七下7平面直角坐标系

合集下载

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

有序数对在生活中的应用
知 识 点 二
如图是某学校的平面示意图.如果用 (5,1)表示学校大门的位置,那么运动场表 宿舍楼 (6,8) ,(8,5)表示的场所是_____. 示为_____
有序数对在生活中的应用
知 识 点 二
如图3,甲处表示2街与5巷的十字路口,乙处表 示5街与2巷的十字路口,如果用(2,5)表示甲处的位 置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲处到乙处的一种路线,请 你用 这种形式写出两种从甲处到乙处的最短路线.
这就是我们接下来要学习的相关概念的内容。
2、在平面内画两条互相____、原点____的数轴, 垂直 重合 横轴 组成平面直角坐标系.水平的数轴称为____或____, x轴 y轴 习惯上取向_____为正方向;竖直的数轴称为___ 右 _或____,取向____为正方向;两个坐标轴的_ 上 纵轴 ___为平面直角坐标系的原点 . 交点 y轴
D
-4 -3 -2 -1 -1 4 3 2 1
y A
O1
2 3
4
x
C
-2 -3
B
4、如图所示,在第三象限的点是(C ) A.点A B.点B C.点C D.点D
(1)
学习目标
1
会根据实际情况建立适当的坐 标系;
2
通过点的位置关系探索坐标之间 的关系及根据坐标之间的关系探 索点的位置关系.
讲授新课
认真阅读课本第67至68页的内容,
分别为:A( 0,0 ),B(6,0),C(6,6 ),D(0,6). y 2、若以线段DC所在的直线为x轴,纵轴(y 轴)位置不变,则四个顶点的坐标分别为: 6,0 ), A( 0,-6),B( 6,-6 ),C( D( 0,0 ).

七年级数学下册第七章平面直角坐标系知识点归纳

七年级数学下册第七章平面直角坐标系知识点归纳

平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对a,b一一对应;其中a为横坐标, b为纵坐标;Y3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;坐标轴上的点不属于任何象限; b Pa,b4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:1点 P x,y所在的象限横、纵坐标x、y的取值的正负性;2点 Px,y所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P a,b ,则a; b P a,b1 点 P 到x轴的距离为b; 2点 P 到y轴的距离为ab3 点 P 到原点 O 的距离为 PO=a2b2O a x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上, 所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P m , n 关于 x 轴的对称点为 P 1 m ,n , 即横坐标丌变,纵坐标互为相反数; b) 点 P m , n 关于 y 轴的对称点为 P 2 m , n , 即纵坐标丌变,横坐标互为相反数; c) 点 P m , n 关于原点的对称点为 P 3 m ,n ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mXmmmXOm X OnP 1 nP 3关于 x 轴对称 关于 y 轴对称关于原点对称d 点 Pa , b 关于点 Q m , n 的对称点是 M2m-a,2n-b ;8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P m , n 在第一、三象限的角平分线上,则 m n ,即横、纵坐标相等;b) 若点 P m , n 在第二、四象限的角平分线上,则 m n ,即横、纵坐标互为相反数;yynPP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移1点的平移将点x , y 向右或向左平移 a 个单位,可得对应点x+a , y {或x-a , y },可记为“右加左减,纵不变”;将点x , y 向上或向下平移 b 个单位,可得对应点x , y+b {或x , y-b },可记为“上加下减,横不变”;2图形的平移把一个图形各个点的横坐标都加上或减去一个正数 a,相应的新图像就是把原图形向右或向左平移 a 个单元得到的;如果把图形各个点的纵坐标都加上或减去一个正数 a, 相应的新图像就是把原图形向上或向下平移 a 个单元得到的;。

