氯离子腐蚀知识大全

合集下载

氯离子腐蚀及不锈钢知识(精.选)

氯离子腐蚀及不锈钢知识(精.选)

氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化.本文分析了氯离子对金属腐蚀的机理,并针对热力系统内部氯离子的来源,提出了相应的解决措施.岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析316L抋o简隆新1 ,时建华2(1.中广核工程有限公司,广东深圳 518124;2.大亚湾核电运营管理有限公司,广东深圳 518124)简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况,分析了316L不锈钢的抗腐蚀性。

详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。

316L不锈钢;管道;点腐蚀: a 316L . 316L . , a . .: 316L ; ;1 循环水旋转滤网反冲洗系统简介循环水过滤系统()的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。

反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m。

反冲洗海水管道设计采用公称直径150(壁厚 7.11)的316L不锈钢管。

输送的海水含氯量为17g,摩尔浓度为0.48,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。

2 316L不锈钢管道的使用情况系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。

2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。

当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。

但在2001年9月,1号机管道又发现漏点。

氯离子腐蚀机理及其预防措施

氯离子腐蚀机理及其预防措施

氯离子腐蚀机理及其预防措施目录前言 (2)2.对影响氯离子腐蚀金属设备的原因分析 (3)3.预防和控制氯离子腐蚀金属设备的对策及建议 (3)3. 1.合理选材,控制应力 (3)3.2.降低氯离子在水溶液中的含量 (4)3. 3.无机防腐涂料的使用 (4)4.常规设备的防腐措施 (5)4.1.设备的防腐结构设计 (5)4. 1. 1.概述 (5)4. 1.2.避免死角的出现 (5)4. 1. 3.避免间隙的产生 (5)4.2.材料的选择原则 (6)4.3.电化学保护防护法 (6)4.3. 1.概述 (6)4. 3. 2.外加电流的阴极防护法 (7)4. 3. 3.牺牲阳极的阴极保护法 (7)1. 4.缓蚀剂 (7)4. 5.缓蚀剂成为未来缓蚀剂的发展方向 (8)5.几种不锈钢在含氯水溶液中的适用条件 (8)5. 1. 304型不锈钢 (8)5.2. 304L型不锈钢 (8)5. 3. 316型不锈钢 (8)5.4. 316L型不锈钢 (9)5. 5. 317型不锈钢 (9)5. 6. AISI 904L 或SUS 890L 型不锈钢 (9)5. 7. Avesta 254 SMO 高级不锈钢 (9)5. 8. Avesta 654 SMO 高级不锈钢 (9)5. 9. RS-2(OCr20Ni26Mo3Cu3Si2Nb)不锈钢这 (9)5. 10. Incoloy 825(S) (9)5. 11. 31 合金 (10)5. 12. 33 合金 (10)5. 13. C-2000 合金 (10)5. 14. 59 合金 (10)5. 15. TAl 钛材 (11)6.不锈钢在含氯离子介质中的适用范围 (11)前言氯离子基于其半径小、穿透能力强的特点,因此能够优先地选择吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑,进而造成对设备的腐蚀。

