基于DSP的三相交流电机变频调速控制器的设计
基于 DSP 的三相异步电动机调速系统设计

摘要变频调速是交流电动机各种调速方式中效率最高、性能最好的调速方法,在整个交流调速中占有重要的地位。
采用MATLAB软件包中的SIMULINK对基于数学模型基础上的电气传动控制系统进行仿真建模,具有建模简便、结构直观、操作灵活等优点,并且仿真结果具有较高的精度。
本文分析了电机在三相、两项坐标系下的数学模型,通过MATLAB\SIMULINK仿真软件,根据矢量控制原理,给出了异步电机变频调速原理图,构建了模型的各个子模块,并设计了各个子模块的参数,得到了矢量控制的异步电机变频调速仿真模型,进行了仿真实验,得出实验结果并对结果进行了分析。
关键词:SIMULINK,矢量控制,异步电动机,变频调速第一章概论长期以来直流电动机由于调速性能和转矩控制特性比较理想,可以获得良好的动态响应,被广泛应用于各个领域,然而由于在结构上存在的问题使其在设计容量受到限制,不能适应高速大容量化的发展方向。
交流电动机以其结构简单、制造方便、运行可靠,可以以更高的转速运转,可用于恶劣环境等优点得到了广泛的运用,但交流电动机的调速比较困难。
在上个世纪20年代,人们认识到变频调速是交流电动机一种最理想的调速方法,由于当时的变频电源设备庞大,可靠性差,变频调速技术发展缓慢。
60年代至今,电力电子技术和控制技术的发展,使交流调速性能可以与直流调速相媲美。
现代电子技术的飞速发展、电动机控制理论的不断完善以及计算机仿真技术的日益成熟,极大的推动了交流电动机变频调速技术的发展。
第二章方案选择2.1 V/F控制开环恒压比(V/F=常数)的控制方式,优点是控制结构简单、成本较低,缺点是系统性能不高。
具体来说,其控制曲线会随着负载的变化而变化,转矩响应慢,电压利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降稳定性变差等。
当生产机械对调速系统的动静态性能要求高时,上述系统性能将不能满足需求。
2.2矢量控制当前异步电动机调速总体控制方案中,V/F控制方式是最早实现的调速方式。
基于DSP的三相交流异步电机变频调速系统设计

基于DSP的三相交流异步电机变频调速系统设计罗海龙;阮岩;王昆【摘要】针对电机控制系统对高精度、小功耗和低成本的需求,设计空间电压矢量脉宽调制(SVPWM)的U/F调速控制系统.设计中选用TI的高速数字信号处理器TMS320F28335作为控制核心,描绘出系统总体设计框图,详细阐述完整的SVPWM实现过程,给出系统各个模块的硬件设计思路和系统控制程序设计思路.通过实验验证系统设计的可行性、合理性.【期刊名称】《现代计算机(专业版)》【年(卷),期】2018(000)010【总页数】4页(P77-80)【关键词】变频调速;SVPWM;DSP;交流异步电机【作者】罗海龙;阮岩;王昆【作者单位】西安石油大学电子工程学院,西安 710065;西安石油大学电子工程学院,西安 710065;西安石油大学电子工程学院,西安 710065【正文语种】中文0 引言随着电机控制产品的多样化,变频技术已被普遍运用[1]。
在电机系统节能解决方案中,有相当一部分系统通过变频调速控制技术,可节省大量的电能。
目前,先进的控制算法使运算日益复杂化,新的应用需要更高的控制精度、实时控制要求中断响应时间更短[2-3],为此对数字处理器的要求更加苛刻。
选用TI的32位TMS320F28335 DSP控制器,其拥有增强型脉宽调制器(ePWM)模块、12.5MSPS的ADC模块、增强型捕获单元模块、浮点运算单元以及众多的通信接口等。
在电机变频调速系统设计中能够降低系统成本、增加系统可靠性和提升系统性能。
1 系统总体设计基于TI的高速数字信号处理器TMS320F28335设计了三相异步电机变频调速系统。
系统设计包括电源设计、逆变器设计、DSP最小系统设计、电压电流检测设计和测速设计。
系统总体设计框图如图1所示。