七年级数学下册教学课件《平面直角坐标系 单元解读课件》

七年级数学下册教学课件《平面直角坐标系 单元解读课件》

纵坐标为0 横坐标为0
知识结构
用坐标表示地理位置

标 方
用方向和距离表示平面内点的位置



左减右加(横坐标)
单 应 用
用坐标表 示平移
点的平移
转化
上加下减(纵坐标)
图形的平移
课时安排
平面直角坐标系架起了数与形之间的桥梁,使得我们可以用几何方法研究 代数问题,又可以用代数的方法研究几何问题,是解决数学问题的一个强有力 的工具.
学习目标 教学内容
学习目标
7.2 坐标方法的
简单应用
1. 能建立适当的平面直角坐标系描述物体位置.
2. 能用方向和距离刻画两个物体的相对位置.
3. 掌握平面直角坐标系中图形的平移与图形对应点的坐标 的变化规律,感受数与形相互转化的过程,体会平面直 角坐标系的作用.
内容要点
7个概念:有序数对,平面直角坐标系,横轴,纵轴,原点,坐标, 象限
通过这一节内容的学习,可以帮助学生 更好的理解点与坐标的对应关系,顺利 实现由一维到二维的过渡.
教材内容
7.2 坐标方法的简单应用 联系实际,提出“地图上是怎样利用坐标表示一个地点的地理位置?”的问题,使学生联想 到坐标系再来学习如何建立直角坐标系,然后让同学们了解另一种描述物体位置的方法—— 用方向和距离表示平面内物体的位置.最后分析点及图形平移前后点的坐标的变化来归纳相关 规律.
2种确定点的位置方法:用坐标表示点的位置, 方向+距离表示点的位置
3类点的特征:不同象限点的坐标特征,坐标轴上点的坐标特征, 与坐标轴平行的直线上点的坐标特征
2个关系:点的坐标与位置之间的对应关系,点的平移与坐标的变 化规律之间的对应关系

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

人教版七年级数学下册《用坐标表示地理位置》平面直角坐标系PPT

知识要点
知识点一:用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的 过程: (1)建立坐标系:选择一个适当的 参照点 为坐标原点,确定 x轴和y轴的 正 方向; (2)根据具体问题确定 单位长度 ;
(3)在坐标平面内画出这些点,写出各点的 坐标 和各个地 点的名称. 温馨提示:①选择坐标原点时,要以能简捷地确定平面内点的 坐标为原则;②一般将正北作为y轴正方向,将正东作为x轴正 方向;③应使尽可能多的点落在坐标轴上,使点的坐标比较简 单.
,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么
这个地点就用代码010045表示.按这种表示方式,南偏东45°
方向78 km的位置,可用路上经过的地方:葡萄园,杏林,桃林,梅林,山楂林,枣林,梨 园,苹果园.图略.
5.【例2】小花和爸爸、妈妈周末到动物园游玩,回到家后,她 利用平面直角坐标系画出了动物园的景区地图,如图所示.可 是她忘记了在图中标出原点和x轴、y轴,只知道马的坐标为( -3,-3),你能帮她建立平面直角坐标系并求出其他各景点的 坐标吗?
2.(北师8上P56改编)如图是象棋棋盘的一部分,若“帅”位于点 (1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( C )
A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2)
知识点三:用方向和距离表示地理位置 用方向和距离表示地理位置的方法: (1)找到 参照点 ; (2)在该点建立方向标; (3)测量出方位角和两点之间的距离; (4)根据 方位角 和 距离 表示出平面内的点(x,y). 温馨提示:描述方位角时,通常写成北偏东(西)或南偏东(西)的 形式.
9.(人教7下P79、北师8上P60)如图,这是一所学校的平面示意 图,建立适当的平面直角坐标系,并写出教学楼、校门和图书 馆的坐标.