氯离子腐蚀介绍资料

氯离子腐蚀介绍资料

氯离子腐蚀介绍资料氯离子(Cl-)是一种常见的阴离子,它在化学和生物领域中起着重要的作用。

然而,氯离子也具有高度的腐蚀性,对于一些物质和材料具有破坏性的影响。

本文将介绍氯离子腐蚀的原理、影响因素以及一些常见的抗腐蚀措施。

氯离子腐蚀的原理是主要发生在金属表面的电化学反应。

当发生氯离子腐蚀时,氯离子会与金属表面上的电子发生反应,形成氯化物。

这个过程通常包括两个主要的反应,即氧化反应和还原反应。

氧化反应发生在金属表面,金属原子失去电子并形成金属阳离子。

还原反应则发生在氯离子周围的溶液中,氯离子接受金属离子失去的电子,从而形成氯化物。

这些反应导致金属表面的电位变化,加速了金属的腐蚀过程。

氯离子腐蚀的严重程度取决于多个因素。

首先,氯离子的浓度是一个重要的影响因素。

浓度越高,腐蚀速率越快。

其次,温度也对氯离子腐蚀起着重要的作用。

通常情况下,高温环境下氯离子的腐蚀效果更加明显。

此外,金属的形式和结构特征也会影响其对氯离子的腐蚀敏感性。

例如,腐蚀通常更加严重发生在金属表面的孔洞、裂纹和缺陷部位。

对于氯离子的腐蚀,有一些常见的抗腐蚀措施可用于减轻其影响。

一种方法是使用镀层或涂层。

通过在金属表面形成一层保护膜,可以减少金属与氯离子的接触,从而减缓腐蚀过程。

常见的涂层材料包括油漆、聚合物和金属氧化物。

其次,改变金属的化学成分也是一种抗腐蚀的方法。

例如,将硬质金属镀上一层具有更高抗腐蚀性的金属可以减少氯离子的腐蚀效果。

此外,定期清洁和维护也是预防氯离子腐蚀的重要方法。

通过定期清洗金属表面,并及时修复损坏或腐蚀的区域,可以延缓腐蚀的发生。

总之,氯离子腐蚀是一种常见的现象,可以对金属材料和结构造成重大损害。

了解氯离子腐蚀的原理和影响因素,以及采取适当的抗腐蚀措施,将有助于延长金属材料的使用寿命和安全性。

在实际应用中,我们需要根据具体情况采取相应的措施,确保金属材料不受氯离子腐蚀的影响。

氯离子腐蚀介绍资料

氯离子腐蚀介绍资料

氯离子腐蚀研究一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。

对奥氏体不锈钢会出现晶间腐蚀。

曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。

除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材, 只是花钱多啊!对氯离子腐蚀,可以采用双相不锈钢。

二:这个与氯离子的浓度有关系和操作温度有关。

通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。

当然为了增加寿命可以采用内部涂漆、衬胶等。

有条件可以采用双相钢,钛材等。

而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。

我们的盐酸罐就是这种方法。

当然其温度压力也有要求。

脱硫行业中会用一些254SMO, A16XN, SAF2507, 1.4529等,不重要的地方也可以衬胶我同意六楼的观点,我们买的泵基本上是2605三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。

在海水环境下不锈钢的使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。

对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考:高强度耐海水腐蚀马氏体时效不锈钢00Cr16Ni6Mo3Cu1N高强度耐海水腐蚀不锈钢00Cr26Ni6Mo4CuTiAl耐海水不锈钢Yus270 (20Cr-18Ni-6Mo-0. 2N)管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的是什么和什么发生反应?介绍的详细一点谢谢了不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。

建议用“不锈钢”、“ Cl离子”、“应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专著,讲述更清楚明白。

氯离子腐蚀及不锈钢知识

氯离子腐蚀及不锈钢知识

氯离⼦腐蚀及不锈钢知识氯离⼦对热⼒机组的腐蚀危害极⼤,其腐蚀表现形式主要是破坏⾦属表⾯的钝化膜,进⽽向⾦属晶格⾥⾯渗透,引起⾦属表⾯性质的变化.本⽂分析了氯离⼦对⾦属腐蚀的机理,并针对热⼒系统内部氯离⼦的来源,提出了相应的解决措施.岭澳核电站循环⽔过滤系统316L不锈钢管道点腐蚀的理论分析Analysis of Pitting Corrosions on 316L Stainless Steel Pipes ofCirculation Water Filtering System in Ling抋o Nuclear Power Station简隆新1 ,时建华2(1.中⼴核⼯程有限公司,⼴东深圳518124;2.⼤亚湾核电运营管理有限公司,⼴东深圳518124)简单介绍了循环⽔旋转滤⽹反冲洗系统及316L不锈钢管道的使⽤情况,分析了316L不锈钢的抗腐蚀性。

