)代入y=-124(x-4)2+h,得h=53.(2分)②把x=5代入y=124(x-4)2+53,得y=-124(5-4)2+53=1.625.∵1.625>1.55.∴此球能过网;(4分)(2)把(0,1),(7,125)代入y=a(x-4)2+h,得⎩⎪⎨⎪⎧16a+h=1,9a+h=125,解得⎩⎪⎨⎪⎧a=-15,h=215.∴a=-15.(8分)20. 【答案】[解析] 先运用三角形的面积公式求出y关于x的函数解析式,然后运用公式法或配方法把函数解析式化成顶点式,再根据x的取值范围求所得函数的最大值,进而解决问题.解:(1)∵S△PBQ=12PB·BQ,PB=AB-AP=(18-2x)cm,BQ=x cm,∴y=12(18-2x)·x,即y =-x 2+9x(0<x≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814. ∵当x<92时,y 随x 的增大而增大,而0<x≤4,∴当x =4时,y 最大值=20,即△PBQ的面积的最大值是20 cm 2.21. 【答案】解:(1)设y 与x 的函数关系式为y =kx +b ,代入(4,10000),(5,9500)可得:10000495005k b k b =+⎧⎨=+⎩,解得:50012000k b =-⎧⎨=⎩,即y 与x 的函数关系式为50012000y x =-+;(2)设这一周该商场销售这种商品获得的利润为w ,根据题意可得:315500120006000x x ≤≤⎧⎨-+≥⎩,解得:312x ≤≤,()()()2350012000327500551252w y x x x x =-=-+-⎛⎫=--+ ⎪⎝⎭∵312x ≤≤,∴当x =12时,w 有最大值,w =54000,答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元.(3)设这一周该商场销售这种商品获得的利润为w ,当每销售一件商品便向某慈善机构捐赠m 元时,()()()()()2350012000350050027500243w y x m x x m x m x m =--=-+--=-++-⨯-由题意,当x ≤15时,利润仍随售价的增大而增大,可得:()()50027152500m +-≥⨯-,解得:m ≥3,∵16m ≤≤∴36m ≤≤故m 的取值范围为:36m ≤≤.22. 【答案】解:(1)由题意得AD=4,AB=3,EH=4,∴OA=OD=21AD=21×4=2,OE=EH-OH=EH-AB=4-3=1, ∴A (-2,0),E (0,1),∴⎪⎩⎪⎨⎧+⋅=+-⋅=m k m k 2201)2(0,解得⎪⎩⎪⎨⎧=-=141m k , ∴该抛物线的函数表达式为:1412+-=x y . (2)由题意得OM=21GM=21×2=1,∴当x=1时,4311412=+⨯-=y ,∴MN=43. ∴每个B 型活动板房的成本是:425+50×4×43=575(元). (3)由题意得)1065020100)(575(n n w -⨯+-==)]650(2100)[575(n n -+- =)21300100)(575(n n -+-=)21400)(575(n n --=805000255022-+-n n由⎪⎩⎪⎨⎧≤-⨯+≤≤1601065020100650575n n x 得620≤n≤650. ∵805000255022-+-=n n w 的对称轴5.637)2(22550=-⨯-=n 在620≤n≤650之内, ∴当公司将销售单价n(元)定为637.5时,每月销售B 型活动板房所获利润w(元)最大,最大利润是:)5.63721400)(5755.637(⨯--=w =62.5×125=7812.5(元).。

人教版九年级上第22章《二次函数》期末培优测验试卷(有答案)

人教版初中九年级上册:第22章《二次函数》期末培优测验一.选择题(共10小题)1.在平面直角坐标系Oy中,抛物线y=a(﹣1)2﹣1(a≠0)的顶点坐标是()A.(2,﹣1)B.(﹣1,﹣1)C.(1,1)D.(1,﹣1)2.将抛物线y=2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(﹣2)2+3B.y=(﹣2)2﹣3C.y=(+2)2+3D.y=(+2)2﹣33.抛物线y=2﹣2﹣1上有点P(﹣1,y1)和Q(m,y2),若y1>y2,则m的取值范围为()A.m>﹣1B.m<﹣1C.﹣1<m<3D.﹣1≤m<34.已知二次函数y=a2+b+c的图象如所示,那么下列判断不正确的是()A.ac<0B.a﹣b+c>0C.b=﹣4a D.a+b+c>05.已知抛物线y=a2+b+c(a<0)过A(﹣3,0),B(1,0),C(﹣5,y1),D(﹣2,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定6.下列是抛物线y=﹣22﹣3+1的图象大致是()A.B.C.D.7.如图,已知抛物线y=2+p+q的对称轴为直线=﹣2,过其顶点M的一条直线y=+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为()A.(0,﹣2)B.(0,﹣)C.(0,﹣)D.(0,﹣)8.如图,平行于轴的直线AC分别交函数y1=2(≥0)与y2=2(≥0)的图象于B,C两点,过点C作y轴的平行线交y1=2(≥0)的图象于点D,直线DE∥AC,交y2=2(≥0)的图象于点E,则=()A.B.1C.D.3﹣9.已知原点是抛物线y=(m+1)2的最低点,则m的取值范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣210.将抛物线y=(+1)2﹣2向上平移a个单位后得到的抛物线恰好与轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.2二.填空题(共7小题)11.已知二次函数y=2﹣m+3在=0和=2时的函数值相等,那么m的值是.12.如图,若点B的坐标为(,0),则点A的坐标为.13.函数y=a2﹣2a+m(a>0)的图象过点(2,0),那么使函数值y<0成立的的取值范围是.14.把抛物线y=2向左平移2个单位,则平移后所得抛物线的解析式为.15.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为m2.16.二次函数y=3(﹣3)2+2顶点坐标坐标.17.