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。

第七章_平面直角坐标系_教案_七年级数学下册


张明:“我这里的坐标是(300,300)”. 王丽:“我这里的坐标是(200,300)”. 李华:“我在你们东北方向约420米处”. 实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何 在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约 420米处”吗? 用他们的方法,你能描述公园内其他景点的位置吗? 让学生分别画出直角坐标系,标出其他景点的位置. 三、小结 1、让学生归纳说出如何利用坐标表示地理位置. 2、建立恰当的坐标系 四、课后作业 教材第78页习题7.2 第1,8,10题
难点:理解坐标平面内的点与有序实数对的一一对应关系. 三、教学过程 (一)复习导入 数轴上的点可以用什么来表示? 可以用一个数来表示,我们把这个数叫做这个点的坐标。 如图,点A的坐标是2,点B的坐标是-3.
C
坐标为-4的点在数轴上的什么位置? 在点C处. 这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。 (二)平面直角坐标系 思考:平面内的点又怎样表示呢? 这就是我们这节课所学的——平面直角坐标系(并板出课题) 什么是平面直角坐标系? 带着这个问题阅读课本P66页,并完成平面直角坐标系概念:
第二象限 ( -,+ ) 第一象限 ( +,+ ) 第二象限 ( -,- ) 第二象限 ( +,- )
各象限上的点有何特点?
学生交流后得到共识,各象限坐标的符号: 第一象限上的点,横坐标为正数,纵坐标为正数, 即(+,+) 第二象限上的点,横坐标为负数,纵坐标为正数, 即(-,+) 第三象限上的点,横坐标为负数,纵坐标为负数, 即(-,-) 第四象限上的点,横坐标为正数,纵坐标为负数, 即(+,-) 练习:点A(4,5)在第 象限; 点B(-2,3)在第____象限.; 点C(-4,-1)在第____象限; 点D(2.5,-2)在第____象 限; 点E(0,-4).在 ; 点F (0,5)在 。 (六)例题讲解 P67 例 在平面直角坐标系中描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4). 分析:根据点的坐标的意义,经过A点作x轴的垂线,垂足的坐标 是A点横坐标,作y轴的垂线,垂足的坐标是A点的纵坐标。你认为应该 怎样描出点A的坐标? 先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个 点分别作x轴和y轴的垂线,垂线的交点就是A. 类似地,我们可以描出点B、C、D、E. 因此,我们可以得出:对于坐标平面内任意一点M,都有唯一的 一对有序实数对(x,y) (即点M的坐标)和它对应;反过来,对于任意一对有序实数对(x, y),在坐标平面内都有 唯一的一点M (即坐标为(x,y)的点)和它对应。也就是说,坐 标平面内的点与有序实 数对是一一对应的。 (七)建立平面直角坐标系 P68 探究:如图,正方形ABCD的边长为6.

7.1.2 平面直角坐标系 七年级数学下册(人教版)

2
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C

7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册

解:如图,各点的横纵坐标相等,类似的点有(-5,-5),(-1,-1),(1,1),(2,2),(4,4)等.
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?




(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.

2
-2

-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限










纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得才教育学科教师辅导讲义讲义编号:学员姓名:年级:课时数:辅导科目:数学学科教师:授课类型专题训练巩固练习教学目的1.理解有序数对的应用意义,了解平面上确定点的常用方法。

培养学生用数学的意识,激发学生的学习兴趣。

.重点:有序数对及平面内确定点的方法。

难点:利用有序数对表示平面内的点。

2.认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位。

渗透对应关系,提高学生的数感重点:平面直角坐标系和点的坐标.难点:正确画坐标和找对应点.3.用坐标表示地理位置,会根据实际情况建立适当的直角坐标系,并能用坐标表示地理位置。

重点:如何建立直角坐标系和用坐标表示地理位置难点:如何建立适当的直角坐标系4.用坐标表示平移掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移,会根据图形上点的坐标的变化,来判定图形的移动过程。