详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。

316L不锈钢;管道;点腐蚀Abstract: This paper gives a general introduction to the rotating drum filter back flushing system and the usage of 316L stainless steel pipes. It also analyses the characteristic of anti-corrosion of 316L stainless steel. At the same time, it gives a detailed introduction to the mechanism of forming pitting corrosion and the factors affecting its formation. The analysis of the pitting phenomena and suggestion for the pipe material selection are also discussed in this paper.Key words: 316L Stainless steel; Pipe; Pitting corrosion1 循环⽔旋转滤⽹反冲洗系统简介循环⽔过滤系统(CFI)的主要设备是旋转海⽔滤⽹,在其运⾏中要不断清除滤出的污物,通过反冲洗系统来实现。

氯离子腐蚀介绍资料

氯离子腐蚀介绍资料

氯离子腐蚀研究一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。

对奥氏体不锈钢会出现晶间腐蚀。

曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。

除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊!对氯离子腐蚀,可以采用双相不锈钢。

二:这个与氯离子的浓度有关系和操作温度有关。

通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。

当然为了增加寿命可以采用内部涂漆、衬胶等。

有条件可以采用双相钢,钛材等。

而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。

我们的盐酸罐就是这种方法。

当然其温度压力也有要求。

脱硫行业中会用一些254SMO,Al6XN,SAF2507,1.4529等,不重要的地方也可以衬胶我同意六楼的观点,我们买的泵基本上是2605三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。

在海水环境下不锈钢的使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。

对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考:高强度耐海水腐蚀马氏体时效不锈钢00Cr16Ni6Mo3Cu1N高强度耐海水腐蚀不锈钢00Cr26Ni6Mo4CuTiAl耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N)管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的是什么和什么发生反应?介绍的详细一点谢谢了最佳答案不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。

建议用“不锈钢”、“ Cl离子”、“应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专著,讲述更清楚明白。

氯离子腐蚀机理及防护

氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和Ni是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr和Ni使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论但大致可分为2种观点。

成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属外表,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力, 它们优先被金属吸附,并从金属外表把氧排掉。

因为氧决定着金属的钝化状态氯离子和氧争夺金属外表上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属外表的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果说明,氯离子对金属外表的活化作用只出现在一定的范围内,存在着1个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

2 应力腐蚀失效及防护措施2.1 应力腐蚀失效机理在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45%左右。