DSP通过ADC模块读取整流侧直流电压,电机电压Uref的大小可根据U/F控制特性可以获得,θ为定子电压矢量旋转角度,可由当前运行频率值对时间的积分直接计算得到[4],由此可确定θ象限、Uref所在扇区号,通过查表和计算得出每个ePWM模块CMPA寄存器的值,从而产生SVPWM去驱动功率元件开关动作[5-6]。
基于DSP控制的三相交流电机变频调速系统

基于DSP控制的三相交流电机变频调速系统
谢卫东;程德福;张贤涛;王琦
【期刊名称】《电力电子技术》
【年(卷),期】2007(41)7
【摘要】由于三相交流异步电动机具有优良的性能,因此其在工业场合应用广泛.所讨论的调速系统以三相交流异步电动机为被控对象,以TMS320LF2407A(16位定点DSP芯片)为处理器,采用智能功率模块PM10CSJ060,通过SPWM技术对交流电机进行恒压频比控制,设计并实现了基于DSP的变频调速(Variable Velocity Variable Frequence,简称VVVF)控制系统.
【总页数】3页(P64-66)
【作者】谢卫东;程德福;张贤涛;王琦
【作者单位】吉林大学,吉林,长春,130026;吉林大学,吉林,长春,130026;吉林大学,吉林,长春,130026;吉林大学,吉林,长春,130026
【正文语种】中文
【中图分类】TM921.5
【相关文献】
1.基于DSP的感应电机矢量控制变频调速系统设计 [J], 汲德明;任一峰;赵孟强;胡威
2.基于DSP的三相交流异步电机变频调速系统设计 [J], 罗海龙;阮岩;王昆
3.基于DSP控制的多相交流电机变频调速系统 [J], 吴伟亮;葛宝明;孙东森;毕大强
4.基于DSP控制的永磁同步电机变频调速系统的设计 [J], 刘少军;张思雨
5.基于DSP的异步电机矢量控制变频调速系统研究 [J], 邱爱中
因版权原因,仅展示原文概要,查看原文内容请购买。
基于DSP的三相交流电机变频调速控制器设计

摘要:随着电力电子技术的发展,以及各种新型控制器件和先进控制方法在电机调速系统中的应用,交流电机控制精度得到了极大的提高。
为了满足高性能、节能和环保的要求,交流电机调速以其特有的优点,正逐步取代直流调速,在电气传动领域中扮演着重要的角色。
本课题主要针对交流异步电机变频调速控制系统进行了研究和探讨,提出了相应的软、硬件设计方案,以TI公司的电机专用控制芯片DSP TMS320LF2407A为控制核心,采用V/F控制和空间电压矢量脉宽调制(SVPWM)相结合的控制方法,实现了对交流异步电机变频调速控制。
关键词:DSP、SVPWM、交流异步电机、变频调速一、交流异步电机的数学模型三相交流异步电机是一个多变量、高阶、非线性、强耦合的复杂系统,为了方便对三相交流异步电机进行分析研究,抽象出理想化的电机模型,通常对实际电机作如下假设:1)忽略磁路饱和的影响,认为各绕组的自感和互感都是恒定的。
2)忽略空间谐波,三相定子绕组A、B、C及三项转子绕组a、b、c在空问对称分布,互差120。
电角度,且认为磁动势和磁通在空间都是按J下弦规律分布。
3)忽略铁心损耗的影响。
4)忽略温度和频率变化对电机参数的影响。
1.1 异步电机的原始数学模型异步电机的原始数学模型可由以下四组方程表示:1.电压方程三相定子绕组的电压方程为:(1-1)三相转子绕组折算到定子侧后的电压方程为:(1-2)式中uA,uB,uC,ua,ub,uc——定子、转子相电压的瞬时值;iA,iB,iC,ia,ib,ic——定子、转子相电流的瞬时值;ψA,ψB,ψC,ψa,ψb,ψc——各绕组的全磁链;R1 ,R2——定子、转子绕组电阻。
将以上电压方程写成矩阵形式,并以微分算子P代替微分符号d/dt(1-3)也可以简写为:U=Ri+pψ(1-4)2.磁链方程由于每个绕组的磁链是它本是的自感磁链和其它绕组对它的互感磁链之和,六个绕组的磁链可以表示为:(1-5)也可简写为:ψ=Li (1-6)式中,L是6 x 6的电感矩阵,其中对角线元素是各有关绕组的自感,其余各项是绕组间的互感。
基于DSP变频调速硬件电路设计

基于DSP变频调速硬件电路设计随着电力电子技术的发展,变频调速技术在工业领域中的应用越来越广泛。