重点:坐标变化与图形平移的关系;难点:坐标变化与图形平移的关系运用授课日期及时段导入:1.近期剧院举办周杰伦个人演唱会,小华与朋友买了两张票去观看,座位号分别是7排9号和7排11号.怎样才能既快又准地找到座位?2.若用C3表示―天‖,请按下列顺序组成两句话:① B4 A3 B3 E4 ② B4 C2 D4 C5 A1 D3 E15可明喜万女4中我的常学3爱数天唱活2球里非生大1欢孩打习歌A B C D E一、有序数对1.有序数对的概念有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)利用有序数对,可以很准确地表示出一个位置。

注意:不能两个数的顺序;两个数组成的有序数对是个整体不能分开。

精讲精练:1.(3,5)表示教室的第3列第5排的位置,那么(4,6)(2,3)分别表示教室第几列第几排的位置?2.如图所示,甲(1,4)表示一街道与四路的十字路口,分别写出乙丙丁的位置。

一街道二街道三街道四街道五街道一路二路乙三路丁四路甲五路六路丙3.如图小英从家到达学校要穿过一个小区,若小区的道路均是正南或正东方向,小英走下列哪条路线不能到达学校()A(0,4)(0,0)(4,0)B(0,4)(4,4)(4,0)C(0,4)(1,4)(1,1)(4,1)(4,0)D(0,4)(3,4)(4,2)(4,0)4.如图是小刚画的一张脸,他对妹妹说:―如果我用(1,3)表示左眼,用(3,3)表示右眼‖那么嘴的位置可以表示成5.如图(1)所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)6.如图(1)所示,B 左侧第二个人的位置是 ( ) A.(2,5) B.(5,2) C.(2,2) D.(5,5)7.如图(1)所示,如果队伍向东前进,那么A 北侧第二个人的位置是 ( ) ) A.(4,1) B.(1,4) C.(1,3) D.(3,1) 8.如图(1)所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D 二、平面直角坐标系1.平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴为y 轴或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。

表示方法为(a ,b )a 是点对应横轴上的数值,b 是点在纵轴上对应的数值。

1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

画平面直角坐标系时,x 轴、y 轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。

2.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限和第四象限。

坐标轴上的点不属于任何象限。

各个象限内点的特征:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负) 3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y|, 到y 轴的距离为|x|。

到坐标原点的距离为22x y 。

4. 点的对称:点P(m ,n),关于x 轴的对称点坐标是(m ,-n), 关于y 轴的对称点坐标是(-m ,n) 关于原点的对称点坐标是(-m ,-n) 5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等; 平行于y 轴的直线上的点的特征:横坐标相等。

6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作 。

点P(a ,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b , a)第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7.点的平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

精讲精练:例1 平面内点的坐标是()A 一个点B 一个图形C 一个数D 一个有序数对对应练习1.在平面内要确定一个点的位置,一般需要________个数据;2.在平面直角坐标系内,下列说法错误的是()A 原点O不在任何象限内B 原点O的坐标是0C 原点O既在X轴上也在Y轴上D 原点O在坐标平面内例1 点P在x轴上,对应的实数是3,则点P的坐标是,若点Q在y轴上,对应的实数是13,则点Q的坐标是例2点P(a-1,2a+9)在x轴负半轴上,则P点坐标是同步练习:1.点P(m+2,m-1)在y轴上,则点P的坐标是2.已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为3.已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是4.平行于x轴的直线上的点的纵坐标一定()A.大于0B.小于0C.相等D.互为相反数5.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为().A.(0,2)B.(2,0)C.(0,-3)D.(-3,0)6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是().A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等例1 如果a -b <0,且ab <0,那么点(a ,b)在( )A .第一象限B .第二象限C .第三象限,D .第四象限. 例2如果xy <0,那么点P (x ,y )在( )(A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 同步练习:1.点P 的坐标是(2,-3),则点P 在第 象限.2.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是3.点 A 在第二象限 ,它到x 轴 、y 轴的距离分别是3 、2,则坐标是 4.若点P (x ,y )的坐标满足xy ﹥0,则点P 在第 象限;若点P (x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P 在第 象限. 若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限; 5.若点P(1-m ,m)在第二象限,则下列关系正确的是( ) A. 0<m<1 B. m<0 C. m>0 D. m>1 6.点(x ,x-1 )不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限 7.已知点P( 2x-10,3-x )在第三象限,则x 的取值范围是( ) A . 3<x<5 B.3≤x ≤5 C.x>5或x<3 D.x ≥5或 x≤38.设点P 的坐标(x ,y ),根据下列条件判定点P 在坐标平面内的位置: (1)xy=0 ;(2)xy>0 ;(3)x+y=0 (2)点A (12,)π-在第 象限. (3)横坐标为负,纵坐标为零的点在( )(A)第一象限 (B)第二象限 (C)X 轴的负半轴 (D)Y 轴的负半轴 (4)如果a-b <0,且ab <0,那么点(a ,b)在( )(A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限. (5)已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限(6)若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a= 例1 X 轴上的点P 到Y 轴的距离为2.5,则点P 的坐标为( )A (2.5,0)B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)例2 已知三点A (0,4),B (—3,0),C (3,0),现以A 、B 、C 为顶点画平行四边形,请根据A 、B 、C三点的坐标,写出第四个顶点D 的坐标。