因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。

所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。

应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。

②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4、H2S溶液中才容易发生应力腐蚀。

氯离子腐蚀与不锈钢知识

氯离子腐蚀与不锈钢知识氯离子腐蚀的概念氯离子腐蚀是一种由于氯离子引起的金属腐蚀过程。

可以通过氯化物离子与水分子的相互作用,使得金属表面产生氯化物和氢离子,而由氢离子引起的金属腐蚀也常常称为氢腐蚀。

氯离子腐蚀的原因氯离子对于不锈钢材料来说是一种非常危险的化学物质,其中的主要原因就是因为氯离子会阻止材料表面能够产生有效的氧化被膜。

在没有这种被膜保护的情况下,金属表面会被氧化,产生疲劳和断裂,加速材料的腐蚀和老化。

同时,在含氯环境下,氯离子也可以在不锈钢表面形成氯化钠晶体,这种晶体会引起不锈钢的应力腐蚀开裂,对不锈钢的结构强度带来很大的破坏。

氯离子腐蚀的防护措施不锈钢材料是一种能够在一定程度上抵抗氯离子腐蚀的耐腐蚀材料,但在某些情况下,对于氯离子的抗腐蚀能力也十分有限。

因此,在应用不锈钢材料时,需要采取一些必要的防护措施,以保证其良好的抗腐蚀能力。

1.海水中不要使用不锈钢材料。

海水中的氯离子和其他盐类等物质,会对不锈钢产生强烈的腐蚀作用,不锈钢会迅速失去其耐腐蚀性。

2.保持不锈钢表面的清洁。

在不锈钢表面附着的污物和其它杂质,会在一定程度上对不锈钢的氧化被膜产生破坏或污染,从而导致不锈钢的腐蚀。

3.降低环境中氯离子的含量。

可以通过在环境中添加一定的抑制剂,来降低氯离子的含量,从而减少对不锈钢的腐蚀。

不锈钢材料的类型1.铬钢:铬钢是在铁和铬的基础上加入其他元素制成的钢材,具有抗氧化、耐腐蚀、抗高温等特点。

但铬钢的强度和硬度较低,不能满足所有的使用要求。

2.不锈钢:不锈钢是一种将铬钢和镍钢等不同成分的钢材组合而成的合金钢材,具有很好的耐腐蚀、抗高温、防震、刚性等特点,适用于广泛的应用场合。

3.马氏体不锈钢:马氏体不锈钢是钢铁中的一种优良品种,具有高强度、高硬度、耐热、耐腐蚀、耐磨损等特点,质地坚硬,适用于机械制造业和造船业等领域。

氯离子腐蚀是一种十分危险的金属腐蚀过程,会严重影响不锈钢材料的使用寿命和性能。

氯离子腐蚀机理

氯离子腐蚀机理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)1、Cl-对金属腐蚀的影响表现在两个方面:一是降低材质表面钝化膜形成的可能或加速钝化膜的破坏,从而促进局部腐蚀;另一方面使得H2S、C O2在水溶液中的溶解度降低,从而缓解材质的腐蚀。

Cl-具有离子半径小、穿透能力强,并且能够被金属表面较强吸附的特点。

Cl-浓度越高,水溶液的导电性就越强,电解质的电阻就越低,Cl-就越容易到达金属表面,加快局部腐蚀的进程;酸性环境中Cl-的存在会在金属表面形成氯化物盐层,并替代具有保护性能的FeCO3膜,从而导致高的点蚀率。

腐蚀过程中,Clˉ不仅在点蚀坑内富积,而且还会在未产生点蚀坑的区域处富积,这可能是点蚀坑形成的前期过程。

它反映出基体铁与腐蚀产物膜的界面处的双电层结构容易优先吸附Clˉ,使得界面处Clˉ浓度升高。

在部分区域,Clˉ会积聚成核,导致该区域阳极溶解加速。

这样金属基体会被向下深挖腐蚀,形成点蚀坑阳极金属的溶解,会加速Clˉ透过腐蚀产物膜扩散到点蚀坑内,使点蚀坑内的Clˉ浓度进一步增加,这一过程是属于Clˉ的催化机制,当Clˉ浓度超过一定的临界值之后,阳极金属将一直处在活化状态而不会钝化。

因此,在Clˉ的催化作用下,点蚀坑会不断扩大、加深。

尽管溶液中的Na+含量较高,但是对腐蚀产物膜能谱分析却未发现Na元素的存在,说明腐蚀产物膜对阳离子向金属方向的扩散具有一定的拟制作用;而阴离子则比较容易的穿过腐蚀产物膜到达基体与膜的界面。

这说明腐蚀产物膜具有离子选择性,导致界面处阴离子浓度升高。

2、氯离子对奥氏体不锈钢的腐蚀主要使点蚀。

机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性氯化物,结果在露出来的机体金属上腐蚀了一个小坑。

这些小坑被成为点蚀核。

这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平很腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。

氯离子腐蚀机理及防护

氯离子对不锈钢腐蚀的机理:在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。

成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

2 应力腐蚀失效及防护措施2. 1 应力腐蚀失效机理在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。

因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。

所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。

应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。

②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氯离子腐蚀知识大全
1、普及下常规不锈钢用于哪些氯离子环境
(1)T304不锈钢使用环境:氯离子含量为0-200mg/L
(2)T316不锈钢使用环境:氯离子含量为<1000mg/L
(3)T317不锈钢使用环境:氯离子含量为<5000mg/L
液压试验应符合下列规定:液压试验应使用洁净水。