数字信号处理器(DSP)作为一种高速数字芯片,可以为变频调速提供高效的实现方式。
本文将介绍基于DSP的变频调速硬件电路设计的相关知识。
基于DSP变频调速硬件电路设计是通过对电力电子器件的控制来实现对电机转速的调节。
其优点在于,可以在宽广的范围内实现高精度的速度控制,同时具有优异的动态性能和稳定性。
基于DSP的变频调速技术还可以实现多种先进控制算法,如矢量控制、直接转矩控制等。
电路设计是整个硬件电路的核心部分。
基于DSP变频调速硬件电路通常包括采样电路、信号放大电路、控制电路等。
采样电路负责实时采集电机的转速和电流等信号,并将模拟信号转换为数字信号供DSP处理。
信号放大电路则将DSP输出的控制信号进行功率放大,以驱动电力电子器件。
控制电路主要负责实现DSP的各种控制算法,并与外部设备进行通信。
在软件设计方面,实现变频调速的主要算法包括PID控制、矢量控制、直接转矩控制等。
程序设计需要与硬件电路相配合,实现数据的实时采集、处理和显示等功能。
为了满足实时性的要求,软件设计还需要进行优化,以提高程序的运行效率。
为了验证上述设计和程序的正确性和有效性,需要进行实验验证。
实验过程中,需要以下几个方面:实验设计思路要清晰,实验操作步骤要详细且可操作性强;实验数据分析和处理要科学、合理。
通过实验数据的分析,可以评估设计的性能指标是否达到预期要求,从而验证设计的正确性。
基于DSP变频调速硬件电路设计具有高效、精确、灵活等优点,可以实现多种先进控制算法,满足宽广范围内的速度控制需求。
然而,仍存在一些不足之处,如对于不同类型的电机和不同应用场景,需要针对性地优化设计和程序算法,以进一步提高性能指标。
还需要加强电磁兼容性设计,以应对复杂工业环境中的干扰和冲击。
未来可以通过深入研究电机控制理论、优化算法和改进电路设计等方法,进一步提升基于DSP变频调速硬件电路的性能和适应性。
基于DSP的三相变频器控制系统的设计

基于DSP的三相变频器控制系统的设计一、引言三相变频器是一种能够将电流频率和电压进行调节的电力装置,通过控制电机的转速,实现对电机的调控。
而基于数码信号处理器(DSP)的三相变频器控制系统能够更精确地控制电机的运行,并提供更高的效率和稳定性。
本文将详细介绍基于DSP的三相变频器控制系统的设计原理和实现方法。
二、三相变频器的工作原理三相变频器主要由整流器、逆变器和控制系统组成。
其中,整流器将交流电源转换为直流电源,逆变器将直流电源转换为可调节的交流电源。
控制系统负责采集和处理电机的转速信号,并通过对逆变器输出电压和频率的控制,实现对电机转速的调节。
三、基于DSP的控制系统设计1. DSP芯片选择由于对于三相变频器控制系统来说,需要实时采集和处理电机转速信号,因此需要选择性能优越的DSP芯片。
根据系统需求,选择XX型号的DSP芯片,该芯片具有高速计算、丰富的外设接口和完善的开发工具链。
2. 电机转速信号采集在控制系统中,需要采集电机的转速信号,一种常用的方式是使用霍尔元件结合磁铁进行转速检测。
通过安装霍尔元件和磁铁在电机轴上,当磁铁经过霍尔元件时,会产生电平变化,通过检测电平变化的频率,可以得到电机的转速。
3. 控制算法设计基于DSP的三相变频器控制系统需要设计合适的控制算法,以实现对电机转速的精确控制。
常见的控制算法包括PID控制算法、模糊控制算法等。
通过对转速信号的实时采集和处理,利用控制算法计算逆变器输出的电压和频率,可以很好地控制电机的转速。
4. 逆变器输出控制逆变器是三相变频器中一个重要的组成部分,负责将直流电源转换为可调节的交流电源。
通过控制逆变器输出的电压和频率,可以实现对电机转速的调节。
基于DSP的控制系统可以通过PWM(脉宽调制)技术对逆变器输出进行控制,根据控制算法计算出的电压和频率值,通过调节PWM信号的占空比,控制逆变器输出电压的大小和频率的变化。
5. 界面设计和通信功能控制系统通常还具备用户界面和通信功能,以便用户对系统进行监控和调节。
三相交流电机变频调速控制器的设计