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=2﹣6﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为.三.解答题(共6小题)18.若二次函数y=a2+b+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.19.如图,点A,B,C都在抛物线y=a2﹣2am+am2+2m﹣5(﹣<a<0)上,AB∥轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤≤2m﹣2时,y的最大值为2,求m的值.20.已知二次函数y=﹣2+2﹣3(1)用配方法求该二次函数图象的顶点坐标和对称轴;(2)直接说出在什么范围内,y随的增大而减小.21.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元.商场平均每天可多售出4件,(1)若商场平均每天盈利最大,每件衬衫应降价多少元?(2)每天可售出多少件?22.如图,在△ABG中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AG上,与△ADC另两边分别交于点E、F,DE∥AB,将正方形平移,使点D保持在AC上(D不与A重含),设AF=,正方形与△ABC重叠部分的面积为y.(1)求y与的函数关系式并写出自变量的取值范围;(2)为何值时y的值最大?23.已知抛物线的顶点A(1,﹣4),且与直线y=﹣3交于点B(3,0),点C(0,﹣3)(1)求抛物线的解析式;(2)当直线高于抛物线时,直接写出自变量的取值范围是多少?参考答案一.选择题(共10小题)1.【解答】解:(1)∵y=a(﹣1)2﹣1;∴抛物线的顶点坐标为(1,﹣1);故选:D.2.【解答】解:抛物线y=2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(+2)2﹣3.故选:D.3.【解答】解:∵a=1>0,∴抛物线开口向上,∵函数对称轴为=﹣=1,∴当y1>y2时,①Q(m,y2)在对称轴右侧时,1≤m<3;②Q(m,y2)在对称轴右侧时,﹣1<m<1,综上,m的取值范围为是﹣1<m<3,故选:C.4.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在轴下方,∴c>0,∴ac<0,所以A选项的判断正确;∵=﹣1时,y<0,∴a﹣b+c<0,所以B选项的判断错误;∵抛物线的对称轴为直线=﹣=2,∴b=﹣4a,所以C选项的判断正确;∵=1时,y>0,∴a+b+c>0,所以D选项的判断正确.故选:B.5.【解答】解:∵抛物线过A(﹣3,0)、B(1,0)两点,∴抛物线的对称轴为==﹣1,∵a<0,抛物线开口向下,离对称轴越远,函数值越小,比较可知C点离对称轴远,对应的纵坐标值小,即y1<y2.故选:C.6.【解答】解:抛物线y=﹣22﹣3+1的图象,因为a=﹣2,所以开口向下,故CD错误;抛物线y=﹣22﹣3+1的对称轴是直线=﹣,故A错误;故选:B.7.【解答】解:如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得,解得,y=2+4+2=(+2)2﹣2,M(﹣2,﹣2).N点关于y轴的对称点N′(1,﹣1),设MN′的解析式为y=+b,将M、N′代入函数解析式,得,解得,MN′的解析式为y=﹣,当=0时,y=﹣,即P(0,﹣),故选:B.8.【解答】解:设A点坐标为(0,a),(a>0),则y1=2=a,解得=,∴点B(,a),y=2=a,则=,∴点C(,a),∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=3a,∴点D的坐标为(,3a),∵DE∥AC,∴点E的纵坐标为3a,∴2=3a,∴=3,∴点E的坐标为(3,3a),∴DE=3﹣,∴==3﹣.故选:D.9.【解答】解:∵原点是抛物线y=(m+1)2的最低点,∴m+1>0,即m>﹣1.故选:C.10.【解答】解:新抛物线的解析式为:y=(+1)2﹣2+a=2+2﹣1+a,∵新抛物线恰好与轴有一个交点,∴△=4﹣4(﹣1+a)=0,解得a=2.故选:D.二.填空题(共7小题)11.【解答】解:∵当=0和=2时的函数值相等,∴二次函数图象的对称轴==1,∵对称轴=﹣=m,∴m=1,即m=2,故答案为:2.12.【解答】解:由图象可得,该抛物线的对称轴是直线=1,∵若点B的坐标为(,0),∴点A的坐标为(2﹣,0),故答案为:(2﹣,0).13.【解答】解:∵函数y=a2﹣2a+m(a>0)的图象过点(2,0),∴0=a×22﹣2a×2+m,化简,得m=0,∴y=a2﹣2a=a(﹣2),当y=0时,=0或=2,∵a>0,∴使函数值y<0成立的的取值范围是0<<2,故答案为:0<<2.14.【解答】解:把抛物线y=2向左平移2个单位,得到的抛物线解析式是:y=(+2)2﹣2,即y=2+4+4.故答案为:y=2+4+4.15.【解答】解:∵AB=m,∴BC=(28﹣)m.则S=AB•BC=(28﹣)=﹣2+28.即S=﹣2+28(0<<28).由题意可知,,解得6≤≤13.∵在6≤≤13内,S随的增大而增大,∴当=13时,S最大值=195,即花园面积的最大值为195m2.故答案为:195.16.【解答】解:∵二次函数y=3(﹣3)2+2是顶点式,∴顶点坐标为(3,2).故答案为:(3,2).17.【解答】解:抛物线的解析式为y=2﹣6﹣16,则D(0,﹣16)令y=0,解得:=﹣2或8,函数的对称轴=﹣=3,即M(3,0),则A(﹣2,0)、B(8,0),则AB=10,圆的半径为AB=5,在Rt△COM中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.三.解答题(共6小题)18.【解答】解:用顶点式表达式:y=a(﹣2)2+1,把点(1,﹣2)代入表达式,解得:a=﹣3,∴函数表达式为:y=﹣3(﹣2)2+1=﹣32+12﹣11.19.【解答】解:(1)∵y=a2﹣2am+am2+2m﹣5=a(﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.20.【解答】解:(1)y=﹣2+2﹣3=﹣(2﹣2+3)=﹣(﹣1)2﹣2,所以顶点坐标为(1,﹣2)对称轴为=1;(2)∵函数图象开口向下,又其对称轴=1,∴当>1时,y随的增大而减小.21.