当对不锈钢、镍及镍合金管道,或对连有不锈钢、镍及镍合金管道或设备的管道进行试验时,水中氯离子含量不得超过25mg/L(25ppm)。

2、不锈钢、超级不锈钢和钛材所用氯离子环境
下图为不锈钢、超级不锈钢和钛材所用氯离子环境。

红色为低ppm和低温环境,选用常规不锈钢304,绿色高温和高ppm环境,先用纯钛TA1。

从图表可以看出,耐氯离子腐蚀有个简易的排列:
304<316L<904L<254SMO<纯钛
3、双相钢耐氯离子腐蚀怎么样?
有同学会问,双相钢耐氯离子腐蚀怎样?性能如何?
下图为PRE耐腐蚀当量值,耐点腐蚀指数PRE(Pitting ResistanceEquivalent)数值反映的是材料的耐氯离子点腐蚀倾向。

从下图可以看出,双相钢2101、2304、2205、2507四个牌号耐腐蚀倾向均大于普通316L,有些材料和超级不锈钢相当。

如2507耐点腐蚀就媲美254SMO,2205与904L的耐氯离子点腐蚀腐蚀性能相当。

代入上面第2部分,很清楚可以看到他们排在什么位置。

上面G150腐蚀试验是奥托昆普发明的电化学临界点蚀温度的标准试验方法,临界点腐蚀温度如上:可以看出,G150结果与PRE数值结果类同。

4、超级不锈钢254SMO与316L耐氯离子腐蚀
上面黑白图和蓝色图一样,是来自奥托昆普不同年份和版本的图示,可以看出:316L耐氯离子点腐蚀性能远低于254SMO,耐缝隙腐蚀结果同样。

如60度温度时候,316L仅耐200ppm不到,904L耐8500ppm,254SMO耐15000ppm 氯离子。

数值大家可以按图索骥。

5、FGD脱硫氯离子+氟离子腐蚀选材(55~70度)
以上两图年代不同,结果类似,上图是奥托昆普结果,下图为德国VDM公司。

图示收集了从0~20万ppm氯离子+氟离子腐蚀工况(大部分是氯离子)的选材区间,是不可多得的氯离子选材参考。

下图更直观,50~70度温度下,按照酸碱性和氯离子浓度直接找到对应材料即可。

6、钛系列金属耐氯离子腐蚀如何?
上一张图标,第一行是钛材,可以看出,当C276镍基合金在204度的温度、3000ppm高压釜下开始有点腐蚀时候,钛材还依然在战斗,没有任何腐蚀。

所以文末,××来谈谈钛材在氯离子腐蚀上的应用。

众所周知,钛材对高氯离子的海水环境几乎是免疫的,基本没有腐蚀。

海水的盐度通常小于5%,根据长期的实验和实际使用,认为纯钛可以在120度以下的海水中安全使用,但温度再升高就有可能发生缝隙腐蚀,继续升高就有可能发生点蚀。

钛在不同浓度,PH值(3-9),温度的NaCl溶液中的使用范围见下图所述!
钛钯合金(Ti-0.2Pd,Grade7)和钛镍钼合金(Ti-Grade-12),可以用到260度的高温加压海水中!
下面是纯钛,钛钯合金(Grade7),钛镍钼合金(Grade12)在不同浓度的氯化钠溶液,氯化镁溶液中的耐腐蚀结果。

可以看出,在该工况中,钛钯合金和钛镍钼合金耐氯离子的程度比纯钛高的多!耐腐蚀度:Grade7>Grade12>纯钛(Grade2)
注意:图中白色圆圈代表可以使用;黑色圆圈代表容易发生缝隙腐蚀或点蚀;白色三角形代表发生轻微的缝隙腐蚀,但是不影响使用。

相关文档
最新文档