附录 1......................................................................................................................................
2
第一章
概述
1.1 课题背景及其研究意义
第三章 硬件电路设计 ....................................................................................................... 12 3.1 系统硬件结构框图 .................................................. ................................................. 12 3.2. 各部分电路设计 3.2.1 逆变电路 ............................................................................................................ 3.2.2 驱动电路…........................................................................................................ 12 13
1.2 三相交流电机变频调速的当前情况和发展趋势
变频调速三相异步电动机已有近 20 年的研制开发、设计和生产史。 近些年来,随着变频器研制开发技术的不断创新、迅速发展和完善,性价比趋于合理, 变频调速技术被广泛采用。 又因为变频调速笼型异步电动机其结构简单可靠、 维修工作量小、 节能、 调速性能好等优点, 较直流机调速更优越, 广泛用于驱动各种石油、 化工、起重运输、 机械加工、造纸、纺织和冶金等行业的机械设备。 截止到 2000 年,变频器供电的电动机占欧洲交流电机市场的 30%,预计到 2020 年将 提高到 50%。 试验研究表明,变频器供电的异步电动机,虽然有其显著不可比的优点,但也存在高次 谐波大、损耗大,受到电压变化率 dv/ dt 的冲击等问题。除了变频器本身在不断改进提高 外,就目前情况而言,变频调速电动机在设计上如何适应变频器这一特点,多年来,尤其是 20 世纪 90 年代以来, 国际上从事变频调速电动机研究的广大科技人员在广泛试验研究的基 础上,通过优化设计、改进转子槽形、增强绝缘结构、研究新材料、采用绝缘轴承等一系列 措施以适应变频器的特点,来提高变频调速电动机的性能、使用寿命和可靠性,效果显著。 国内也有从事这方面的研究人员。 但变频调速电动机生产企业多借鉴国外的研究成果, 多在 [3] 实践上下功夫,取得了可喜的效果。 20 世纪 50 年代中期,晶闸管的研制成功,开创了电力电子技术发展的新时代。晶闸 管具有体积小、 重量轻、 响应快、 管压低等优点, 从而使得交流电机调速技术有了飞跃发展, 出现了交流异步电机调压调速、串级调速等调速系统。 到 20 世纪 70 年代出现了变频调速技术, 变频调速具有高效率、 高精度和范围宽等特 点, 是目前运用最广泛且最具有发展前途的调速方式。 交流电机变频调速系统的种类也很多, 从早期就提出的电压源型变频调速开始, 相继发展了电流源型、 脉宽调制型等各种变频调速 控制系统。目前变频调速的主要方案有脉宽调制(Pulse Width Modulation,简称 PWM)变 频调速、 矢量控制 (Field Oriented Control, 简称 FOC) 变频调速和直接转矩控制 (Direct Torque Control,简称 DTC)变频调速等。这些变频调速技术的发展很大程度上依赖于大功率半导 体器件的制造水平。随着电力电子技术的发展,特别是门极可关断晶闸管( GTO) 、电力晶
基于DSP控制的三相交流电机变频调速系统
维普资讯
第 4 卷 第 7期 1
20 0 7年 7 月
电 力 电子 技 术
P w rElcr n c o e e t is o
V l1 o _ .No 7 4 .