同步练习:1.点A (2,3)到x 轴的距离为 ;点B (-4,0)到y 轴的距离为 ;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 。

2.若点A 的坐标是(-3,5),则它到x 轴的距离是 ,到y 轴的距离是 .3.点P 到x 轴、y 轴的距离分别是2、1,则点P 的坐标可能为 4.已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为( ). A .(3,2) B .(-3,-2) C .(3,-2) D .(2,3),(2,-3),(-2,3),(-2,-3)5.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有( ) A.1个 B.2个 C.3个 D.4个6.已知直角三角形ABC 的顶点A(2 ,0),B(2 ,3).A 是直角顶点,斜边长为5,求顶点C 的坐标7. 直角坐标系中,正三角形的一个顶点的坐标是(0,3 ),另两个顶点B 、C 都在x 轴上,求B ,C 的坐标.8.对于边长为6的正△ABC ,建立适当的直角坐标系,并写出各个顶点的坐标.9.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.BCA10.直角坐标系中,一长方形的宽与长分别是6,8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标.11.在图6的平面直角坐标系中,请完成下列各题:(1)写出图中A,B,C,D各点的坐标;(2)描出E(1,0),F(-1,3),G(-3,0),H(-1,-3);(3)顺次连接A,B,C,D各点,再顺次连接E,F,G,H,围成的两个封闭图形分别是什么图形?图6三、用坐标表示地理位置1.在平面直角坐标系中表示地理位置在平面直角坐标系中表示某一位置的过程:①建立平面直角坐标系,确定原点的位置,x轴、y轴的正方向②确定单位长度③标出点的位置和名称2.用方位角和距离表示地理位置同步练习:1.(1)下图是某市旅游景点示意图,请建立适当的坐标系,写出各景点的坐标.(2)葛亮同学利用暑假参观了花峪村果树种植基地(如图).他从苹果园出发,沿(1,3),(-3,3),(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点,看看能得到什么图形?2.(如图为某废墟示意图,由于雨水冲蚀,残缺不全,依稀可见钟楼坐标为A(5,-2),街口坐标为B(5,2),资料记载阿明先生的祖居的坐标为(2,1),你能帮助阿明先生找到他家的老屋吗?四、用坐标表示平移1.在平面直角坐标系中,有一点P (-4,2),若将点P : (1)向左平移2个单位长度,所得点的坐标为_____________; (2)向右平移3个单位长度,所得点的坐标为_____________; (3)向下平移4个单位长度,所得点的坐标为_____________; (4)向上平移5个单位长度,所得点的坐标为_____________; 2.已知A(1,4),B(-4,0),C(2,0)。

相关文档
最新文档