【解答】解:(1)设每件衬衫降价元,商场平均每天盈利为y元,y=(45﹣)(20+4),∴y=﹣42+160+900=﹣4(﹣20)2+2500,∴当=20时,y取得最大值,此时y=2500,答:若商场平均每天盈利最大,每件衬衫应降价20元;(2)当=20时,20+4=20+4×20=100,答:每天可售出100件.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CED,∠AFD=∠FDE=90°,∴∠C=∠CED,∴DC=DE.在Rt△ADF中,∵∠A=45°,∴∠ADF=45°=∠A,∴AF=DF=,∴AD==,∴DC=DE=1﹣,∴y=(DE+FB)×DF=(1﹣+1﹣)=﹣(+1)2+.∵点D保持在AC上,且D不与A重合,∴0<AD≤1,∴0<≤1,∴0<≤.故y=﹣(+1)2+,自变量的取值范围是0<≤;(2)∵y=﹣(+1)2+,∴当=﹣=﹣1时,y有最大值.23.【解答】解:(1)设抛物线解析式为y=a(﹣1)2﹣4,把B(3,0)代入得a(3﹣1)2﹣4=0,解得a=1,所以抛物线解析式为y=(﹣1)2﹣4;(2)如图,当0<<3时,直线高于抛物线.。

新乡市第一中学九年级数学上册第二十二章《二次函数》经典复习题(专题培优)

一、选择题1.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b+c >0;②3a+b =0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个2.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个 3.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( )A .32B .32或2C .32或6D .32或2或6 4.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .426.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 7.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 8.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1B .14或1C .34或12D .14或12 9.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)- 10.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令CO AO=m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1 11.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 12.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 13.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤14.表格对应值: x1 2 3 4 2ax bx c ++ 0.5-5 12.5 22 判断关于x 的方程2ax bx c ++=的一个解x 的范围是( )A .01x << B .12x << C .23x << D .34x << 15.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).17.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)18.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .19.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.20.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.21.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.22.二次函数y=(x+2)2-5的最小值为_______.23.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.24.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.25.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)26.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题27.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?28.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标29.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示.(1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式;(2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?30.已函数21y x x=+,请结合学习函数的经验,探究它的相关性质: (1)自变量x 的取值范围是________;(2)x 与y 的几组对应值如下表,请补全表格: x … -2.5 -2 -1.5 -1-0.5 -0.2 0.2 0.5 1 1.5 2 2.5 … y … 5.85 3.5 1.58 0 -1.75 -4.96 5.04 m n2.92 4.5 6.65 …其中m =________,n =________.(3)下图中画出了函数的一部份图象,请根据上表数据,用描点法补全函数图象; (4)请写出这个函数的一条性质:________________________;(5)结合图象,直接写出方程2120x x x-+=的所有实根:________.。

新乡市第一中学九年级数学上册第二十二章《二次函数》知识点复习(课后培优)