Jl 20 uy,0 7
基于 D P控制的三相交流电机变频调速系统 S
谢 卫 东,程德福 ,张 贤涛 ,王 琦
( 吉林 大学 , 吉林 长春 10 2 ) 3 0 6
摘要 : 由于三相交流异步 电动机具有优 良的性 能 , 因此其在 工业场合应用广泛 。所 讨论的调速系统 以三相交流
异步 电动机为被控对象 , T 3 0 f 4 7 1 位 定点 D P芯片)为处理器 , 以 MS 2 L ’ 0 A( 6 2 S 采用 智能功率模块 P 0 S0 0通过 M1C J6 , S WM 技 术 对 交 流 电机 进 行 恒 压 频 比控 制 ,设 计 并 实 现 了 基 于 D P的变 频 调速 ( a al V l i a a l P S V r be e c yV r be i ot i Fe u ne 简称 V VF 控制系统 。 rqe c 。 V ) 关键词 : 异步 电动机 ; 变频调速 ;脉宽调制 / 数字信号处理器 ; 压频 比控制 恒
s se b s d o P wa e i n d a d r a ie . y t m a e n DS sd sg e n e l d z Ke wo d : s n h n u t r v r b e v lct a a l y r s a y c r o smo o ; a a l eo i v r b e ̄e u n e p l d h mo u ai n d gtlsg a r c so ; o i y i q e c ; u s wi t d l t / i i i n lp e s r e o a o c n tn r o t l n sa t F c nr V, o
基于DSP的三相异步电机控制毕业设计
基于DSP的三相异步电机变频调速控制器设计毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。
本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。
本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。
论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日1.要求:系统输入直流电,输出三相交流电,以控制三相异步电机。
2.概要:电机节能问题一直是广大学者研究的热点,在电机节能技术中最受瞩目的是变频调速技术。
本文研究一种基于数字信号处理器(DSP)的三相异步电动机变频调速系统。
论文首先阐述三相异步电动机的脉宽调制技术和矢量控制原理。
脉宽调制技术中重点分析正弦波脉宽调制技术(SPWM)和电压空间矢量脉宽调制技术(SVPWM)的基本原理和控制算法。
矢量控制思想是将异步电机模拟成直流电机,通过坐标变换,将定子电流矢量分解为按转子磁场定向的两个直流分量,实现磁通和转矩的解耦控制。
论文用Matlab/Simulink 软件对三相异步电动机矢量控制系统进行仿真研究,并在此基础上对矢量控制变频调速系统进行硬件和软件设计。
在硬件设计方面,系统以TI 公司的TMS320LF2407A DSP 芯片为控制电路核心,以三菱公司智能功率模块(IPM)PM25RSB-120 为主电路核心,对三相交流整流滤波电路、IPM 驱动和保护电路、相电流检测电路、转速检测电路、显示电路以及DSP 与PC 机通信电路等模块进行设计。
基于DSP的三相异步电机变频调速器DSP设计
相
电
相
电
而霍尔电流传感器检测到的是一个交流量,所以经过传感器后,还 需进行偏移转化到 才能输入到 中。处理之后的输出范围为0~
3.3V,偏移函数为: VOUT = 1.65 + 0.5VI
流
流
转速检测电路设计
光电式旋转编码器是转速或转角的检测元件,旋转编码器与电动机相连, 当电动机旋转时带动码盘旋转,通过光栅的作用,持续不断地开放或封闭光通 道接收装置的输出端就可以得到频率与转速成正比的方波脉冲序列。方波脉冲 经过滤波处理,由I/O 口进入DSP 的增量式光电编码器接口(QEPx,x=1、2 ),QEPx在一定的时间TC 内对输入脉冲的个数进行计数就可以计算转速, 这种测速方法通常也称为M 法测速。 TMS320LF2407A中将捕获单元配置成正交编码脉冲模式。以事件管理器 A(EVA)为例,它的编码器接口使用定时器T2作为可逆计数器,来计编码脉 冲的个数。在图中,编码器接口电路利用输入编码脉冲的4个边沿加工成4倍 频的计数脉冲信号和计数方向信号。
但有利于改善抖动和减少地磁干扰。
本设计中以TPS7333为核心芯片设计电源转换电路。
其输入电压5V,输出电压3.3V,输出最大电流500mA。
接
显示电路设计
该设计负责显示电动机实测转速。由于按键数比较少,只有 个,因此设 计中没有利用 的键盘接口功能,而是设计成直接用 扫描按键的高低电平,采用软件实现对按键命令的响应。 虽然 采用 供电,但其 、 和 脚全为输入,可以识 别 来 自 供 电 的 的 信 号 , 因 此 , 和 可以直接接口。 电路中 ~ 通过限压保护电阻接 ,驱动输出段 ~ 、 为小数 点驱动输出,振荡部分采用 晶振频率,复位端 低电平有效, 当 端由低电平变为高电平后, 大约经过 ~ 的时 间才会进入正常工作状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要: 由于三相交流异步电动机具有优良的性能,因此其在工业场合应用广泛。
所讨论的调速系统以三相交流异步电动机为被控对象,以TMS320LF2407A (16 位定点DSP 芯片)为处理器,采用智能功率模块PM10CSJ060,通过SPWM 技术对交流电机进行恒压频比控制,设计并实现了基于DSP 的变频调速(Variable Velocity VariableFrequence,简称VVVF)控制系统。
关键词:异步电动机;变频调速;脉宽调制/ 数字信号处理器;恒压频比控制引言在工矿企业中,电动机是应用面最广、数量最多的电气设备之一,因而电机的运动和控制与企业的产品质量和效益密切相关。
交流变频调速技术是电力电子技术、微电子技术、控制技术高度发展的产物。
交流变频调速技术的优越性体现在节电显著和调速性能卓越两个方面。
针对这一情况,设计了基于DSP TMS320LF2407A 及智能功率模块PM10CSJ060的交流电机变频调速系统。
TMS320LF2407A 是专为电机控制而优化设计的单片DSP 控制器,它不仅具备强大高速的运算处理能力,而且在片内集成了丰富的电机控制外围部件,如事件管理器、PWM产生电路、ADC 转换模块等,这为实现交流电机变频调速控制提供了极大的便利。
而智能功率模块(Intelligent Power Module,简称IPM)将大功率开关器件和驱动电路、保护电路、检测电路等集成在同一个模块内,是电力集成电路PIC 的一种。
设计中采用恒压频比控制法实现了调速,其算法简单,控制灵活,是一种较为实用的方法。
第一章、概论1.1DSP的发展趋势在计算机技术日新月异的时代,嵌入式系统软件、硬件不断进行着新的突破性发展。
如今DSP操作系统和DSP应用已经成为当今嵌入式系统应用领域中最热门的技术,是高校、科研院所和高新技术企业的DSP软件、硬件开发人员的新的课题。
DSP实时嵌入式操作系统是一种实时的、多任务的操作系统软件,它是DSP 系统(包括硬、软件系统)极为重要的组成部分,通常包括与硬件相关的底层驱动软件、系统内核、设备驱动接口。
目前,DSP实时操作系统的品种较多,据统计,仅用于信息电器的DSP操作系统就有10种左右。
与通用操作系统相比较,嵌入式操作系统在系统实时高效性、硬件的相关依赖性、软件固态化以及应用的专用性等方面具有较为突出的特点。
DSP技术应用前景将非常广阔。
DSP应用产品具有巨大的市场需求前景,仅就美国市场而言,据估计,21世纪将有1亿辆汽车、几千万台个人通信装置、每个家庭中5~20个联网的家用电器以及数以百万计的工厂使用DSP系统。