一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .2.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④3.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-4.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③5.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩6.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<7.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( ) A .16q <B .16q >C .16q ≤D .16q ≥8.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 9.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)10.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<11.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>12.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>13.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-14.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个15.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---二、填空题16.将抛物线2yx 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.17.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.18.写出一个开口向下的二次函数的表达式______.19.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()ba b c a++的值为______. x … 3-2- 0 … y…31.68- 1.68-…20.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23y8 30 1-3则在实数范围内能使得成立的x 取值范围是_______.21.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.22.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .23.如图所示为抛物线223y ax ax =-+,则一元二次方程2230ax ax -+=两根为______.24.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.25.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.26.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)三、解答题27.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?28.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.29.新华书店为满足广大九年级学生的需求,订购《走进数学》若干本,每本进价为16元.根据以往经验:当销售单价是20元时,每天的销售量是200本,销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于25%且不高于50%.(1)请直接写出书店销售《走进数学》每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)当销售单价定为多少元时,每天的利润最大,最大利润是多少?30.如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=2个单位长AA B.度,把Rt△OAB沿x轴正方向平移2个单位长度后得△11(1)求以A为顶点,且经过点1B的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、 C的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新乡市一中九年级数学培优测试(含答案)
第22章二次函数
时间:100分钟满分:100分
【二次函数的图象与性质——二次函数的增减性】
1.在二次函数y=−x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()
A. x<1
B. x>1
C. x<−1
D. x>−1
解答:
y=−x2+2x+1=−(x−1)2+2,
抛物线的对称轴为直线x=1,
∵a=−1<0,
∴当x<1时,y随x的增大而增大.
故选A.
2.已知二次函数y=−x2+2bx+1,当x<1时,y的值随x值的增大而增大,则b的取值范围是()
A. b⩾−1
B. b⩽−1
C. b⩾1
D. b⩽1
∵a<0,
∴当x<b时,y随x的增大而增大,
∵当x<1时,y的值随x值的增大而增大,
∴b⩾1.
故选:C.
3.点A(2,y1)、B(3,y2)是二次函数y=x2−2x+1的图象上两点,则y1与y2的大小关系为
y1y2(填“>”、“<”、“=”).
解答:
当x=2时,y1=x2−2x+1=1;
当x=3时,y2=x2−2x+1=4;
∴y1<y2,
故答案为:<.
4.
系是.
解答:
∵二次函数y=(x−2)2−1,
∴对称轴为直线x=2,
根据二次函数图象的对称性可知,A(4,y1)与(0,y1)关于对称轴对称,
故答案为y2<y1<y3.
【二次函数的图象与性质——二次函数的对称性】
5.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(−2,0),抛物线的对称轴为直线x=2,则线段AB的长为.