业界分析家认为,DSP系统在IP电话、游戏装置和手持式通信装置的推动下将会有突飞猛进的发展。
DSP系统不仅在传统的工业控制、通信和图象处理领域有极其广泛的应用空间,如智能工控设备、POS/ATM机、IC卡等,而且在信息家电领域的应用更具有极为广泛的潜力,例如机顶盒、变频冰箱、变频空调等众多的消费类和医疗保健类电子设备,以及在车载盒、智能交通等领域的应用也呈现出前所未有的生机。
(1)信息家电领域机顶盒、变频冰箱、变频空调等众多的消费类和家庭医疗保健类电子设备将在未来几年取得快速发展,信息家电的个性化、区域化以及季节化的趋势,为特定应用的DSP操作系统提供了应用发展空间。
信息智能家居是未来发展的方向,估计几年内将得到快速发展。
(2)医疗仪器领域大量医疗仪器的应用,如心脏起搏器、放射设备及分析监护设备,都需要RTOS的支持,像各种化验设备,如肌动电流描记器、离散光度化学分析、分光光度计等,都需要使用高性能的、专用化的DSP系统来提高其精度和速度。
引入DSPRTOS后,现有的各种监护仪的功能与性能都将得到大幅度的提高。
(3)智能汽车领域随着无线通信与全球定位技术的日益成熟和广泛应用,集通信、信息、导航、娱乐和各类汽车安全电子系统于一体的车载盒会成为下一代和未来汽车的发展方向。
由于足够的市场需求,车载盒必将成为近年来发展的热点,DSPRTOS在该领域应用市场的规模未来几年里将迅速增加。
(4)智能交通领域随着人们对环境要求的不断提高,智能交通系统(ITS)必将是新世纪迅猛发展的支柱产业。
特定应用的DSP操作系统将是发展智能综合路口控制机、路车交互系统、新型停车系统、高速公路的信息监控与收费综合管理系统的关键技术,其应用将确保智能交通系统的低成本与高性能,大大提高系统的可靠性和智能化程度。
(5)其它领域的应用,如视频会议系统、全数字电机控制系统(包括直流无刷伺服和交流伺服)、语音压缩、通信等。
DSP的应用离不开DSP操作系统。
1.2 变频调速技术的发展交流变频调速技术相对于变压调速等其它方法有着明显的优点:①调速时平滑性好,效率高;②调速范围较大,精度高;③起动电流低,对系统及电网无冲击,节电效果明显;④变频器体积小,便于安装、调试、维修简便;⑤易于实现过程自动化等优异特性,在实际中得到了广泛的应用。
20世纪是电力电子变频技术由诞生到发展的一个全盛时期。
最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向的发展。
70年代,席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。
80年代,变频调速己产品化,性能也不断提高,充分发挥了交流调速的优越性,广泛的应用于工业各部门,并且部分取代了直流调速。
进入90 年代,由于新型电力电子器件的发展及性能的提高、计算机技术的发展以及先进控制理论和技术的完善和发展等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频调速装置在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其他常规交流调速方式,其性能指标亦已超过了直流调速系统,达到取代直流调速系统的地步。
目前,交流变频调速技术以其卓越的调速性能、显著的节电效果以及在国民经济各领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。
变频调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。
变频调速理论己形成较为完整的科学体系,成为一门相对独立的学科。
变频装置按变换环节分有交一直一交系统和交一交系统两大类,交一直一交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛;按电压的调制方式分为脉幅调制PAM(Pulse Altitude Modulation)和脉宽调制PWM(Pulse Width Modulation)两大类,前者己几近绝迹,目前普遍采用的是后者回.1.3 变频调速系统的方案目前典型的变频调速控制类型主要有四种:①恒压频比(v均控制,②转差频率控制,③矢量控制,④直接转矩控制。
下面分别对这四种调速控制类型进行介绍。
早期的变频系统都是采用开环恒压比田/卜常数)的控制方式,U/f控制是转速开环控制,无需速度传感器,控制电路简单,负载可以是通用标准异步电动机,所以通用性强,经济性好,是目前通用变频器产品中使用较多的一种控制方式,普遍应用在风机、泵类的调速系统中。
但是由于这种控制方法是开环控制,调速精度不高,低速时因定子电阻和逆变器死区效应的存在而性能下降、稳定性变差。
异步电动机转差频率控制是一种转速闭环控制。
利用异步电动机的转矩与转差频率成正比的关系来控制电机的转矩,就可以达到与直流恒磁通调速系统相似的性能。
它的优点在于频率控制环节的输入频率信号是由转差信号和实测转速信号相加后得到的,在转速变化过程中,实际频率随着实际转速同步上升或下降,因此加、减速更平滑,容易稳定。
其缺点是由于转差频率控制规律是从异步电动机稳态等效电路和稳态转矩公式推得的,所以存在动态时磁通的变化不能得到控制、电流相位没有得到控制等差距,使其不能达到与直流恒磁通调速系统同样的性能。
本世纪70年代西德F.Blaschke等人首先提出矢量控制(FOC)理论,由此开创了交流电动机等效直流电动机控制的先河1习。
矢量控制也称为磁场定向控制,它着眼于电机磁场的直接控制。
其主要思想是将异步电动机模拟成直流电动机,通过坐标变换的方法分解定子电流,使之成为转矩和磁场两个分量,实现正交或解祸控制,从而获得与直流电动机一样良好的动态调速特性。
因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。
但在实际上矢量控制运算及转子磁链估计中要使用电动机参数,其控制的精确性受到参数变化的影响,所以精确的矢量控制系统要对电动机的参数进行估计。
这种控制方式需要解祸计算和坐标旋转变换,计算量较大,实现起来困难。
在矢量控制系统中,给定量要从直流变为交流,而反馈量要从交流变为直流再加上转子磁链模型、转子参数的辨识与校正等;因此电机的速度辨识及磁链观测器的实现是矢量控制系统实现的关键所在。
1985年德国鲁尔大学DePenbrock教授首先提出直接转矩控制理论(DTC)。
直接转矩控制与矢量控制不同,DTC摒弃了解祸的思想,取消了旋转坐标变换,简单的通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得的差值,实现磁链和转矩的直接控制。
直接转矩控制技术是用空间矢量的分析方法,直接在定子坐标系计算与控制交流电动机的转矩,采用定子磁场定向,借助离散的两点式调节器产生脉宽调制(PWM)信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
这种方法的优点在于:直接在定子坐标系上分析交流电动机的数学模型、控制电动机的转矩和磁链,省掉了矢量旋转变换等复杂的变换和计算。
大大减少了矢量控制技术中控制性能易受参数变化影响的问题。
但是由于直接转矩控制系统是直接进行转矩的砰一砰控制,避开了旋转坐标变换,控制定子磁链而不是转子磁链,不可避免地产生转矩脉动,降低调速性能,因此只能用在对调速要求不高的场合。
同时,直接转矩系统的控制也较复杂,造价较高。
1.4 本论文的研究内容本文在掌握交流电机变频调速基本原理的基础上,采用电机控制专用DSP芯片TMS320LF2407A,运用变频调速的价厂控制方式和SPWM控制算法,提出了交流电机变频调速系统的总体设计方案,。
具体研究工作包括:交流电机变频调速原理的研究;变频调速系统硬件电路的研究和设计,包括主电路、系统保护电路和控制电路;变频调速系统控制软件的研究和设计。
第二章交流调速原理2、1正弦脉宽调制(SPWM)控制理论我们期望变频器输出的电压波形是纯粹的正弦波形,但就目前的技术,还不能制造功率大、体积小、输出波形如同正弦波发生器那样标准的可变频变压的逆变器。