解答:
∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=2对称,
∵点A的坐标为(−2,0),
∴点B的坐标为(6,0),
AB=6−(−2)=8.
故答案为:8.
6.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a−2b+c的值为.
设抛物线与x轴的另一个交点是Q,
∵抛物线的对称轴过点(1,0),抛物线与x轴的一个交点是P(4,0),
∴抛物线与x轴的另一个交点Q(−2,0),
把(−2,0)代入解析式得:0=4a−2b+c,
∴4a−2b+c=0,
故答案为:0.
【二次函数的图象与性质——二次函数的顶点坐标与图象性质】
7.已知A(0,3),B(2,3)是抛物线y=−x2+bx+c上两点,该抛物线的顶点坐标是.
解答:
∵A(0,3),B(2,3)是抛物线y=−x2+bx+c上两点,
∴c=3,−4+2b+c=3,
解得:b=2,c=2,
即抛物线的解析式为:y=−x2+2x+3=−(x−1)2+4,
故抛物线的顶点坐标是:(1,4),
故答案为:(1,4)
8.某班“数学兴趣小组”对函数y=x2−2|x|的图象和性质进行了探究.探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
其中m=.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分.请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有个交点,所以对应的方程x2−2|x|=0有个实数根;
②方程x2−2|x|=2有个实数根;
③关于x的方程x2−2|x|=a有4个实数根时,a的取值范围是.
解答:
(1)当x=−2时,y=(−2)2−2×|−2|=0,
∴m=0,
故答案为:0;
(2)根据给定的表格中数据描点画出图形,如图所示.
(3)观察函数图象,可得出:①函数图象关于y轴对称,②当x>1时,y随x的增大而增大.
(4)①观察函数图象可知:当x=−2、0、2时,y=0,
∴该函数图象与x轴有3个交点,
即对应的方程x2−2|x|=0有3个实数根.
故答案为:3;3.
②由函数图象知:
∵直线y=2与该函数图象有两个交点,
∴方程x2−2|x|=2有2个实数根,
故答案为:2;
③由函数图象知:
∵关于x的方程x2−2|x|=a有4个实数根,
∴a的取值范围是−1<a<0,
故答案为:−1<a<0.
【二次函数图象的平移】
9.在平面直角坐标系中,将抛物线y=x2−4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()
A. y=(x+2)2+2
B. y=(x−2)2−2
C. y=(x−2)2+2
D. y=(x+2)2−2
解答:
函数y=x2−4向右平移2个单位,得:y=(x−2)2−4;
再向上平移2个单位,得:y=(x−2)2−2;
故选B.
∴n=4,
令y=0,
解得x=3,即A(3,0),
(3)∵点P的横坐标为m,
当△BDP为等腰直角三角形时,PD=BD.
(i)若点P在y轴左侧,则m<0,BD=−m.
(ii)若点P在y轴右侧,则m>0,BD=m.
∴0=−2+c ,解得c =2, ∴B (0,2),
∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,
∵M ,P ,N 三点为“共谐点”,
∴P 为线段MN 的中点或M 为线段PN 的中点或N 为线段PM 的中点,
(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(−8,0),
设抛物线解析式为:y=ax2+c,
则c=8,64a+c=0,
(2)正确,
∵D(0,6),
∴PD−PF=2;
(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,
∵PD−PF=2,∴PD=PF+2,
∴PE+PD=PE+PF+2,
∴当P、E. F三点共线时,PE+PF最小,
此时点P,E的横坐标都为−4,
1
∴P(−4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点,
∴△PDE的周长最小时”好点“的坐标为:(−4,6),
∵−8⩽a⩽0,
∴4⩽S△PDE⩽13,
∴△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,
所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,
综上所述:11个好点,P(−4,6).
13.在平面直角坐标系中,已知抛物线经过A(−4,0),B(0,−4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=−x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。

解答:
(1)设此抛物线的函数解析式为:
y=ax2+bx+c(a≠0),
将A(−4,0),B(0,−4),C(2,0)三点代入函数解析式得:
16a−4b+c=0,c=−4,4a+2b+c=0,
2
(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴S=−m2−4m=−(m+2)2+4,
∵−4<m<0,
当m=−2时,S有最大值,最大值为4.
当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,
又∵直线的解析式为y=−x,
则Q(x,−x).
x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=−x得出Q为(4,−4).。

相关文档
最新文档